Стенд для акустических испытаний звукопоглотителей

Изобретение относится к метрологии, в частности к стендам для оценки качества звукопоглотителей. Стенд содержит металлический корпус, стенки которого облицованы исследуемым звукопоглотителем, на днище корпуса через упругодемпфирующую прокладку установлен регулируемый источник шума, причем регулировка осуществляется по громкости звука и частоте сигнала с помощью усилителя мощности сигнала и осциллографа, а на расстоянии 1 м от крышки корпуса закреплен микрофон, сигналы уровней звукового давления от которого поступают на анализатор спектра частот, а затем на компьютер для обработки полученной информации. Затем определяют уровень звуковой мощности, находят корректированный уровень звуковой мощности, величину снижения уровня звукового давления, средний коэффициент звукопоглощения акустически обработанного помещения, величину суммарного добавочного поглощения. При исследовании потолка с боковых стенок металлического корпуса снимают звукопоглотитель, а эффективную часть регулируемого источника шума направляют на потолочную часть корпуса и включают его, последовательно изменяя громкость звука и частоту сигнала. При исследовании облицовки стен звукопоглотитель снимается с потолка, а на стены наносят исследуемую облицовку. Источник шума направляют на стены. Затем с микрофона подают сигналы на усилитель мощности, например тензометрический, а с него подают сигналы на осциллограф и записывают осциллограммы уровней звукового давления, по которым определяют эффективность акустического потолка. Технический результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями. 3 ил.

 

Изобретение относится к испытательному оборудованию.

Наиболее близким техническим решением по технической сущности и достигаемому результату является стенд по патенту РФ №91540, В06В 1/00 от 07.12.2009 г., содержащий основания, защищаемый объект, измерительную аппаратуру и генераторы вибрационных и акустических воздействий (прототип).

Недостатком прототипа является сравнительно невысокие возможности испытаний многомассовых систем, и сравнительно невысокая точность для исследования систем, имеющих несколько упругих связей с корпусными деталями объекта.

Технически достижимый результат - расширение технологических возможностей испытаний звукопоглотителей путем стендовых исследований с последующей обработкой на компьютере.

Это достигается тем, что в стенде для акустических испытаний звукопоглотителей, содержащий металлический корпус со съемной передней крышкой, стенки которого облицованы исследуемым звукопоглотителем, на днище корпуса через упругодемпфирующую прокладку установлен регулируемый источник шума, причем регулировка осуществляется по громкости звука и частоте сигнала с помощью усилителя мощности сигнала и осциллографа, а на расстоянии 1 м от крышки корпуса закреплен микрофон, сигналы уровней звукового давления от которого поступают на анализатор спектра частот, а затем на компьютер для обработки полученной информации.

На фиг. 1 представлена схема стенда, на фиг. 2 - схема исследуемой шумопоглощающей облицовки; на фиг. 3 - характеристики звукопоглощающих облицовок.

Стенд для акустических испытаний звукопоглотителей (фиг. 1) содержит металлический корпус 1 (толщиной 3 мм) со съемной передней крышкой (на фото крышка снята), стенки и потолок которого облицованы исследуемым звукопоглотителем 2. На днище корпуса 1 через упругодемпфирующую прокладку 8 установлен регулируемый источник шума 3. Причем регулировка осуществляется по громкости звука (интенсивности) и частоте сигнала с помощью усилителя 5 мощности сигнала и осциллографа 6. Металлический корпус 1 установлен на жестком основании 7. Возможен вариант проведения исследований с установкой корпуса 1 на основании 7 через упругодемпфирующие прокладки (на чертеже не показано).

На расстоянии 1 м от крышки корпуса 1 закреплен микрофон 4, сигналы уровней звукового давления от которого поступают на анализатор спектра частот 9, затем на компьютер 10 для обработки полученной информации.

Исследуемая шумопоглощающая облицовки состоит из жесткого каркаса 11, который через воздушный промежуток 12 связан со звукопоглощающим материалом 13, который защищен перфорированным листом 14 с акустически прозрачной пленкой.

В качестве исследуемых звукопоглощающих материалов были использованы: акмигран, пенополиуретан, маты супертонкого базальтового волокна, и другие звукопоглотители.

На фиг. 3 представлены исследуемые характеристики звукопоглощающих облицовок: 15 - плита «Акмигран»; 16 - то же, с воздушным промежутком 200 мм; 17 - маты супертонкого базальтового волокна толщиной 50 мм;

Стенд для акустических испытаний звукопоглотителей работает следующим образом.

Сначала устанавливают в корпусе 1 исследуемый звукопоглотитель 2, затем через упругодемпфирующую прокладку 8 - регулируемый источник шума 3 и закрывают его съемной передней крышкой, также облицованной исследуемым звукопоглотителем 2. Возможен вариант испытаний с крышкой не облицованной звукопоглотителем, а также испытания с корпусом 1 и крышкой разной толщины и из различных акустических материалов.

Затем устанавливают и настраивают микрофон 4, настраивают с помощью источника шума 3 требуемый уровень звукового давления, и производят запись уровней звукового давления с помощью анализатора спектра частот 9, а затем сигнал поступает на компьютер 10 для обработки полученной информации. Затем на основании полученных спектров уровней звукового давления подсчитывают характеристики звукопоглотителя и определяют уровни звуковой мощности Lp.

Уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую обычно принимают площадь полусферы (фиг. 4), т.е.:

где S=2 πr2; r - расстояние от центра источника до точек измерений; S0=1 м2.

Таким же образом определяется корректированный уровень звуковой мощности LpA:

где LAcp - средний уровень звука на измерительной поверхности.

Величины снижения уровней звукового давления могут быть определены только в зоне отраженного звукового поля (когда rmin≥rпр)

где В - постоянная каюты судна до его акустической обработки, м2; B1 - постоянная помещения после его акустической обработки, м2, которая определяется по формуле:

где А1=α(Sобл-Sобл) - эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой; α=B/(B+Sобщ) - средний коэффициент звукопоглощения в помещении до его акустической обработки; α1 - средний коэффициент звукопоглощения акустически обработанного помещения, определяемый соотношением

ΔА - величина суммарного добавочного поглощения, вносимого конструкцией звукопоглощающей облицовки или штучными звукопоглотителями, определяемого по формуле

где αобл - реверберационный коэффициент звукопоглощения конструкции облицовки;

Sобл - площадь этой конструкции, м2; Ашт - эквивалентная площадь звукопоглощения одного штучного поглотителя, м2; n - количество штучных звукопоглотителей в помещении.

2. Величина снижения уровня звукового давления ΔL зависит от соотношения между прямым звуком, приходящим непосредственно от источника шума, и звуком отраженным и рассчитывается по формуле:

где L - уровень звукового давления в расчетной точке до акустической обработки помещения, дБ; Lобл - уровень звукового давления в расчетной точке после акустической обработки помещения, дБ.

Возможен вариант, когда для исследования эффективности акустического потолка, облицованного звукопоглотителем 2, с боковых стенок металлического корпуса 1 снимается звукопоглотитель 2, а эффективную часть регулируемого источника шума 3 направляют на потолочную часть корпуса 1 и включают его, последовательно изменяя громкость звука и частоту сигнала, затем с микрофона 4 подают сигналы (фиг. 1) на усилитель мощности 9, например тензометрический, а с него подают сигналы на осциллограф 10 и записывают осциллограммы уровней звукового давления, по которым определяют эффективность акустического потолка.

Возможен вариант, когда для исследования эффективности модели акустической облицовки 18 стен производственного помещения снимается звукопоглотитель 2 с потолка помещения (фиг. 1), и осуществляется облицовка звукопоглотителем 18 боковых стенок металлического корпуса 1, а эффективную часть регулируемого источника шума 3, установленного на виброзвукопоглотителе 8, направляют на облицовку звукопоглотителем 18 боковых стенок корпуса 1 и включают источник шума 3, последовательно изменяя громкость звука и частоту сигнала, затем с микрофона 4 подают сигналы на усилитель мощности 9, например тензометрический, а с него подают сигналы на осциллограф 10 и записывают осциллограммы уровней звукового давления, по которым определяют эффективность модели акустической облицовки 18 стен производственного помещения.

Стенд для акустических испытаний звукопоглотителей, содержащий металлический корпус со съемной передней крышкой, стенки которого облицованы исследуемым звукопоглотителем, на днище корпуса через упругодемпфирующую прокладку установлен регулируемый источник шума, причем регулировка осуществляется по громкости звука и частоте сигнала с помощью усилителя мощности сигнала и осциллографа, а на расстоянии 1 м от крышки корпуса закреплен микрофон, сигналы уровней звукового давления от которого поступают на анализатор спектра частот, а затем на компьютер для обработки полученной информации, при этом уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы: , где S=2πr2; r - расстояние от центра источника до точек измерений; S0=1 м2, а корректированный уровень звуковой мощности LpA: , где LAcp - средний уровень звука на измерительной поверхности, а величину снижения уровня звукового давления ΔL в отраженном звуковом поле образца рассчитывают по формуле:

где L - уровень звукового давления в расчетной точке до акустической обработки помещения, дБ; Lобл - уровень звукового давления в расчетной точке после акустической обработки помещения, дБ; В - постоянная каюты судна до его акустической обработки, м2; В1 - постоянная помещения после его акустической обработки, м2, которая определяется по формуле:

где A1=α(Sобщ-Sобл) - эквивалентная площадь звукопоглощения поверхностями, не занятыми звукопоглощающей облицовкой; - средний коэффициент звукопоглощения в помещении до его акустической обработки; α1 - средний коэффициент звукопоглощения акустически обработанного помещения, определяемый соотношением:

,

где ΔА - величина суммарного добавочного поглощения, вносимого конструкцией звукопоглощающей облицовки или штучными звукопоглотителями, определяемая по формуле:

ΔA=αоблSоблштn,

где αобл - реверберационный коэффициент звукопоглощения конструкции облицовки; Sобл - площадь этой конструкции, м2; Ашт эквивалентная площадь звукопоглощения одного штучного поглотителя, м2; n - количество штучных звукопоглотителей в помещении, причем для исследования эффективности акустического потолка, облицованного звукопоглотителем, с боковых стенок металлического корпуса снимают звукопоглотитель, а эффективную часть регулируемого источника шума направляют на потолочную часть корпуса и включают его, последовательно изменяя громкость звука и частоту сигнала, затем с микрофона подают сигналы на усилитель мощности, например тензометрический, а с него подают сигналы на осциллограф и записывают осциллограммы уровней звукового давления, по которым определяют эффективность акустического потолка, отличающийся тем, что для исследования эффективности модели акустической облицовки стен производственного помещения снимается звукопоглотитель с потолка помещения и осуществляется облицовка звукопоглотителем боковых стенок металлического корпуса, а эффективную часть регулируемого источника шума, установленного на виброзвукопоглотителе, направляют на облицовку звукопоглотителем боковых стенок корпуса и включают источник шума, последовательно изменяя громкость звука и частоту сигнала, затем с микрофона подают сигналы на усилитель мощности, например тензометрический, а с него подают сигналы на осциллограф и записывают осциллограммы уровней звукового давления, по которым определяют эффективность модели акустической облицовки стен производственного помещения.



 

Похожие патенты:

Изобретение относится к области электроники и может быть использовано для возбуждения пьезоэлементов электроакустических преобразователей, например, в устройствах звукового оповещения и т.д.

Изобретение относится к устройствам для создания механических колебаний и может быть использовано в промышленности, на транспорте и в быту в установках ультразвуковой сварки и мойки, эхолокации, а также в шаговых пьезоэлектрических двигателях.

Изобретение относится к ультразвуковому преобразователю. Ультразвуковой расходомер содержит: центральный проход для протекания потока текучей среды, предназначенной для измерения, множество пар ультразвуковых преобразователей, причем каждая пара преобразователей выполнена с возможностью формирования хордальной траектории через указанный проход между указанными преобразователями, а каждый из указанных преобразователей содержит: пьезоэлектрический кристалл, эпоксидную смолу, содержащую вкрапления в виде стеклянных шариков, которые уменьшают ее плотность, и заключающую в оболочку пьезоэлектрический кристалл, цилиндрический усиливающий стакан, вделанный в эпоксидную смолу, причем указанный стакан содержит сетку из волокон и окружает пьезоэлектрический кристалл.

Изобретение относится к ультразвуковому преобразователю. Ультразвуковой расходомер содержит: центральный проход для протекания потока текучей среды, предназначенной для измерения, множество пар ультразвуковых преобразователей, причем каждая пара преобразователей выполнена с возможностью формирования хордальной траектории через указанный проход между указанными преобразователями, а каждый из указанных преобразователей содержит: пьезоэлектрический кристалл, эпоксидную смолу, содержащую вкрапления в виде стеклянных шариков, которые уменьшают ее плотность, и заключающую в оболочку пьезоэлектрический кристалл, цилиндрический усиливающий стакан, вделанный в эпоксидную смолу, причем указанный стакан содержит сетку из волокон и окружает пьезоэлектрический кристалл.

Изобретение относится к возбудителю колебаний с компенсированием нагрузки для динамического возбуждения испытуемого образца. Устройство включает базу, исполнительный механизм, арматуру с возможностью движения относительно базы, проведенную через линейное средство управления параллельно направлению импульсов возбуждения, и пневматическое средство компенсирования нагрузки, компенсирующее, по меньшей мере, силу тяжести арматуры и испытуемого образца.

Изобретение относится к акустике, в частности к акустическим средствам сепарации. Устройство для сепарации с помощью акустофореза содержит проточную камеру, имеющую вход и выход, ультразвуковой преобразователь, расположенный на стенке проточной камеры, причем преобразователь включает в себя пьезоэлектрический материал, приводимый в действие сигналом напряжения с возможностью создания многомерной стоячей волны в проточной камере, причём многомерная стоячая волна включает в себя аксиальный компонент и боковой компонент, которые имеют одинаковый порядок величины, отражатель, расположенный на стенке на противоположной стороне проточной камеры от ультразвукового преобразователя.

Изобретение относится к области машиностроения, а более конкретно к электромеханическому приводу. Устройство для получение вращательного движения содержит корпус, выходной вал, установленный в опорах, два гибких деформируемых колеса волновой передачи, два составных двухволновых пьезогенератора волн деформации, деформирующие гибкие зубчатые или фрикционные колеса и рычаги.

Изобретение относится к области газораспределения двигателей внутреннего сгорания (ДВС). Техническим результатом является повышение эффективности работы системы.

Изобретение относится к области газораспределения двигателей внутреннего сгорания (ДВС). Техническим результатом является повышение эффективности работы системы.

Использование: для ультразвуковой диагностики. Сущность изобретения заключается в том, что узел ультразвукового преобразователя содержит гибкую пленку, имеющую отверстия, проходящие от верхней до нижней поверхности упомянутой гибкой пленки, один или более пьезоэлектрических элементов, находящихся в упомянутых отверстиях; изолирующий слой, крепящий один или более пьезоэлектрических элементов к внутреннему краю упомянутых отверстий; один или более проводящих слоев, нанесенных на упомянутую гибкую пленку и на один или более пьезоэлектрических элементов.

Изобретение относится к ультразвуковому преобразователю. Ультразвуковой расходомер содержит: центральный проход для протекания потока текучей среды, предназначенной для измерения, множество пар ультразвуковых преобразователей, причем каждая пара преобразователей выполнена с возможностью формирования хордальной траектории через указанный проход между указанными преобразователями, а каждый из указанных преобразователей содержит: пьезоэлектрический кристалл, эпоксидную смолу, содержащую вкрапления в виде стеклянных шариков, которые уменьшают ее плотность, и заключающую в оболочку пьезоэлектрический кристалл, цилиндрический усиливающий стакан, вделанный в эпоксидную смолу, причем указанный стакан содержит сетку из волокон и окружает пьезоэлектрический кристалл.

Изобретение относится к испытательному оборудованию. Технически достижимый результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями.

Изобретение относится к метрологии. Стенд содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему, в качестве генератора гармонических колебаний использован эксцентриковый вибратор.

Изобретение относится к испытательному оборудованию. Стенд для акустических испытаний звукопоглотителей содержит корпус со съемной передней крышкой, стенки которого облицованы исследуемым звукопоглотителем, на днище корпуса через упругодемпфирующую прокладку установлен регулируемый источник шума, причем регулировка осуществляется по громкости звука и частоте сигнала с помощью усилителя мощности сигнала и осциллографа, а на расстоянии 1 м от крышки корпуса закреплен микрофон, сигналы уровней звукового давления от которого поступают на анализатор спектра частот, а затем на компьютер для обработки полученной информации, при этом уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы, где шумопоглощающая облицовка выполнена с резонансными вставками и содержит гладкую и перфорированную поверхности, между которыми расположен слой звукопоглощающего материала сложной формы, представляющий собой чередование сплошных участков и пустотелых участков.

Изобретение относится к метрологии. В способе для акустических испытаний звукопоглотителей с резонансными элементами, заключающемся в том, что в металлическом корпусе со съемной передней крышкой, стенки которого облицованы исследуемым звукопоглотителем, на днище корпуса через упругодемпфирующую прокладку устанавливают регулируемый источник шума, причем регулировку осуществляют по громкости звука и частоте сигнала с помощью усилителя мощности сигнала и осциллографа, а на расстоянии 1 м от крышки корпуса закрепляют микрофон, сигналы уровней звукового давления от которого направляют на анализатор спектра частот, а затем на компьютер для обработки полученной информации, а уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы, а затем находят корректированный уровень звуковой мощности LpА.

Изобретение относится к метрологии. В стенде для виброакустических испытаний, содержащем основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2, а в качестве генератора гармонических колебаний использован эксцентриковый вибратор, расположенный на переборке, а на переборке установлена стойка для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов, при этом колебания массы, закрепленной на каждом упругом элементе, фиксируется индикатором перемещений, по показаниям которого определяется резонансная частота, соответствующая параметрам каждого упругого элемента, причем на основании и переборке закреплены датчики виброускорений, сигналы от которых поступают на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используется частотомер и фазометр, при этом для определения собственных частот каждой из исследуемых систем виброизоляции производится имитация ударных импульсных нагрузок на каждую из систем и записываются осциллограммы свободных колебаний, при расшифровке которых определяют собственные частоты систем виброизоляции и логарифмический декремент затухания колебаний, при этом уровень звуковой мощности Lp определяют по результатам измерений среднего уровня звукового давления Lcp на измерительной поверхности S, м2, за которую принята площадь полусферы, а корректированный уровень звуковой мощности LpA.

Изобретение относится к метрологии. На основании посредством виброизоляторов закрепляют переборку, представляющую собой одномассовую колебательную систему массой и жесткостью соответственно m2 и с2, а в качестве генератора гармонических колебаний используют эксцентриковый вибратор, расположенный на переборке, на переборке устанавливают стойку для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов, при этом колебания массы, закрепленной на каждом упругом элементе, фиксируют индикатором перемещений, а по показаниям определяют резонансную частоту, соответствующую параметрам каждого упругого элемента, причем на основании и переборке закрепляют датчики виброускорений, сигналы от которых поступают на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используют частотомер и фазометр, при этом для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний, при расшифровке которых определяют собственные частоты систем виброизоляции и логарифмический декремент затухания колебаний по известной формуле.

Изобретение относится к акустике, в частности к широкополосным ультразвуковым преобразователям. Широкополосный ультразвуковой преобразователь содержит пьезоэлемент с плоской рабочей поверхностью, плоскопараллельные боковые поверхности и электроды, ориентированные перпендикулярно рабочей поверхности, нанесенные на боковые поверхности.

Изобретение относится к испытательному оборудованию и может быть использовано для испытаний упругих элементов виброизоляторов. Стенд содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и с2, а в качестве генератора гармонических колебаний использован эксцентриковый вибратор, расположенный на переборке.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором посредством по крайней мере трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему массой и жесткостью соответственно m2 и c2.

Изобретение относится к метрологии, в частности к способам оценки качества шумопоглощающих панелей. Стены испытательной камеры облицовывают исследуемой шумопоглощающей облицовкой в виде шумопоглощающих панелей, источник шума располагают на плавающем полу, под которым устанавливают вибродемпфирующую панель, предназначенную для исключения помех при испытаниях шумопоглощающих панелей. Точки измерения при включенном источнике шума фиксируют на измерительной поверхности, представляющей собой сферическую поверхность, окружающую источник шума. Затем определяют уровень звуковой мощности, корректированный уровень звуковой мощности, величину снижения уровня звукового давления. Шумопоглощающую панель облицовки выполняют содержащей гладкую и перфорированную поверхности, между которыми размещают комбинированный звукопоглощающий слой, представляющий собой чередование сплошных участков и пустотелых участков. Пустотелые участки образованы призматическими поверхностями, имеющими в сечении форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру. Вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой и перфорированной стенках. Полости пустотелых участков, образованные призматическими поверхностями, заполнены звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками расположены резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца». Внутри пустотелых участков, внутренние поверхности которых имеют зубчатую структуру, расположены дополнительные резонансные элементы, выполненные по форме в виде сферических оболочек, внутренняя поверхность которых соединена резонансными вставками с полостями, расположенными между перфорированной поверхностью и сплошными участками звукопоглощающего элемента. Технический результат - расширение технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями объекта и комбинированных шумопоглощающих элементов облицовки. 3 ил.
Наверх