Измеритель воздушной скорости

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два, на другой - один, соединенные каналами управления в последовательную цепь, замкнутую с выхода последнего элемента на вход первого элемента, и подключенные соплами питания к потоку, выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, атмосферные каналы элементов соединены в общую полость, связанную с набегающим потоком через прорези в корпусе. Технический результат – расширение диапазона измерения воздушной скорости, автономности измерения, упрощение функционального состава. 3 ил.

 

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред, скорости подвижных объектов, например, планеров, дронов, вертолетов в качестве элементов «условного ПВД» (приемник воздушного давления) и резервных измерителях скорости движения электровозов.

Известны измерители скорости потока (анемометры) - см. http://www.eksis.ru/catalog/measures-the-speed-of-the-air-flow-anemometers. Анемометры - приборы для измерения скорости потока воздуха, которые наиболее широко используются для оценки эффективности работы систем вентиляции и кондиционирования; аттестации аэродинамических установок; оценки качества работы авиационных двигателей; измерения скорости направленного воздушного потока в жилых и производственных помещениях и др. Данные измерения скорости предоставлены в цифровой форме.

Чашечные или крыльчатые анемометры работают по принципу отмеривания определенного объема или массы измеряемого вещества подвижными элементами их конструкций. Скорость вращения подвижных элементов приборов, измеряемая тахометром, пропорциональна скорости измеряемого потока. Недостатки подобных анемометров- крупные габариты, подвижные элементы, ограничения измерения малых скоростей потока.

Тепловые измерители скорости потока воздуха - термоанемометры - работают по принципу «нагретой проволоки». Принцип основан на изменении мощности нагрева чувствительного элемента, пропорциональном скорости аспирации этого элемента потоком воздуха. Чувствительные элементы, лежащие в основе измерительных преобразователей, могут быть проволочного, пленочного и терморезисторного типов. Чаще всего анемометры такого типа применяются при измерениях малых расходов газа. Недостатки подобных анемометров в необходимости стабилизированного внешнего питания.

Известен струйный измеритель скорости течения жидкости или газа (RU 2 277 224 С2, 27.05.2006), содержащий автогенератор, состоящий из струйных элементов с соплами и приемными каналами. Недостатки:

- уменьшение камеры взаимодействия струй управления и питания приводит к стесненной работе объемов в камере, их перемещению в пространстве, повышению давления внутри камеры и изменению плотности среды в камере, недостаточно эффективной работе отражателя суммарной струи на больших частотах переключения струи, к сбоям при переключении и искажению результата измерения по частоте,

- трудности при малой камере в конструировании геометрии подвода сопел управления и каналов слива, при устранении которых увеличиваются между ними расстояния для обеспечения герметичности отвода и в целом к увеличению габаритов устройства,

- значительно уменьшены длины участков стены, к которым примыкает силовая струя, что ухудшает характеристики струйного элемента генератора за счет снижения эффект примыкания с появлением дребезга сигнала, появлению дополнительной помехи в информационном частотном сигнале,

- заявлено, что «сопла струйных элементов спрофилированы таким образом, что скорость в соплах и в поперечных сечениях силовых струй в пределах ядра турбулентной струи распределяется равномерно при ламинарной, турбулентной и смешанной формах течения». Однако не показывается, как практически это выполнить, тем более что величина ядра турбулентной струи не имеет отношения к ламинарному течению потока.

Известен многоканальный аэрометрический преобразователь (RU 2042137 С1, 20.08.1995), принятый за прототип, который решает задачу измерения вектора скорости воздушного потока в плоскости. Это устройство содержит сложное аэродинамическое тело, снабженное радиально расположенными трубчатыми приемниками полного давления, аэродинамическое тело выполнено в виде двух шаровых сегментов, обращенных друг к другу шаровыми поверхностями и соединенных между собой держателями, на которых закреплены трубчатые приемники полного давления. Каждая из полостей снабжена приемными отверстиями статического давления, расположенными на плоских поверхностях конусовидных выборок в обеих частях аэродинамического тела.

Недостатками известного измерителя состоят в сложной пространственной форме конструкции с измерением в аналоговой форме параметров набегающего потока в виде скоростного (динамического) и статического давлений, нелинейная связь входного и выходного сигнала.

Техническим результатом является расширение диапазона измерения воздушной скорости, автономности измерения, не используя дополнительный источник питания, отсутствие вспомогательных параметров в виде статического давления и скоростного напора, увеличения чувствительности, отсутствия аналогового измерения параметра скорости, непосредственного преобразования воздушной скорости в частотный сигнал пропорциональный измеряемой скорости (линейная связь), независимость измеренной величины скорости от плотности измеряемого потока, чувствительный элемент не имеет подвижных частей.

Технический результат достигается тем, что предложенный измеритель воздушной скорости, характеризуется тем, что содержит проточный корпус с расположенной внутри, перпендикулярно потоку пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два элемента, на другой - один элемент, соединенные каналами управления в последовательную цепь и замкнутую с выхода последнего элемента на вход первого элемента и подключенные соплами питания к потоку, при этом выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, причем атмосферные каналы элементов выведены в общую полость, связанную с набегающим потоком через прорези в корпусе.

Предлагается непосредственное измерение воздушной скорости набегающего потока, т.е. «скорость в скорость объекта» через частоту. Часть функций в приемнике воздушного давления (ПВД) можно заменить прибором- измерителем воздушной скорости (ИВС). При этом важно, что показания измеренной истинной воздушной скорости не зависят от плотности воздушной среды и соответственно высоты полета изделия.

ИВС можно применять в качестве измерения угла скоса потока на фюзеляже, угла атаки на лопасти, скорости перемещения ее отдельных секций, вертикальной скорости всего изделия.

На фиг. 1 представлен измеритель воздушной скорости в разрезе по разным плоскостям.

На фиг. 2 показан вид на пластину 2 (сторона 3) без корпуса 1 и крышки 12.

На фиг. 3 показан поперечный разрез измерителя и пластины 2 по стороне 4.

Предложенный измеритель воздушной скорости содержит проточный корпус 1 (рис. 1) с расположенной, перпендикулярно потоку 5, внутри пластиной 2, на которой размещены по ее разные стороны 3 и 4 в потоке струйные элементы 6 и 7 на стороне 4, на другой стороне 3 - струйный элемент 8. На фиг. 1, 2, 3 струйные элементы обозначены принадлежностью сопел питания и соединены каналами управления 9 в последовательную цепь, замкнутую с выхода 11 последнего элемента 8 на вход 12 первого элемента 6, и подключенные соплами питания 6, 7, 8 к потоку 5, из круговой камеры 10 (фиг. 2 и 3), которая позволяет одновременно запитать струйные элементы более равномерно. Отсутствие стенки прилипания в геометрии струйных элементов позволило повысить чувствительность и снизить минимальный уровень скорости входного потока. Расположение струйных элементов друг над другом 3 и 4 сократило каналы связи между ними, что повысило частоту выходного сигнала и точность отсчета. Выход 11 последнего струйного элемента 8 через каналы управления 12 подключен каналами 13 к пневмоэлектропреобразователю 14, и далее через пневмосъем 15 к индикатору скорости потока (на фиг. 1 не показан), атмосферные каналы 16 элементов 6, 7, 8 соединены в общую полость 17, связанную с набегающим потоком 5 через прорези 18 в корпусе 1. Сторона 3 пластины 2 закрыта верхней крышкой 19. Сторона 4 закрыта нижней крышкой 20, в которой атмосферные отверстия 21 связывают каналы 16 с полостью 17. На входе корпуса 1 расположен фильтр 22 и внутри корпуса электрообогреватель 23. На верхней крышке 19 показано в разрезе типичное соединение винтами (на фиг. 2 обозначено АА). Нижняя крышка 20 на рис. 1 показана в разрезе ББ (фиг. 3).

При использовании предложенного измерителя воздушной скорости, например, на летательном аппарате -планере, набегающий поток 5 воздуха через фильтр 22 проходит через вход корпуса 1 сечением А1, скоростью ϑ1, давлением р1 внутрь корпуса 1, и далее в круговую камеру 10, окружающей пластину 2 с расположенными на ней струйными элементами 6, 7, 8 в сопла питания общим суммарным сечением А2 всех струйных элементов 6, 7, 8. Далее поток проходит через камеры взаимодействия струйных элементов и атмосферные каналы 16 в полость 17, герметично отделенной от струйных элементов 6 и 7, расположенных на пластине 2 со стороны 4. Из полости 17 поток проходит через прорези 18 в атмосферу с набегающим потоком 5, который на прорезях 18 создает пониженное давление и компенсирует эффект сжатия газа путем увеличения проводимости сопел питания струйных элементов. В устройстве по описанной схеме соединения струйных элементов при наличии на входе 22 воздушной скорости ϑ1 возникает процесс автоколебаний с некоторой частотой ƒ (автогенерация). Направление струи питания внутри каждого струйного элемента периодически изменяется в процессе ее автоколебаний, и в приемных каналах на выходе струйных элементов возникают импульсы давления, частота ƒ которых пропорциональна скорости ϑ2 (см. например RU 2 277 224 С2). В отсутствии сжатия воздуха отношение скоростей равно - ϑ12=1.

Для конкретного прибора ИВС (фиг. 1) рассчитаем скорость набегающего потока для принятых параметров: Δр=5000 (Па = Н/м2)(сжимаемость воздуха практически отсутствует), А2=13 мм2, A1 = Fd=15 = 176 мм2, (А21)2=0,005≅0, ρ=1,22 кг/м3 - плотность воздуха на уровне Н=0 м (стандартная атмосфера).

Принимаем, что для одного струйного элемента с суммарным живым сечением А2 сопел питания струйных элементов и осредненном давлении р2 скорость ϑ2 потока сопла питания будет, [м/с], k1 [м/с Гц] - коэффициент скорости потока, ƒ [Гц] - частота выходного сигнала, измеряющего скорость потока. В частном примере k1=0,04 (м/с)/Гц, т.е. при ϑ2=0,5 м/с, ƒ=12,5 Гц и при ϑ2=100 м/с, ƒ=2500 Гц.

Определяя частоту ƒ выходного сигнала от скорости набегающего потока ϑ1, которая мало отличается от частоты скорости течения в сопле струйного элемента ϑ2 и (при подстановке данных (A2/A1)2≅0), будем иметь равенство ϑ1 ≅ ϑ2 = 91 м/с = 326 км/ч.

Таким образом, имеем пропорциональную зависимость между величиной воздушной скорости, поступающей в измерительный прибор, и частотным сигналом ƒ в виде ƒ=k2 ϑ1.

Поскольку скорость струи питания зависит только от перепада давления на сопле питания, она зависит от плотности среды конкретного набегающего потока в данных условиях полета, характеризующего общее сопротивление, например, летательного аппарата, к которому прикреплен разработанный измеритель воздушной скорости. Например, при полете в облаках с другим значением плотности ρ будет другая большая величина сопротивления, требующая проталкивания аппарата в этой среде, ей будет соответствовать полет с другой измеренной воздушной скоростью ϑ2. Каналы 13 подсоединены к пневмоэлектропреобразователю 14, например, пьезокристаллического типа, в котором струйные импульсные сигналы давления преобразуются в электрические. Частота ƒ импульсов давления является показателем истинной воздушной скорости ϑ1 набегающего потока и фиксируется на индикаторе 15.

От проникновения воды, льда, мелких крылатых насекомых и др., содержащихся в потоке 5, измеритель защищен на входе фильтром 22 и обогревателем 23, расположенным внутри корпуса 1.

Измеритель воздушной скорости, характеризующийся тем, что содержит проточный корпус с расположенной внутри, перпендикулярно потоку пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два элемента, на другой - один элемент, соединенные каналами управления в последовательную цепь, замкнутую с выхода последнего элемента на вход первого элемента, и подключенные соплами питания к потоку, при этом выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, причем атмосферные каналы элементов выведены в общую полость, связанную с набегающим потоком через прорези в корпусе.



 

Похожие патенты:

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ определения зависимости баллистических характеристик снарядов от режимов стрельбы, заключающийся в формировании в пространстве вдоль предполагаемой траектории движения снарядов n неконтактных измерительных полей в виде двухмерных сеток на основе выполнения конструкции неконтактных датчиков в виде двух линеек излучателей и фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, определении скорости и координат пролета снарядов относительно n измерительных полей на основе фиксации моментов и сработавших комбинаций элементов матриц фотоприемников, определении углов нутации на основе измерения основных элементов движения снаряда относительно центра массы, при этом для определения углов нутации предварительно определяют характерные размеры пробоин на каждой мишени при каждом угловом положении снарядов, определяют угол нутации в соответствии с видом пробоины на основе сравнении комбинации сработавших элементов фотоприемников с заданными значениями, определяют нулевое значение угла нутации, в случае если пробоина имеет форму окружности, данный вид пробоины образуется в случае совпадении оси снаряда с вектором скорости центра массы, определении значения углов нутации при увеличении размера пробоины в направлении отклонения оси снаряда от касательной к траектории, определяют динамику нутационного движения на основе измерения величины большой оси пробоины вдоль траектории движения снарядов, при выполнении стрельбы определяют режим стрельбы (номер и длительность очереди), определяют зависимость углов нутации от режимов стрельбы, учитывают время стрельбы, количество выстрелов и режимы стрельбы авиационного артиллерийского оружия в процессе эксплуатации.

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ определения зависимости баллистических характеристик снарядов от условий стрельбы, заключающийся в формировании в пространстве вдоль предполагаемой траектории движения снарядов n-измерительных полей в виде двухмерных сеток на основе выполнения конструкции неконтактных датчиков в виде двух линеек излучателей и фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, определении скорости и координат пролета снарядов относительно измерительных полей на основе фиксации моментов и сработавших комбинаций элементов матриц фотоприемников, определении углов нутации на основе измерения основных элементов движения снаряда относительно центра массы, при этом предварительно определяют характерные размеры пробоин на каждой мишени при каждом угловом положении снарядов, определяют угол нутации в соответствии с видом пробоины на основе сравнения комбинации сработавших элементов фотоприемников с заданными значениями, определяют нулевое значение угла нутации, в случае если пробоина имеет форму окружности, при этом данный вид пробоины образуется в случае совпадения оси снаряда с вектором скорости центра массы, определении значения углов нутации при увеличении размера пробоины в направлении отклонения оси снаряда от касательной к траектории, определении динамики нутационного движения на основе измерения величины большой оси пробоины вдоль траектории движения снарядов, дополнительно определяют условия стрельбы, при этом определяют режимы стрельбы как «одиночная стрельба» или «стрельба очередью», интервалы стрельбы между очередями, длительность очереди, осуществляют запись данных о параметрах полета снарядов и режимах стрельбы в блок памяти, определяют зависимость баллистических характеристик снарядов от условий стрельбы.

Изобретение относится к области исследований быстропротекающих процессов с применением эффекта Доплера с помощью лазерной гетеродинной диагностики и может быть использовано для непрерывной регистрации скорости движущегося объекта/объектов.

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей угловых скоростей и линейных ускорений с цифровым выходом информации.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Группа изобретений относится к способу и устройству для определения скорости рельсового транспортного средства. Способ определения скорости рельсового транспортного средства, при котором на этом транспортном средстве предусматривают сенсорные устройства и устройство для обработки сигналов, причем способ включает в себя следующие этапы: определение неровностей рельса соответственно на одной идущей впереди колесной паре посредством первого сенсорного устройства и по меньшей мере на одной хвостовой колесной паре посредством еще одного сенсорного устройства; передача произведенных сенсорными устройствами сигналов датчиков на устройство для обработки сигналов, которое выполнено для того, чтобы проводить анализ подведенных сигналов датчиков и на основании этого определять скорость, причем для этого производится оценка передаточной функции от одного сенсора к другому.

Устройство для измерений мгновенных угловых перемещений качающейся платформы состоит из датчика измеряемого мгновенного плоского угла и неподвижного отсчетного устройства.

Изобретение относится к области приборостроения, в частности к устройствам для измерения угловой скорости. Датчик состоит из устройства управления, чувствительного элемента, выполненного в виде кольцевого резонатора, закрепленного на упругих подвесах в кремниевой пластине, соединенной со стеклянной подложкой, контактных площадок, четырех проводящих контуров, выполненных на соседних близко расположенных упругих подвесах и частично на кольцевом резонаторе, равноудаленно друг от друга, постоянного магнита, верхнего и нижнего магнитопроводов.

Для расчета скорости автомобиля перед столкновением используют видеозапись с монитора, выполненную на месте ДТП, в расчет берется зафиксированное на видеозаписи перемещение автомобиля за время равное t=1 с.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и может быть использовано для измерения в скважинном приборе глубины, а также длины пути вдоль оси ствола скважины.
Наверх