Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном участке траектории спуска. По способу на этапе предполетной подготовки ракеты-носителя выделяют отделяющиеся части, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от ракеты-носителя. Производят расчет параметров движения до момента их падения на поверхность зоны отчуждения. Рассчитывают количество теплоты, получаемой отделяющейся частью за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание. Рассчитывают необходимое дополнительное количество теплоты для обеспечения полного сгорания отделяющейся части в атмосфере. Определяют необходимое количество энергетического материала для обеспечения получения заданного количества теплоты. В качестве материала заполнителя выбирают материал, способный к горению в отсутствие дополнительного окислителя и обладающий соответствующими характеристиками для обеспечения требований условий эксплуатации в составе отделяющейся части на всех участках ее функционирования. Количество и положение точек зажигания энергетического материала в составе отделяющейся части определяют из условия ее сжигания на заданном интервале времени. Инициирование воспламенения упомянутого материала осуществляют по достижении заданных параметров движения отделяемой части на атмосферном участке траектории спуска с учетом длительности интервала времени процесса сжигания и конструкции отделяемой части до возможного ее разрушения на крупные фрагменты. 1 з.п. ф-лы.

 

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей (ОЧ) ступеней ракет-носителей (РН). К ОЧ ступеней РН относятся: отработавшие ступени (ОС), переходные отсеки (ПО), створки головных обтекателей (СГО).

Одной из основных проблем, связанных со снижением техногенного воздействия пусков РН на окружающую среду, является наличие ОЧ, что приводит к необходимости выделять значительные площади зон отчуждения на территориях и акваториях поверхности Земли для районов падения ОЧ.

Известен «Способ минимизации зон отчуждения для отделяемых частей многоступенчатой ракеты-носителя» (патент РФ №2464526, МПК F42B 15/36, 2012 г.), по которому на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на Землю и по результатам расчетов определяют необходимую зону отчуждения, в конструкции ОЧ выделяют элементы, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от РН, для этих отдельно летящих элементов ОЧ рассчитывают зоны необходимого отчуждения, и после отделения ОЧ от РН в процессе автономного полета этих частей на участке траектории до момента вхождения в плотные слои атмосферы формируют сигнал на средства членения и осуществляют воздействие на конструкцию ОЧ для их физического разделения на выделенные элементы.

К основным недостаткам этого способа относится тот факт, что в нем не предусматривается установка дополнительных источников теплоты в элементы конструкции для повышения температуры конструкции до температуры горения, приводящему к сгоранию всех выделенных элементов конструкции.

Прототипом предлагаемого технического решения является "Способ минимизации зон отчуждения отделяемых частей ракеты-носителя" (патент РФ №2585395 F42B 15/00, B64G 1/62 от 18.12.14 г.) по которому на этапе предполетной подготовки РН выделяют элементы ОЧ, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от РН, производят расчет параметров движения ОЧ РН до момента падения их на Землю, рассчитывают количество теплоты, получаемой ОЧ за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание, и необходимое дополнительное количество теплоты для обеспечения полного сгорания ОЧ в атмосфере до достижения заданной высоты полета, определяют необходимое количество энергетического материала (ЭМ) для обеспечения рассчитанного повышения температуры ОЧ, размещают его в конструкции ОЧ и после отделения ОЧ от РН в процессе автономного полета ОЧ на участке траектории до момента вхождения в плотные слои атмосферы формируют сигнал на его возгорание по достижении заданной температуры.

К недостаткам этого технического решения следует отнести:

а) ЭМ размещают внутри заполнителя, типа «соты», изготовленных из алюминия, зажигание которого требует значительных затрат, вместо использования ЭМ, который также может нести функции аналогичные алюминиевому сотовому заполнителю, но при этом, при горении сам выделяет значительное количество теплоты;

б) расчет необходимого количества теплоты и, соответственно, массы ЭМ, осуществляется из условия прогрева всей массы ОЧ до температуры горения, вместо того, чтобы рассчитывать массу ЭМ прежде всего из условия обеспечения прочности конструкции с последующим увеличением массы ЭМ в случае недостатка теплоты для прогрева всей массы ОЧ до температуры горения;

в) не определено количество точек зажигания ЭМ в конструкции ОЧ, которые поджигают одновременно;

г) инициирование зажигания ЭМ осуществляют по достижении заданной температуры, а не по достижению заданных параметров движения ОЧ на атмосферном участке траектории спуска, учитывающих длительность интервала времени процесса сжигания ЭМ и конструкции ОЧ, возможность разрушения конструкции ОЧ на крупные фрагменты, что ухудшит условия сжигания.

Техническим результатом предлагаемого технического решения является существенное снижение площадей зон отчуждения ОЧ за счет полного сгорания ОЧ на атмосферном участке траектории спуска.

Указанный технический результат достигается за счет того, что в известном способе, заключающимся в том, что на этапе предполетной подготовки РН выделяют элементы ОЧ, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от РН, производят расчет параметров движения ОЧ до момента падения их на поверхность зоны отчуждения, рассчитывают количество теплоты, получаемой ОЧ за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание, и необходимое дополнительное количество теплоты для обеспечения полного сгорания ОЧ в атмосфере, определение необходимого количества ЭМ для обеспечения получения заданного количества теплоты, размещении его в конструкции ОЧ дополнительно вводят следующие действия:

а) в качестве материала заполнителя выбирают ЭМ, способный к горению в отсутствии дополнительного окислителя и обладающий соответствующими характеристиками для обеспечения требований условий эксплуатации в составе ОЧ на всех участках функционирования ОЧ;

б) количество и положение точек зажигания ЭМ в конструкции ОЧ определяют из условия сжигания ОЧ на заданном интервале времени;

в) инициирование воспламенения ЭМ осуществляют по достижении заданных параметров движения ОЧ на атмосферном участке траектории спуска, с учетом длительности интервала времени процесса сжигания ЭМ и конструкции ОЧ, до возможного разрушения конструкции ОЧ на крупные фрагменты;

г) в качестве ЭМ используют, например, смесь акрилонитрил-бутадиен-стирол - 20%, Al - 13.8%, MoO3 - 37.0%, KClO4 - 29.2%.

Реализация предлагаемого технического решения

В качестве возможного материала заполнителя выбирают ЭМ, способный к горению в отсутствии дополнительного окислителя, например, смесь акрило-нитрил-бутадиен-стирол - 20%, Al - 13.8%, MoO3 - 37.0%, KClO4 - 29.2%; которая рекомендована в [1] Billy Clark, Zhenhuan Zhang, Gordon Christopher, and Michelle L. Pantoya «3D processing and characterization of acrylonitrile butadiene styrene (ABS) energetic thin films»/ J Mater Sci (2017) 52:993-1004 DOI: 10.1007/s10853-016-0395-5, который одновременно может использоваться и как заполнитель с различным конструктивным исполнением, например, в виде сот, стержневых конструкций, гофр и т.д. Теплота сгорания этого ЭМ составляет q ~ 5500 кДж/кг.

Прочностные характеристики предлагаемого ЭМ позволяют его рассматривать как пример возможного материала для использования в качестве заполнителя.

Основные эксплуатационные свойства материала ЭМ, такие как сохранение характеристик, при выведении на активном участке траектории, в частности, прочность, пожаровзывобезопасность при наземной и летной эксплуатации находятся в допустимых пределах.

Примем для примера массу СГО [ОСТ 92-5156-90 Конструкции трехслойные с обшивками из углепластика и алюминиевым сотовым заполнителем (АСЗ)] ~ 500 кг. По аналогии с массой АСЗ, которая может составлять 40% от массы СГО, примем, что масса предлагаемого ЭМ также находится в интервале 40% от массы СГО.

При сгорании заполнителя из ЭМ массой ~ 200 кг выделится количество теплоты Q(mэм), определяемое по формуле:

Количество теплоты, необходимое для нагрева оставшейся массы конструкции СГО массой 500 кг - 200 кг = 300 кг, состоящей из углепластика и связующего материала (коэффициент теплоемкости суп ~ 1.5 Дж/г/К) с текущей температуры 420 К до температуры горения ~ 1300 K, определяется по формуле:

Таким образом, количество теплоты, выделяемое при сжигании ЭМ (1) достаточно для доведения температуры конструкции СГО до горения (2).

Для повышения скорости сжигания СГО (скорость горения ЭМ в соответствии с [1] составляет до Vэм=10-12 мм/с) предлагается зажигание заполнителя из ЭМ в нескольких выбранных точках в конструкции ОЧ.

После зажигания ЭМ в выбранной точке фронт горения распространяется в виде расширяющейся площади круга с центром в точке зажигания с увеличивающимся радиусом r. Приближенно, количество выбранных точек зажигания конструкции СГО можно определить по формуле:

где: Sсго - площадь поверхности СГО, r=Vэм⋅t - увеличивающийся радиус площади круга.

Для приведенных выше данных количество точек зажигания на поверхности ЭМ в конструкции ОЧ будет не менее

Инициирование зажигания осуществляется традиционными средствами, например, с помощью металлической проволоки, с нанесенным на нее пиротехническим составом, который воспламеняется при нагревании проволоки электрическим током.

В частном случае, возможно, сжечь всю конструкцию ОЧ на внеатмосферном участке траектории, что исключит ее разрушение от аэродинамического напора, однако, для этого потребуется запас окислителя и его подвод к конструкции ОЧ для ее сжигания углепластика и связующего материала по аналогии с подачей окислителя в ракетный двигатель.

В соответствии с предлагаемым техническим решением процесс сжигания ОЧ осуществляется с использованием кислорода воздуха, но при этом до наступления порога разрушения от аэродинамического напора, т.к. это может привести к разрушению конструкции недогоревшей ОЧ на фрагменты, что приводит к снижению вероятности полного сжигания конструкции ОЧ.

Для определения положения начала участка сжигания на атмосферной части траектории спуска ОЧ осуществляют следующие действия:

а) оценивают возможность разрушения ОЧ при движении на атмосферном участке траектории спуска на интервале теплового воздействия ЭМ с различных моментов времени, из условия превышения напряжениями, вызванных аэродинамической силой предела прочности материала, учитывая текущую температуру, воздействующую на конструкцию в текущий момент времени;

б) выбирают начало возможного размещения участка сжигания ОЧ из условия наличия кислорода для горения ОЧ, например, с высоты 50 км начинается интенсивный приток кислорода, из этого следует, что целесообразно проводить зажигание не выше указанной высоты;

в) выбирают конец возможного размещения участка сжигания из условия начала разрушения ОЧ, т.е. когда на конструкцию воздействуют возмущающие силы и моменты, приводящие к потере прочности и устойчивости конструкции;

г) для оценки возможности разрушения ОЧ используют математическую модель термопрочности на основе существующей теории прочности [см., например, В. Fritsche, Н. Klinkrad, A. Kashkovsky, Е. Grinberg. Spacecraft disintegration during uncontrolled atmospheric Re-entry, Acta Astronautica, Vol. 47, No. 2. 2000. pp. 513-522.]

Использование предлагаемого способа, в случае его реализации, позволит в значительной мере сократить затраты, связанные с выделение районов падения ОЧ, поиском и эвакуацией фрагментов ОЧ из районов падения, что, в конечном итоге, снизит стоимость пуска РН.

1. Способ минимизации зон отчуждения отделяемых частей ракеты-носителя, заключающийся в том, что на этапе предполетной подготовки ракеты-носителя - РН выделяют элементы отделяемых частей - ОЧ, различающиеся по степени их разрушения в плотных слоях атмосферы после отделения от РН, производят расчет параметров движения ОЧ до момента их падения на поверхность зоны отчуждения, рассчитывают количество теплоты, получаемой ОЧ за счет аэродинамического нагрева при движении на атмосферном участке траектории спуска до заданной высоты, на которой должно закончиться ее сгорание, и необходимое дополнительное количество теплоты для обеспечения полного сгорания ОЧ в атмосфере, определяют необходимое количество энергетического материала - ЭМ для обеспечения получения заданного количества теплоты и размещают его в конструкции ОЧ, отличающийся тем, что в качестве материала заполнителя выбирают ЭМ, способный к горению в отсутствие дополнительного окислителя и обладающий соответствующими характеристиками для обеспечения требований условий эксплуатации в составе ОЧ на всех участках функционирования ОЧ, а количество и положение точек зажигания ЭМ в конструкции ОЧ определяют из условия сжигания ОЧ на заданном интервале времени, инициирование воспламенения ЭМ осуществляют по достижении заданных параметров движения ОЧ на атмосферном участке траектории спуска с учетом длительности интервала времени процесса сжигания ЭМ и конструкции ОЧ до возможного разрушения конструкции ОЧ на крупные фрагменты.

2. Способ по п. 1, отличающийся тем, что в качестве ЭМ используют смесь:

акрилонитрил-бутадиен-стирол - 20%;

Аl – 13,8%;

МoО3 – 37,0%;

KClO4 - 29.2%,

а дополнительное количество ЭМ, необходимое для генерации дополнительной теплоты, размещают внутри заполнителя.



 

Похожие патенты:

Ракета // 2660968
Изобретение относится к области ракетной техники и может быть применено в ракетах с отделяемой стартовой ступенью. Ракета содержит маршевую ступень и отделяемую стартовую ступень с двигателем и механизмом разделения.

Пирозамок // 2655978
Изобретение относится к ракетно-космической технике и может быть использовано для соединения и последующего разъединения полезной нагрузки. Пирозамок содержит подпружиненное устройство, расположенное в скрепляемых элементах, вкладыши, устройство для удержания вкладышей, корпус с отверстиями и демпфирующее устройство.

Изобретение относится к ракетной технике и может найти применение в конструкциях систем разделения объектов летательных аппаратов (ЛА). Целью изобретения является создание надежного фиксатора разделяемых объектов ЛА для соединения без люфта сложных разделяемых объектов большой массы, обеспечивающего контроль несанкционированного перемещения штока фиксатора при монтаже на объекте, с исключением условий демпфирования штока фиксатора и удержания его в крайнем положении при разделении объектов.

Изобретение относится к бортовой автоматике изделий ракетной, ракетно-космической, авиационной, специальной техники, главным образом к агрегатам и системам стыковки и разделения частей летательных аппаратов, в частности к системам разведения детонационных команд от инициирующих устройств к исполнительным узлам, например системам разделения, а также к устройствам взрывной логики - пиротехническим временным устройствам.

Изобретение относится к области ракетно-космической техники и может быть использовано в конструкции высокоскоростных двухступенчатых ракет. Устройство установлено в корпусе летательного аппарата и содержит электрический узел.

Изобретение относится к области вооружения, в частности к управляемым снарядам. Cнаряд содержит корпус с кольцевым упором внутри его передней части и поджимной гайкой в задней части, между которыми последовательно установлены боевая часть и блоки аппаратуры управления.

Изобретения относятся к ракетной технике и могут быть использованы при создании ракеты и ракетного двигателя твердого топлива, имеющих габаритные ограничения в исходном состоянии, причем длина полезного груза ракеты сопоставима с длиной корпуса ракетного двигателя.

Изобретение относится к области ракетной техники и может быть использовано при разработке разделяющихся боеприпасов реактивной и ствольной артиллерии. Технический результат – повышение надежности работы устройства.

Предлагаемая группа изобретений относится к области ракетной техники и может быть использована в малогабаритных зенитных и противотанковых ракетах. Бикалиберная ракета (вариант 1) содержит разгонный двигатель и механически связанный с ним переходной обтекатель, телескопически установленные на кормовую часть маршевой ступени.

Группа изобретений относится к ракетно-космической технике. Переходной отсек головной части ракеты-носителя (РН) содержит корпус, адаптер и средство соединения корпуса с адаптером.

Изобретение относится к космической технике. Устройство (1) захвата и удаления дрейфующих в космосе обломков включает концевую массу (2), выполненную с возможностью приближения к обломкам, подлежащим удалению, захватывающее обломки устройство (3), установленное с возможностью отделения на концевой массе (2); и фал (4), соединяющий друг с другом захватывающее обломки устройство (3) и концевую массу (2).

Группа изобретений относится к ракетно-космической технике. В способе отделения от ракеты-носителя (РН) 4 группы космических аппаратов (КА) 7 в случае неотделения одного КА 7 выполняют отделение последующих КА 7, после подают команду на отделение неотделившегося КА 7 с использованием пиротехнического устройства 13, обеспечивающего отделение КА 7 совместно с разрушившейся при срабатывании пиротехнического устройства 13 частью корпуса 8 системы отделения 6 с одновременным приданием им скорости относительно адаптера 1.

Пирозамок // 2669901
Изобретение относится к области ракетной и космической техники. Пирозамок содержит шток с проточкой и гайкой, вложенные в проточку вкладыши, втулку, запирающую вкладыши снаружи, корпус, стержень, пружину, демпфирующий элемент, пиропатроны с пирокамерами.
Изобретение относится к системам автоматической стыковки космических аппаратов (КА). Устройство автоматической стыковки КА в операциях орбитального обслуживания содержит штырь на обслуживающем КА и коническое гнездо на обслуживаемом КА.
Изобретение относится к системам автоматической стыковки космических аппаратов (КА). Устройство автоматической стыковки КА в операциях орбитального обслуживания содержит штырь на обслуживающем КА и коническое гнездо на обслуживаемом КА.

Изобретение относится к ракетно-космической технике. Устройство удержания и освобождения трансформируемых механических систем КА содержит замок на основе болтового соединения, состоящий из стационарной и отделяемой частей.

Изобретение относится к управлению движением космических аппаратов (КА), в частности для предотвращения сближения КА с активным объектом (АО). Согласно способу излучаемые приближающимся АО сигналы регистрируют на борту КА детекторами плоской формы, расположенными на поверхности сферической оболочки.

Изобретение относится к управлению движением космических аппаратов (КА), в частности для предотвращения сближения КА с активным объектом (АО). Согласно способу излучаемые приближающимся АО сигналы регистрируют на борту КА детекторами плоской формы, расположенными на поверхности сферической оболочки.

Изобретение относится к эксплуатации группировки, преимущественно автоматических космических аппаратов (КА). Согласно способу комплектуют на Земле целевой КА, предназначенный для замещения неработающего КА (НКА), и сервисный КА.

Изобретение относится к оптико-электронным приборам, используемым в системах управления движением космического аппарата (КА), гл. обр., к мишени стыковки пассивного КА.
Наверх