Автоматический сигнализатор (асб1) и способ определения в воздухе биопримесей

Группа изобретений относится к области исследований или анализа воздуха на наличие в нем биопримесей, любых биологических объектов содержащих ДНК, для защиты человека или животных от вредного воздействия бактерий, вирусов, генетических векторов и объектов нанотехнологий. Автоматический сигнализатор (АСБ-1) включает корпус, который представляет собой полую сферу, выполненную из алюминия, полированную внутри. С одной стороны сферы выполнено отверстие, которое соединено посредством магистрали с насосом. В центре сферы установлен ультрафиолетовый фотодиод, дающий УФ с длиной волны 260 нм. Также внутри сферы установлен фотоэлектронный умножитель для приема ультрафиолетовых лучей (ФЭУ), отгороженный от фотодиода перегородкой, непроницаемой для УФ-лучей. ФЭУ соединен с блоком обработки сигнала и сигнализирующим устройством обнаружения ДНК-содержащих биопримесей по поглощению УФ-лучей в анализируемом воздухе. В свою очередь, блок обработки сигнала соединен с сигнализирующим устройством обнаружения биопримесей с ДНК в анализируемом воздухе. Способ осуществляется посредством АСБ-1. Технический результат заключается: в выявлении всех видов биологических примесей как содержащих белковые компоненты, так и не содержащих белковые компоненты, в том числе наночастицы; в определении генетических векторов в самых минимальных количествах; в выявлении в воздухе всех видов микроорганизмов и искусственно созданных биологических молекулярных конструкций, опасных для человека и животных, и обеспечивает мгновенное предупреждение об этом соответствующих служб. При этом заявленное устройство не требует времени для подготовки к работе и для замены картриджей, т.е. процесс анализа воздуха идет практически постоянно. 2 н.п. ф-лы, 1 ил.

 

Группа изобретений относится к области исследований или анализа воздуха на наличие в нем биопримесей (любых биологических объектов, содержащих ДНК), для защиты человека или животных от вредного воздействия бактерий, вирусов, генетических векторов и объектов нанотехнологий.

Так, из уровня техники известен способ без пробоотборного мониторинга воздуха, включающий зондирование пространства импульсным когерентным излучением в УФ-области и регистрацию спектрального хода интенсивности флуоресценции белоксодержащих веществ. При этом дополнительно осуществляют селективную оценку нормированных величин интенсивностей флуоресценции белоксодержащих веществ и помеховых примесей на различных длинах волн возбуждения в пределах спектрального хода флуоресценции по отношению к интенсивности на длине волны 284 нм.

Также из уровня техники известен автоматический сигнализатор специальных примесей (АСП), предназначенный для непрерывного контроля атмосферного воздуха с целью обнаружения в нем аэрозолей специальных примесей (бактерий, риккетсий, вирусов).

В состав АСП входят: датчик; преобразователь напряжения 13 В в 26 В (блок питания) или электрический кабель; звуковой сигнализатор; КИС зимний и летний; ЗИП; документация (http://www.mil.by/print.php?ELEMENT_ID=7857&clear_cache=Y).

Недостатками известного анализатора являются продолжительное время обнаружения специальных примесей и время пробоотбора. Кроме того, недостатком также является длительная подготовка прибора к работе и невозможность постоянной работы в связи с тем, что необходимо перезаряжать аккумулятор, а также невозможность выявлять биочастицы, содержащие ДНК без белка.

Задачей заявленных автоматического сигнализатора (АСБ-1) и способа определения в воздухе биопримесей является выявление в окружающем воздухе выше фона наличие биологических агентов, содержащих ДНК как естественного, так и искусственного происхождения от 2000 до 10 нм и мгновенно сигнализировать об их присутствии в воздухе.

Техническим результатом заявленных АСБ-1 и способа является:

- возможность выявлять все виды биологических примесей как содержащих белковые компоненты, так и не содержащих белковые компоненты, в том числе наночастицы. К таким примесям в воздухе могут относиться: липовирусы, генетические векторы, используемые для трансгеноза и переноса биологически активных соединений и компоненты на основе наночастиц с полимерной, липидной, углеродной и кремневой составляющей;

- выявлять наличие в воздухе генетических векторов в самых минимальных количествах, даже тех, которые будут сконструированы в ближайшем будущем;

- выявлять в воздухе все виды микроорганизмов и искусственно созданных биологических молекулярных конструкций с ДНК, опасных для человека и животных, и мгновенно предупреждать об этом соответствующие службы.

При превышении в воздухе фонового уровня биочастиц, содержащих ДНК, прибор дает предупреждающий сигнал в режиме настоящего времени.

Кроме того, АСБ-1 не требует времени для подготовки к работе и для замены картриджей. Прибор работает почти постоянно. Остановка прибора для профилактики осуществляется один раз в месяц на 10 минут для очистки от биологических объектов, осевших на поверхность алюминиевой сферы и фотодатчики.

АСБ-1 (Рис. 1) включает корпус, который представляет собой полую сферу, отполированную изнутри (1), выполненную из алюминия. С одной стороны сферы выполнено отверстие, которое соединено посредством магистрали (3) с насосом (2), который улавливает окружающий воздух и доставляет его в сферу для анализа. В центре сферы установлен ультрафиолетовый фотодиод (4), дающий излучение с длиной волны 260 нм, который соединен посредством проводов с блоком питания (10). Кроме того, внутри сферы установлен фотоэлектронный умножитель для приема ультрафиолетовых лучей (ФЭУ) (5), отделенный от фотодиода металлической перегородкой (7), не пропускающей ультрафиолетовые лучи. УФ-лучи воспринимаются ФЭУ, соединенным с блоком обработки сигнала, и сигнализирующим устройством обнаружения ДНК-содержащих биопримесей в анализируемом воздухе. Фотодиод, ФЭУ и перегородка установлены в центре сферы, путем закрепления их на стержне (11), который, в свою очередь, прикреплен к стенке сферы. Далее, блок обработки сигнала соединен с сигнализирующим устройством (6) обнаружения биопримесей с ДНК в анализируемом воздухе. При этом, для того чтобы не было прямого попадания УФ-лучей от фотодиода на ФЭУ, между ними устанавливается перегородка (7). Второе отверстие в сфере (8) выполнено с противоположной стороны от первого отверстия и служит для возврата проанализированного воздуха из прибора обратно в окружающую среду.

Способ анализа воздуха осуществляется посредством заявленного устройства АСБ-1. Анализируемый воздух постоянно подается в сферу с помощью насоса по магистрали, с изогнутым патрубком на конце. Изогнутый конец патрубка для воздуха нужен, чтобы создать турбулентность тока воздуха внутри сферы. Степень поглощения ультрафиолетовых лучей, идущих от фотодиода, определяется с помощью фотоэлектронного умножителя (ФЭУ) за счет поглощения излучения с длиной волны 260 нм молекулами ДНК, содержащимися в биопримесях. Данные о степени поглощения УФ-лучей ДНК-содержащими биопримесями поступают в блок обработки сигнала от ФЭУ. При обнаружении ДНК-содержащих биопримесей в анализируемом воздухе выше фона сигнал подается на сигнализирующее устройство о загрязнении воздуха биопримесями.

Благодаря турбулентному движению воздуха внутри сферы и многократному отражению УФ-лучей, испускаемых фотодиодом от внутренней поверхности сферы на ФЭУ, достигается наиболее полное поглощение лучей биопримесями, содержащими ДНК. По возрастанию интегрального поглощения УФ-лучей, во всем объеме сферы выше фонового значения, загрязняющими биопримесями, содержащими ДНК, автоматически определяется наличие биологического загрязнения исследуемого воздуха и об этом подается сигнал. Проанализированный воздух возвращается обратно в окружающую среду через отверстие, которое расположено с противоположной стороны от отверстия для подачи воздуха.

1. Автоматический сигнализатор (АСБ-1) включает корпус, датчик, блок питания и сигнализатор, отличающийся тем, что корпус представляет собой полую сферу, выполненную из алюминия, при этом с одной стороны сферы выполнено отверстие, которое соединено посредством магистрали, с изогнутым патрубком на конце, с насосом, в центре сферы установлен ультрафиолетовый фотодиод, дающий ультрафиолетовое излучение с длиной волны 260 нм, который соединен посредством проводов с блоком питания, кроме того, внутри сферы установлен фотоэлектронный умножитель для приема ультрафиолетовых лучей (ФЭУ), который отгорожен от фотодиода перегородкой, не пропускающей ультрафиолетовые лучи, при этом фотодиод, ФЭУ и перегородка установлены в центре сферы, путем закрепления их на стержне, который, в свою очередь, прикреплен к стенке сферы, ФЭУ соединен с блоком обработки сигнала, а блок обработки сигнала соединен с сигнализирующим устройством, второе отверстие в сфере выполнено с противоположной стороны от первого отверстия.

2. Способ определения в воздухе биопримесей, включающий анализ проб воздуха, отличающийся тем, что анализ воздуха осуществляется путем постоянной подачи воздуха посредством АСБ-1 по п. 1, воздух для анализа засасывают насосом и по магистрали с изогнутым патрубком на конце подают в сферу, создавая турбулентность тока воздуха внутри сферы, биопримеси определяют с помощью ФЭУ по степени поглощения ультрафиолетовых лучей с длиной волны 260 нм, идущих от фотодиода и отраженных от внутренней поверхности сферы на ФЭУ, молекулами ДНК содержащимися в биопримесях, после чего данные о степени поглощения УФ-лучей поступают в блок обработки сигнала от ФЭУ, и при обнаружении ДНК-содержащих биопримесей в анализируемом воздухе выше фона устройство подает сообщение на сигнализирующее устройство о загрязнении воздуха биопримесями, а проанализированный воздух через отверстие в сфере возвращается обратно в окружающую среду.



 

Похожие патенты:

Изобретение относится к измерению концентрации частиц и массовой концентрации в аэрозоле. В способе используют систему датчиков для измерения концентрации частиц и массовой концентрации в аэрозоле, включающую оптический датчик для измерения концентрации частиц и распределения частиц по размерам, механический датчик для измерения массы собранных частиц и контроллер, выполненный с возможностью контроля концентрации частиц и распределения частиц по размерам в аэрозоле с использованием оптического датчика до тех пор, пока не обнаружено порождающее частицы событие, соответствующее конкретному сочетанию информации о концентрации частиц и о диапазоне размеров частиц; выполнения измерения массы с использованием механического датчика при обнаружении порождающего частицы события и использования результата измерения массы для калибровки оптического датчика.

Изобретение относится к системе дистанционной связи, выполненной с возможностью встраивания в летательный аппарат (1А, 1B, 1С), содержащий по меньшей мере один винт (50А, 50B, 50С) двигателя с множеством лопастей (52А, 52B, 52С), выполненный с возможностью вращения относительно неподвижного модуля (10А, 10B, 10С) летательного аппарата вокруг оси (X) двигателя.

Группа изобретений относится к области сельского хозяйства, в частности к средствам и методам для управления робототехникой и аграрной техникой для обработки зон посева сельскохозяйственных культур на основании данных мониторинга.

Изобретение относится к области геологии. Устройство для записи и обработки цифровых изображений буровых кернов содержит несколько цифровых камер со сменными объективами, производящих съемку изображения керна в диапазонах видимого, ультрафиолетового, ближнего и дальнего диапазона инфракрасного света, источники света соответствующего диапазона длин волн и другие оптические устройства, формирующие трехмерное изображение керна, установленные на подвижной каретке, компьютер для преобразования полученных изображений в цифровую форму, с возможностью обработки, запоминания цифровых данных и автоматического управления устройством.

Настоящее изобретение относится к оптической системе и способу для выполнения в реальном времени анализа жидкого образца, содержащего определение характеристики в зависимости от времени жидкого образца, содержащего множество объектов.

Изобретение относится к биомедицине, а более конкретно к устройствам для спектрально-флуоресцентного исследования содержания экзогенных флуорохромов (в частности, флуоресцирующих препаратов, например фотосенсибилизаторов) в биоткани, в частности в органах и тканях экспериментальных животных при исследованиях фармакокинетики и биораспределения.

Изобретение относится к способу наблюдения и анализа оптических особенностей в стеклянных сосудах. Способ наблюдения и анализа оптических особенностей, отклоняющих свет, находящихся на поверхности или в стенке стеклянного сосуда, имеющего ось симметрии, включает: освещение сосуда при помощи источника рассеянного света, характеризующегося изменением свойства света в направлении изменения, использование устройства получения изображений, чувствительного к указанному свойству света и его изменению, и обработку снимка для анализа оптических особенностей.

Изобретение относится к получению новых люминесцентных кислород-чувствительных материалов, которые могут быть использованы в качестве сенсоров на кислород. Предложен способ получения люминесцентного кислород-чувствительного материала с использованием полимерной матрицы - фторопласта-32Л и кластерного комплекса молибдена состава А2[{Mo6I8}L6], где А - ((C4H9)4N)+, (C12H25(CH3)3N)+, ((C18H37)2(CH3)2N)+, L - -NO3, -OSO2C6H4CH3.
Изобретение относится к области оптических измерений и касается способа измерения осаждения полимера на зубном субстрате. Способ включает в себя стадии, на которых измеряют поглощение излучения зубным субстратом в отсутствие исследуемого полимера, измеряют поглощение излучения исследуемым полимером, получают исследуемый образец посредством приведения в контакт зубного субстрата с исследуемым полимером, смывают или промывают исследуемый образец и измеряют поглощение излучения исследуемым образцом.

Изобретение относится к промышленной безопасности. Система постоянного контроля концентрации паров углеводородов нефти и нефтепродуктов в воздухе рабочей зоны при проведении огневых и газоопасных работ включает в себя передвижной газоанализатор, блок контроля и управления и блок исполнения радиокоманд.
Наверх