Навигационный буй с комплексной энергоустановкой



Навигационный буй с комплексной энергоустановкой
Навигационный буй с комплексной энергоустановкой
F24S20/00 - Отопление; вентиляция; печи и плиты (тепловая защита растений в садах или лесах A01G 13/06; хлебопекарные печи и устройства A21B; устройства для варки вообще, за исключением кухонных плит A47J; ковка B21J, B21K; отопительные и вентиляционные устройства для транспортных средств, см. соответствующие подклассы классов B60-B64; устройства для зажигания топлива вообще F23; сушка F26B; промышленные печи вообще F27; электронагревательные элементы и устройства H05B)

Владельцы патента RU 2672830:

Чернявец Владимир Васильевич (RU)

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров и отдельных навигационных опасностей на судоходных акваториях, а также для проведения сейсмических и экологических наблюдений. Предложен навигационный буй, который содержит обтекаемый герметичный корпус, разделенный водонепроницаемыми переборками на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса буя, солнечные и волновую энергетические установки, регулируемый съемный балласт, закрепленный в нижней части корпуса буя и выполненный из арматурного железа, образующего колоколообразную ферму, на элементах которой закреплены датчики измерения сейсмических и экологических параметров, телескопическое устройство в верхней части буя, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики, внутри корпуса буя установлен информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров, информационно-управляющий модуль посредством кабеля, сочлененного с якорной цепью, соединен с донной сейсмоакустической станцией. Технический результат заключается в увеличении мощности энергетической установки навигационного буя, расширении функциональных возможностей буя, упрощении его конструкции. 1 ил.

 

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров и отдельных навигационных опасностей на судоходных акваториях, а также для проведения сейсмических и экологических наблюдений.

Известные морские буи с автономными энергетическими установками электропитания светооптической аппаратуры навигационных буев, в состав которых входят химические источники постоянного тока (электрохимические батареи) и механизм подключения этих батарей к светооптической аппаратуре буя (см. например: патенты US №3794907, 1974 [1], №3818312, 1974 [2], патенты GB №1357427, 1974 [3], №1368202, 1974 [4], патенты FR №2193284, 1974 [5], №2215743, 1974 [6], авторское свидетельство SU №586533, 1978 [7]).

Недостатком известных автономных энергетических установок [1-7] с химическими источниками тока (ХИТ) является то, что при питании электрическим током светооптической аппаратуры буя энергетический ресурс ХИТ с течением времени уменьшается. Это обуславливает снижение надежности и долговечности энергосистемы буя и необходимость периодической замены (не реже 2-3 раз в год) отработанных электрохимических батарей на новые. Работы по замене батарей трудоемки и дороги, так как для осуществления такой операции необходима доставка новых батарей обеспечивающим судном к месту установки буя, подъем буя на палубу судна, разборка контейнеров с отработанными батареями, замена элементов на новые, монтаж буя и постановка его в заданную точку на акватории, посредством якорного устройства, состоящего из якоря и якорной цепи.

Известны также системы, использующие для подзарядки ХИТ энергию солнечной радиации (см. например: патенты RU №2028558, 1992 [8], №2377472, 2008 [9], №2476783, 2013 [10]). Данные солнечные энергетические установки (солнечные батареи) изготовлены из фотоэлектрических преобразователей с концентрирующими линзами Френеля, которые значительно повышают КПД фотоэлектрических элементов (на лучших образцах до 35-37% по сравнению с традиционными 12-15%).

Применительно к плавучим средствам навигационного оборудования (СНО) недостатком данных солнечных модулей с гелиоконцентраторами является то, что они расположены на рамных панелях значительного размера и имеют сложное электронно-кинематическое устройство слежения за видимым движением Солнца по высоте и горизонту. Установка подобных систем на буях, которые произвольно качаются и вращаются под воздействием волн, технически невозможна.

Прототипом, наиболее близким к предлагаемой конструкции навигационного буя с комплексной энергоустановкой в качестве солнечного модуля, может быть принята солнечная энергетическая установка, специально разработанная для зрительных СНО (патент RU №2382935, 2010 [11]). Данная установка с термоэлектрическим генератором предназначена для зрительных средств навигационного оборудования, содержит светооптическое устройство, автономный источник электропитания (аккумулятор) и подзарядное энергетическое устройство с механизмом подключения его к данному источнику, при этом она снабжена в качестве подзарядного устройства термоэлектрическим преобразователем (термоэлектрическим генератором), преобразующим тепловую энергию Солнца в электрическую и помещенным внутри гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, жестко закрепленное в шейке каустики (фокусе) гелиоконцентратора. Изобретение должно обеспечить упрощение конструкции, повышение надежности, долговечности и процесса эксплуатации на объектах СНО.

Данная установка компактна, освобождена от необходимости слежения за положением Солнца, имеет в своем составе электрохимический аккумулятор и подзарядное устройство, представляющее собой термоэлектрический генератор (ТЭГ), помещенный под концентрирующей солнечные лучи линзой. Выработанное ТЭГ электричество системой управления подается в накопитель энергии (аккумулятор), который обеспечивает электроэнергией светодиодный излучатель буя в темное время суток.

Недостатком прототипа [11] является крайне низкий КПД всех известных на сегодня термоэлектрических преобразователей (не более 7-8%), а главное - невозможность решения проблемы круглогодичного бесперебойного энергообеспечения светотехнической системы буя посредством данной солнечной энергетической установки без ее дублирования другим источником тока. Условия прихода суммарной солнечной радиации во всех морях России таковы, что делают данную установку гарантированно работоспособной только в период с апреля по сентябрь.

Известны также системы, использующие для подзарядки ХИТ энергию морских волн. Наибольшее распространение получили волновые энергетические установки, использующие вынужденные вертикальные колебания буя, вызванные воздействием морского волнения. Наиболее известны такие волновые установки, как «поплавок с гидротурбиной», использующий вращение рабочего колеса гидротурбин при вертикальных перемещениях в водной среде и «пневмобуй Масуды», использующий для вращения рабочего колеса воздушных турбин движение воздуха, которое возникает под воздействием осциллирующего водяного столба внутри полости буя при его вертикальных колебаниях (см. например: патенты RU №2577942 С1, 20.03.2016 [12], RU №2078249 С1, 27.04.1997 [13], RU №2399546 С2, 20.12.2009 [14], RU №2386051 C2, 10.04.2004 [15], CN №102606375 A. 25.07.2012 [16], CN №102678429 A, 19.09.2012 [17]).

Так, например, известное техническое решение [12] относится к области восполняемых источников энергии и может быть использовано для волноизмерительных и навигационных буев. Установка для восполнения энергии морских буев содержит плавучий корпус, в котором расположена опора в виде рамы с направляющими, по которым передвигается инерционное тело, имеющее упругую подвеску. Подвеска снабжена установленными в верхней части рамы двумя блоками. В нижней части рамы установлена система воздушного демпфирования, имеющая корпус, поршень и выходное отверстие с изменяемым диаметром. Один из блоков соединен с генератором. Аккумулятор соединен с генератором через трансформатор с изменяющимся коэффициентом трансформации и диодный выпрямитель. Вычислитель соединен с выходом генератора и аккумулятором. Шаговый двигатель соединен с вычислителем и устройством изменения диаметра отверстия системы воздушного демпфирования. Изобретение направлено на повышение КПД установки, повышение надежности и увеличение ресурса работы установки за счет снижения износа механических деталей и исключения перезаряда аккумулятора.

Недостатком данных вариантов является низкая чувствительность даже самых современных, как воздушных, так и гидротурбин, способных гарантированно вырабатывать электрический ток только при скоростях воздушного или водного потока более 1 м/с. Это условие не всегда выполняется буем, совершающим хаотичные вертикальные колебания на волнении различного характера. Также неизбежны потери энергии при преобразовании механической энергии вращения ротора турбин в электрическую.

Кроме того, известны специально разработанные для плавучих СНО волновые энергетические установки, использующие в качестве рабочего элемента инерционное тело (патенты RU №2388933, 2010 [18], №2467911 2012 [19]).

Недостатком волновых энергетических установок с инерционным рабочим телом [12, 13, 18, 19] является их перегруженность кинематическими элементами, сложность конструкции, а главное - возможность эффективной работы только в условиях резонансных колебаний буя. Например, самый распространенный на сегодня морской буй типа БМБЛ имеет резонансные колебания при высоте волны 59 см. Во всех остальных случаях волнения отбор мощности значительно ниже номинального.

Известен также навигационный буй (патент RU №2489301, 10.08.2013 [20]), который содержит обтекаемый герметичный корпус, разделенный водонепроницаемыми переборками на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса буя, и стабилизирующий балласт. Во внутренней полости корпуса установлена цилиндрическая емкость, по оси которой в направляющих, прикрепленных к цилиндрической емкости, перемещается шток, на конце штока установлен стабилизирующий балласт, на штоке неподвижно закреплена упорная площадка, которая опирается на пружину, расположенную между одной из направляющих штока и упорной площадкой. В средней части на штоке установлен ротор с постоянными магнитами линейного электрического генератора, статор линейного электрического генератора закреплен на внутренней поверхности цилиндрической емкости, обмотка статора генератора соединена со входом зарядного устройства, а выход зарядного устройства соединен с аккумулятором, от которого питается светооптическая аппаратура. По второму варианту к цилиндрической емкости неподвижно прикреплен стабилизирующий балласт, шток прикреплен одним концом к герметичному корпусу буя, на штоке неподвижно закреплена упорная площадка, в верхней части штока между верхней направляющей и упорной площадкой установлена пружина. Технический результат заключается в увеличении мощности энергетической установки буя, упрощении его конструкции.

В данной установке в электрическую энергию преобразуется не механическая энергия, накопленная инерционным телом (маятником), а механическая энергия вертикального движения корпуса буя совместно со статором линейного электрического генератора относительно стабилизирующего балласта (груза-противовеса) при подъеме буя на гребень волны под действием силы Архимеда. При спуске буя с гребня волны в электрическую энергию преобразуется механическая энергия вертикального движения стабилизирующего балласта (с присоединенным к нему штоком-ротором) относительно корпуса буя и статора линейного электрического генератора под действием силы тяжести стабилизирующего балласта.

Недостатком прототипа является чрезмерный вес стабилизирующего балласта (предлагается использовать груз-противовес в 50 кг, что крайне затруднит техническое обслуживание волновой установки буя непосредственно в море), наличие в конструкции пружины, жесткость которой с течением времени изменяется. Самым «слабым местом» данной конструкции является сальник, который должен обеспечивать герметичность рабочего отсека установки при размещении груза-противовеса вне герметичного корпуса буя. Следует учесть, что осадка буя типа БМБЛ достигает 5 м (давление воды 0,5 атм.). Плотный сальник, необходимый на таком заглублении, не позволит осуществить свободное перемещение штока-ротора, а с течением времени сальник начнет подтекать. Кроме того, как и в случае с солнечной установкой, остаются нерешенными проблемы круглогодичного бесперебойного энергообеспечения светотехнической системы буя посредством только данной волновой энергетической установки без ее дублирования другим источником тока, поскольку в летнее время года часты периоды затяжных штилей и волнение на море отсутствует.

Аналогами известного навигационного буя [20] являются аналогичные устройства (патенты GB №1271490 А, 19.04.1972 [21], KR №20110132742 А, 09.12.2011 [22], JP №6280733 А, 04.10.1994 [23], RU №2007130120 А, 20.02.2009 [24], RU №88744 U1, 20.11.2009 [25], CN №201797431 U, 13.04.2011 [26], RU №2399546 С2, 20.09.2010 [27], RU №113234 U1, 10.02.2012 [28]), обладающие теми же самыми недостатками, что и известный навигационный буй.

Задачей также известного технического решения является создание автономной комплексной энергетической установки для плавучих средств навигационного оборудования (СНО), способной обеспечить круглогодичное бесперебойное энергообеспечение светотехнических систем морских и океанских буев широкого назначения за счет использования возобновляемых источников энергии (патент RU №2610029 С1, 07.02.2017 [29]). При этом технический результат заключается в увеличении мощности энергетической установки буя, упрощении его конструкции, а поставленная задача решается за счет того, что в навигационном буе с комплексной энергоустановкой, содержащим обтекаемый герметичный корпус, разделенный водонепроницаемыми переборками на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса буя, содержащий солнечную энергетическую установку, состоящую из светооптического устройства, автономный источник электропитания (аккумулятор) с подзарядным энергетическим устройством с механизмом подключения его к данному источнику, преобразующим тепловую энергию Солнца в электрическую и помещенным внутри гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, исключающего необходимость использования системы слежения за видимым движением Солнца и позволяющего преломлять и фокусировать направленное солнечное излучение независимо от положения Солнца по горизонту и высоте и жестко закрепленного в шейке каустики (фокусе) гелиоконцентратора, волновую энергетическую установку, установленную во внутренней полости корпуса буя, содержащую во внутренней полости корпуса цилиндрическую емкость, по оси которой в направляющих, прикрепленных к цилиндрической емкости, перемещается шток, на конце штока установлен стабилизирующий балласт, а в средней части на штоке установлен ротор с постоянными магнитами линейного электрического генератора, статор линейного электрического генератора закреплен на внутренней поверхности цилиндрической емкости, обмотка статора генератора соединена с входом зарядного устройства, а выход зарядного устройства соединен с аккумулятором, от которого питается светооптическая аппаратура - введена еще одна солнечная энергетическая установка, выполненная в виде сферы и установленная по периметру светодиодного излучателя и соединенная с аккумулятором, стабилизирующий балласт выполнен полым в виде поплавка.

Такое устройство навигационного буя позволяет реализовать комплексную энергетической установку для плавучих средств навигационного обеспечения, которая основана на совместном использовании энергий Солнца и морских волн, находящихся в природной противофазе (максимум солнца летом, максимум волнения зимой). Предлагаемая установка максимально упрощена по своей конструкции и освобождена от излишней кинематики. В состав комплексной энергетической установки включены два модуля - солнечный и волновой.

Ввиду того, что известное устройство [29] имеет широкое применение в качестве средств навигационного обеспечения судоходства и обладает положительными качествами при использовании его, в том числе и в ледовых условиях, то использование такого буя возможно в качестве носителя и аппаратуры для сейсмических и экологических исследований.

Задачей предлагаемого технического решения является расширение функциональных возможностей известного устройства [29].

Поставленная задача решается за счет того, что в навигационный буй с комплексной энергоустановкой, содержащий обтекаемый герметичный корпус, удерживаемый посредством якоря и разделенный водонепроницаемыми переборками на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса буя, содержащий солнечную энергетическую установку, состоящую из светооптического устройства, автономный источник электропитания (аккумулятор) и подзарядное энергетическое устройство с механизмом подключения его к данному источнику, преобразующим тепловую энергию Солнца в электрическую и помещенным внутри гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, исключающего необходимость использования системы слежения за видимым движением Солнца и позволяющего преломлять и фокусировать направленное солнечное излучение независимо от положения Солнца по горизонту и высоте и жестко закрепленного в шейке каустики (фокусе) гелиоконцентратора, волновую энергетическую установку, установленную во внутренней полости корпуса буя, содержащую во внутренней полости корпуса цилиндрическую емкость, по оси которой в направляющих, прикрепленных к цилиндрической емкости, перемещается шток, на конце штока установлен стабилизирующий балласт, а в средней части на штоке установлен ротор с постоянными магнитами линейного электрического генератора, статор линейного электрического генератора закреплен на внутренней поверхности цилиндрической емкости, обмотка статора генератора соединена с входом зарядного устройства, а выход зарядного устройства соединен с аккумулятором, от которого питается светооптическая аппаратура и содержащий еще одну солнечную энергетическую установку, выполненную в виде сферы и установленную по периметру светодиодного излучателя и соединенную с аккумулятором, а стабилизирующий балласт выполнен полым в виде поплавка, дополнительно введены регулируемый съемный балласт, закрепленный в нижней части корпуса буя и выполненный из арматурного железа, образующего колоколообразную ферму, на элементах которой закреплены датчики измерения сейсмических и экологических параметров, телескопическое устройство, установленное в верхней части буя, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики, внутри корпуса буя установлен информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров, информационно-управляющий модуль посредством кабеля, сочлененного с якорной цепью соединен с донной сейсмоакустической станцией.

Как и в прототипе [29] солнечный модуль располагается на топе навигационного буя и собран на сферическом основании миниатюрных фотоэлектрических элементов (диаметром не более 50 мм), каждый из которых снабжен своей концентрирующей линзой Френеля. При такой компоновке отпадает необходимость слежения за Солнцем по высоте и горизонту, поскольку в любой момент времени, независимо от положения Солнца и произвольно качающегося буя, часть фотоэлектрических элементов все равно сориентирована на Солнце и вырабатывает электроэнергию. Выработанное солнечным модулем электричество системой управления подается в накопитель энергии (аккумуляторный блок), который обеспечивает электроэнергией светодиодный излучатель буя в темное время суток.

Еще одна солнечная энергетическая установка, выполнена в виде сферы и установлена по периметру светодиодного излучателя и соединенная с аккумулятором, при отсутствии солнечных лучей позволяет вырабатывать электроэнергию при преобразовании светового потока от светодиодного излучателя. Данная солнечная батарея может быть также на сферическом основании миниатюрных фотоэлектрических элементов (диаметром не более 50 мм), каждый из которых снабжен своей концентрирующей линзой Френеля.

Волновой модуль располагается в двух смежных внутренних отсеках буя. В нижний (хвостовой) отсек встроена выгородка (полость) в виде г-образной трубы, не нарушающей плавучести и остойчивости буя, и имеющей свободный доступ морской воде снизу и атмосферному воздуху сверху, выше максимально возможной ватерлинии буя. Внутри трубы находится не массивный груз-противовес, а поплавок, жестко скрепленный с вертикальным штоком из немагнитного материала. Верхняя часть штока через направляющую втулку выведена в сухой смежный отсек буя и снабжена постоянными магнитами, выполняющими функцию ротора линейного электрического генератора (соленоида). Статор линейного электрогенератора жестко скреплен с корпусом буя или межотсечной переборкой и вырабатывает электрический ток при любых вертикальных перемещениях штока-ротора и поплавка, вызванных осциллирующим водяным столбом внутри г-образной трубы, в которую помещен поплавок, при наличии волнения на море. Выработанное волновым модулем электричество системой управления подается в накопитель энергии (аккумуляторный блок), который обеспечивает электроэнергией светодиодный излучатель буя в темное время суток.

В отличие от прототипа [29] в устройств дополнительно введены регулируемый съемный балласт, закрепленный в нижней части корпуса буя и выполненный из арматурного железа, образующего колоколообразную ферму. На элементах регулируемого съемного балласта закреплены датчики измерения сейсмических и экологических параметров. В верхней части буя установлено телескопическое устройство, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики. Внутри корпуса буя установлен информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров. Информационно-управляющий модуль посредством кабеля, сочлененного с якорной цепью, соединен с донной сейсмоакустической станцией.

На фигуре схематично изображены вид и принципиальная блок-схема комплексной солнечно-волновой энергетической установки плавучего средства навигационного оборудования с расположением внутри его корпуса предлагаемых технических средств и их структурные соединения:

1 - набор миниатюрных фотоэлектрических элементов, снабженных линзами Френеля, и собранных на сферическом основании (солнечный модуль);

2 - светодиодный излучатель (источник света буя);

3 - система управления и аккумуляторный блок комплексной солнечно-волновой энергетической установки с подзарядным энергетическим устройством и с механизмом подключения его к данному источнику;

4 - внутренняя труба-полость волнового модуля, расположенная в нижнем (хвостовом) отсеке буя;

5 - поплавок;

6 - шток-ротор линейного электрического генератора;

7 - направляющая втулка;

8 - статор линейного электрического генератора (соленоид), расположенный в сухом отсеке буя, и жестко скрепленный с корпусом буя или межотсечной переборкой;

9 - датчик наружной освещенности (фотодатчик);

10 - введенная солнечная батарея,

11 - регулируемый съемный балласт,

12 - датчики измерения сейсмических и экологических параметров,

13 - телескопическое устройство, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики,

14 - информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров и донной сейсмоакустической станцией,

15 - якорная цепь,

16 - якорь,

17 - донная сейсмоакустическая станция,

18 - кабель,

19 - морское дно.

Съемный балласт, закреплен в нижней части корпуса буя и выполнен из арматурного железа, образующего колоколообразную ферму. На элементах регулируемого съемного балласта закреплены датчики измерения сейсмических и экологических параметров. В верхней части буя установлено телескопическое устройство, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики. Внутри корпуса буя установлен информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров. Информационно-управляющий модуль посредством кабеля, сочлененного с якорной цепью соединен с донной сейсмоакустической станцией

Экологические датчики обеспечивают получение в реальном масштабе времени достоверных измерений требуемых экологических параметров среды: загрязнение морских акватории нефтепродуктами, радиационного фона морских акваторий, наличие водах продуктов химического производства.

Комплект экологических датчиков, предназначенных для выполнения экологических измерений параметров водной среды в режиме in situ, устанавливаемый на буе имеет в своем составе следующие средства измерения:

- преобразователь ГХФП, предназначенный для измерения удельной электрической проводимости, температуры, концентрации ионов водорода, окислительно-восстановительного потенциала, содержания растворенного кислорода;

- прибор ФНП-02, предназначенный для регистрации соответствующими каналами флюоресценции уранина в качестве трассера, хлорофилла-А (в эквиваленте родамина Б) и РОВ, в том числе нефтепродукты (в эквиваленте перилена) в трех спектральных диапазонах, а также мутности в водной среде;

- преобразователь гамма-излучения ПГИ-1, предназначенный для регистрации гамма-излучения в энергетическом диапазоне от 0,1 до 3,0 МэВ.

Информационно-управляющий модуль обеспечивает управление работой всех элементов и узлов, размещенных на буе, включая синхронизацию временных параметров (ГЛОНАСС) и связь с береговым центром дистанционного управления и контроля.

Метеорологические датчики включают датчики скорости ветра, температуры и влажности для измерения профилей в приводном слое атмосферы и расчета потоков импульса, тепла и влаги.

Сейсмические датчики, размещенные на регулируемом балласте представляют собой волоконно-оптические гидрофоны.

При установке буя посредством якоря с якорной цепью может быть также осуществлена постановка на дно донной сейсмоакустической станции, предназначенной для измерения морского шума, регистрации местных и удаленных землетрясений и акустосейсмической томографии.

При этом донная сейсмоакустическая станция может содержать (вариант 1) велосиметр типа СМ-5, молекулярный электрохимический сейсмоприемник, молекулярный электрохимический датчик крутильных движений и пьезоэлектрический акселерометр, что обеспечит непрерывный сейсмический мониторинг морского дна в широком частотном и динамическом диапазонах, а также блок пространственной ориентации.

Сейсмические датчики измеряют три компоненты сейсмических датчиков: две горизонтальные и одну вертикальную, и предназначены для преобразования скорости колебания грунта в электрический сигнал в соответствующем динамическом и частотном диапазоне. Сейсмический приемник представляет собой приемник типа СМ - 5 (велосиметр) с частотным диапазоном регистрируемых сейсмических сигналов, 0.03-40 Гц.

Трехкомпонентный сейсмоакустический датчик предназначен для преобразования третьей производной колебания грунта в электрический сигнал в соответствующем динамическом и частотном диапазонах. Основные технические характеристики датчика:

количество сейсмоакустических каналов 3, частотный диапазон 20-1000 Гц, динамический диапазон в полосе 1/3 октавы и центральной частотой 30 Гц не менее 60 дБ, амплитуда выходного сигнала не более ±10 В, амплитуда контрольного сигнала при токе нагрузки 4 мА не более ±5 В.

Блок пространственной ориентации предназначен для определения точного положения в пространстве всех сейсмических датчиков.

В качестве датчика используется модуль электрического компаса ТСМ-2 фирмы "Precision Navigation", представляющий собой трехосный феррозондовый магнитометр и блок электроники, выполненные на одной плате.

Во втором варианте в прочном корпусе каждой донной сейсмоакустической станции в карданном подвесе могут быть размещены трехкомпонентные низкочастотные молекулярно-кинетические сейсмоприемники типа СМЕ-4111 и высокочастотные типа MTSS-2003, а также блок ориентации по азимуту и наклону кардана. В прочном корпусе также находятся две платы цифровых регистраторов низкочастотного (с максимальной частотой дискретизации 250 Гц) и высокочастотного (с максимальной частотой дискретизации 2 кГц) трактов соответственно, в составе аналоговых усилителей, аналого-цифровых дельта - сигма преобразователей и микроконтроллеров, интерфейсные платы для передачи данных на береговой диспетчерский пункт и приема команд управления. Микроконтроллеры по принятым командам осуществляют управление усилением аналоговых усилителей, частотой преобразования аналого-цифровых преобразователей и частотой среза антиалайзинговых фильтров микроконтроллеров. Антиалайзинговые фильтры имеют линейную фазовую характеристику и частотную характеристику, переключаемую синхронно с частотой дискретизации.

Работа комплексной солнечно-волновой энергетической установки навигационного буя осуществляется как и в прототипе [29].

В светлое время суток, независимо от положения Солнца и ориентации буя, определенная часть миниатюрных фотоэлектрических элементов солнечного модуля 1 вырабатывает электрический ток, который системой управления направляется для накопления в аккумуляторный блок 3. Режим работы аккумуляторного блока в этом случае циклический (днем - заряд АКБ, в темное время суток - разряд на светодиодный излучатель 2).

Параллельно, в любое время суток при наличии волнения на море, в работу включается волновой модуль. Вертикальные перемещения буя на волне вызывают колебания вверх-вниз водяного столба внутри полой трубы 4. В свою очередь, колебания водяного столба вызывают вертикальные перемещения поплавка 5 с жестко скрепленным с ним штоком-ротором 6. Верхняя часть штока-ротора через направляющую втулку 7 выведена в смежный сухой отсек буя, в котором расположен и жестко скреплен с корпусом буя или межотсечной переборкой статор линейного электрического генератора (соленоид) 8. Рабочая часть штока-ротора 6, совершающая возвратно-поступательные движения внутри статора-соленоида 8, снабжена постоянными магнитами, за счет движения которых на обмотках статора 8 возникает электрический ток. Выработанное волновым модулем электричество системой управления направляется для накопления в аккумуляторный блок 3. Режим работы аккумуляторного блока в этом случае буферный, так как в темное время суток электричество, выработанное волновым модулем, подзаряжает АКБ, расходующий электроэнергию на светодиодный излучатель 2.

Команду на включение в работу светодиодного излучателя 2 подает датчик наружной освещенности (фотодатчик) 9 при достижении уровня освещенности горизонтальной поверхности в 350 млк (общее требование к навигационным огням).

Солнечная батарея 10 предназначена для использования ее в качестве дополнительного средства выработки электрического тока, путем преобразования солнечного света, а при его отсутствии, путем преобразования светового потока от светодиодного излучателя 2 в электрический ток.

Установка должна обеспечить экологическую чистоту, надежность, долговечность, упрощение процесса эксплуатации плавучих объектов СНО и предохранить составные элементы комплексной энергетической установки от внешних повреждений и проявлений вандализма.

Выработка дополнительной энергии позволяет расширить функциональные возможности буя за счет введения в его состав дополнительных измерительных средств, что существенно сократит затраты на проведение гидрометеорологических, сейсмических и экологических наблюдений.

При этом, с учетом того, что навигационные буи устанавливаются на обширных водных акваториях, то может быть реализована широкомасштабная наблюдательная сеть.

При этом в исследуемом сейсмоактивном регионе пункты измерения (подходы к портам, рекомендованные судовые пути и т.п.) контролируемого параметра будут разнесены относительно друг друга, что обеспечит получение в режиме реального времени от измерителей (навигационных буев) данных о результатах измерения, по меньшей мере, одного контролируемого параметра. При этом измерения контролируемого параметра могут выполняться непрерывно и одновременно на всех пунктах измерения наблюдательной сети с постоянным и одинаковым для всех станций шагом дискретизации по времени.

Предлагаемое техническое решение промышленно применимо, так как для его реализации могут быть использованы стандартные плавучие средства навигационного оборудования (буи), традиционные технологии по изготовлению фотоэлектрических элементов, линз Френеля к ним и линейных электрических генераторов, а также стандартное оборудование и приспособления для модернизации этих средств и имеющие промышленное применение средства измерения метеорологических, экологических и сейсмических параметров.

Источники информации.

1. Патент US №3794907.

2. Патент US №3818312, 1974.

3. Патент GB №1357427, 1974.

4. Патент GB №1368202, 1974.

5. Патент FR №2193284, 1974.

6. Патент FR №2215743, 1974.

7. Авторское свидетельство SU №586533, 1978.

8. Патент RU №2028558, 1992.

9. Патент RU №2377472, 2008.

10. Патент RU №2476783, 2013.

11. Патент RU №2382935, 2010.

12. Патент RU №2577942 С1, 20.03.2016.

13. Патент RU №2078249 С1, 27.04.1997.

14. Патент RU №2399546 С2, 20.12.2009.

15. Патент RU №2386051 С2, 10.04.2004.

16. Патент CN №102606375 А. 25.07.2012.

17. Патент CN №102678429 А, 19.09.2012.

18. Патент RU №2388933, 2010.

19. Патент RU №2467911 2012.

20. Патент RU №2489301, 10.08.2013.

21. Патент GB №1271490 А, 19.04.1972.

22. Патент KR №20110132742 А, 09.12.2011.

23. Патент JP №6280733 А, 04.10.1994.

24. Заявка RU №2007130120 А, 20.02.2009.

25. Патент RU №88744 U1, 20.11.2009.

26. Патент CN №201797431 U, 13.04.2011.

27. Патент RU №2399546 С2, 20.09.2010.

28. Патент RU №113234 U1, 10.02.2012.

29. Патент RU №2617607 С1, 25.04.2017.

Навигационный буй с комплексной энергоустановкой, содержащий обтекаемый герметичный корпус, удерживаемый посредством якоря, разделенный водонепроницаемыми переборками на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса буя, содержащий солнечную энергетическую установку, состоящую из светооптического устройства, автономный источник электропитания (аккумулятор) и подзарядное энергетическое устройство с механизмом подключения его к данному источнику, преобразующее тепловую энергию Солнца в электрическую и помещенное внутри гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, исключающее необходимость использования системы слежения за видимым движением Солнца и позволяющее преломлять и фокусировать направленное солнечное излучение независимо от положения Солнца по горизонту и высоте и жестко закрепленное в шейке каустики (фокусе) гелиоконцентратора, волновую энергетическую установку, установленную во внутренней полости корпуса буя, содержащую во внутренней полости корпуса цилиндрическую емкость, по оси которой в направляющих, прикрепленных к цилиндрической емкости, перемещается шток, на конце штока установлен стабилизирующий балласт, а в средней части на штоке установлен ротор с постоянными магнитами линейного электрического генератора, статор линейного электрического генератора закреплен на внутренней поверхности цилиндрической емкости, обмотка статора генератора соединена с входом зарядного устройства, а выход зарядного устройства соединен с аккумулятором, от которого питается светооптическая аппаратура, еще одну солнечную энергетическую установку, выполненную в виде сферы и установленную по периметру светодиодного излучателя и соединенную с аккумулятором, стабилизирующий балласт выполнен полым в виде поплавка, отличающийся тем, что дополнительно введены регулируемый съемный балласт, закрепленный в нижней части корпуса буя и выполненный из арматурного железа, образующего колоколообразную ферму, на элементах которой закреплены датчики измерения сейсмических и экологических параметров, телескопическое устройство, установленное в верхней части буя, на котором размещены антенна системы ГЛОНАСС, метеорологические датчики, внутри корпуса буя установлен информационно-управляющий модуль, соединенный с антенной системы ГЛОНАСС, энергетическими установками буя и датчиками измерения сейсмических, экологических и метеорологических параметров, информационно-управляющий модуль посредством кабеля, сочлененного с якорной цепью, соединен с донной сейсмоакустической станцией.



 

Похожие патенты:

Изобретение относится к солнечной энергетике, используемой для преобразования энергии солнечного излучения в тепловую энергию, в дальнейшем используемую для нагрева воды.

Изобретение относится к области экологически чистой энергии и, в частности, к многофункциональной солнечной энергетической системе, в которой используется солнечная энергия.
Изобретение относится к солнечному коллектору для временного хранения тепла, полученного в любое время от солнечного излучения. Солнечный коллектор 1 для временного хранения тепла, полученного от солнечного излучения, содержит проводник 8, 9 излучения, оптические средства 7, предназначенные для концентрирования солнечного излучения на первом конце проводника излучения.

Неподвижный каскадный линзовый концентратор солнечного излучения с оптическим способом наведения светового потока содержит три плоские радиальные линзы Френеля.

Изобретение относится к области гелиотехники и касается солнечного модуля с асимметричным параболоцилиндрическим концентратором и фотоприемником с треугольным профилем.

Изобретение относится к теплогенераторам кавитационного типа для разогрева жидкостей в гидросистемах различного назначения, а также может быть использовано в качестве смесителей различных жидкостей, диспергирования, разрушения молекулярных связей в сложных жидкостях, изменения физико-механических свойств жидкостей, для воздействия на биологические объекты.

Изобретение относится к конструкции винтоканавочных насосов, предназначенных для эффективного нагрева прокачиваемых с малым напором и при малых подачах вязких жидкостей, и может быть использовано для принудительного горячеструйного подогрева вязких нефтепродуктов и других веществ в системах и емкостях при разгрузках и перевозках.

Изобретение относится к области биохимии. Предложена солнечная биогазовая установка для сбраживания биомассы с получением биогаза.

Изобретение относится к гелиотехнике, в частности к солнечным установкам с системой ориентации солнечных концентраторов, и может быть использовано для нагрева различных теплоносителей, производства электроэнергии, в опреснительных и других установках, преобразующих солнечную энергию в тепловую.

Настоящее изобретение относится к технологии использования солнечной энергии и, более конкретно, к солнечной теплосборной адсорбционной композиционной трубке, солнечному теплосборному адсорбционному композиционному слою, состоящему из таких трубок, и охлаждающей и нагревательной системе, образованной из такого слоя.

Изобретение относится к области измерительной техники и может быть использовано для управления одним или несколькими осветительными устройствами. Заявлен контроллер, содержащий: выход для управления одним или несколькими наружными осветительными устройствами для освещения наружной окружающей среды; вход для приема температурной информации от температурного датчика, содержащего множество измеряющих температуру элементов; и модуль управления.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности передачи и насыщенности красного или зеленого цвета.

Настоящее изобретение обеспечивает способ выполнения универсальной светодиодной лампочки, светодиодную лампочку, имеющую конструкцию стопорного кольца, и лампу, выполненную согласно способу.

Изобретение относится к области светотехники и, в частности, раскрывает способ выполнения универсальной светодиодной лампочки, светодиодную лампочку со стопорным кольцом с фланцем и лампу.

Изобретение относится к области светотехники и может быть использовано в осветительном приборе (110), в частности, для целей заливающего освещения, освещения спортивных площадок и зонального освещения.

Настоящее изобретение обеспечивает способ выполнения универсальной светодиодной лампочки (102), светодиодную лампочку (102) линзового типа со стопорным кольцом и лампу.

Изобретение относится к устройству освещения, размещенному в фюзеляже самолета, и касается органических электролюминесцентных (ЭЛ) устройств освещения. Устройство содержит органическую ЭЛ панель и схему возбуждения панели.

Изобретение относится к осветительным устройствам транспортных средств. Фара противотуманная содержит корпус, светодиодный источник света и оптическую систему, состоящую из двух плоско-выпуклых линз.

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров на судоходных акваториях. Предложен навигационный буй, содержащий обтекаемый герметичный корпус, разделенный на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса, солнечную энергетическую установку, состоящую из светооптического устройства, автономный источник электропитания (аккумулятор) и подзарядное энергетическое устройство с механизмом подключения его к данному источнику, преобразующее тепловую энергию Солнца в электрическую и помещенное внутрь гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, волновую энергетическую установку, установленную во внутренней полости корпуса, содержащую цилиндрическую емкость со статором линейного электрического генератора, по оси которой в направляющих перемещается шток, на котором установлен ротор с постоянными магнитами линейного электрического генератора, на конце штока установлен стабилизирующий балласт, выполненный полым в виде поплавка, обмотка статора соединена с входом зарядного устройства, выход которого соединен с аккумулятором, от которого питается светооптическая аппаратура, при этом введена еще одна солнечная энергетическая установка, выполненная в виде сферы, установленная по периметру светодиодного излучателя и соединенная с аккумулятором.

Изобретение относится к осветительной системе, содержащей светоизлучающие диоды (СИД, LED). Осветительная система (1) содержит множество дискретных светоизлучающих диодных модулей (10), которое нерегулярным образом распределено внутри прозрачного участка (12), содержащего композитный матриал.

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров на судоходных акваториях. Предложен навигационный буй, содержащий обтекаемый герметичный корпус, разделенный на отсеки, светооптическую аппаратуру на светодиодах, расположенную в головной части корпуса, солнечную энергетическую установку, состоящую из светооптического устройства, автономный источник электропитания (аккумулятор) и подзарядное энергетическое устройство с механизмом подключения его к данному источнику, преобразующее тепловую энергию Солнца в электрическую и помещенное внутрь гелиоконцетратора, функции которого выполняет оптическое устройство на основе линзы Френеля, волновую энергетическую установку, установленную во внутренней полости корпуса, содержащую цилиндрическую емкость со статором линейного электрического генератора, по оси которой в направляющих перемещается шток, на котором установлен ротор с постоянными магнитами линейного электрического генератора, на конце штока установлен стабилизирующий балласт, выполненный полым в виде поплавка, обмотка статора соединена с входом зарядного устройства, выход которого соединен с аккумулятором, от которого питается светооптическая аппаратура, при этом введена еще одна солнечная энергетическая установка, выполненная в виде сферы, установленная по периметру светодиодного излучателя и соединенная с аккумулятором.
Наверх