Способ риформинга бензиновых фракций

Настоящее изобретение относится к способу риформинга бензиновых фракций путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга, включающим оксид алюминия, платину или смесь платины с промотором, а затем с цеолитсодержащим катализатором, возможно модифицированным промотором. При этом цеолитсодержащий катализатор в качестве цеолита содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11 в количестве 5-75% мас. Применение в составе цеолитсодержащего катализатора ферроалюмосиликата или феррогаллийалюмосиликата позволяет снизить температуру полного выжигания катализаторного кокса на стадии регенерации катализатора, а также повысить выход ароматических углеводородов и октановое число получаемой бензиновой фракции. 4 з.п. ф-лы, 3 ил., 2 табл., 16 пр.

 

Изобретение относится к способам получения ароматических углеводородов и/или высокооктановых бензиновых фракций с применением процесса риформинга низкооктановых бензиновых фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Основным процессом получения высокооктановых бензиновых фракций и ароматических углеводородов C6-C10 является процесс каталитического риформинга низкооктановых бензиновых фракций [Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокооктановых бензинов. - М., Химия, 1981, - 224 с.; Маслянский Г.Н., Шапиро Р.Н. Каталитический риформинг бензинов. - Л., Химия, 1985, - 222 с.]. Для повышения эффективности каталитического риформинга постоянно совершенствуются как применяемые в процессе катализаторы, так и сама технология процесса. Одним из приемов повышения эффективности процесса является одновременное применение катализаторов разного состава или типа, находящихся в разных реакционных зонах.

Так, например, известен способ риформинга углеводородного сырья, согласно которому углеводородное сырье подвергают последовательному контактированию с катализаторами двух различных типов [Пат. США №4645586, кл. C10G 59/02, 1987]. Первым по ходу подачи сырья является бифункциональный катализатор риформинга на основе носителя из оксида алюминия с нанесенным на него платиной или платиной и рением, возможно содержащий промоторы металлов VIII группы, такие как рений, олово, германий, кобальт, никель, иридий, родий, рутений и их комбинации. Вторым по ходу подачи сырья применяют модифицированный платиной катализатор на основе широкопористого цеолита L в некислой форме. Риформинг сырья осуществляют при следующих предпочтительных условиях процесса: давление - 0,34-3,4 МПа, температура - 430-550°С, объемная скорость подачи сырья - 0,3-5 ч-1 и мольное отношение водород к углеводородам - Н2/СН = 2-6.

Известен способ каталитического риформинга нафты [Пат. РФ №2180346, кл. C10G 59/02, 2002]. Согласно данному способу исходную нафту (бензиновую фракцию) подвергают контактированию первоначально в зоне непрерывного риформинга с движущемся слоем бифункционального катализатора риформинга, а затем, без отделения водорода из продуктов зоны непрерывного риформинга, подвергают контактированию в зоне цеолитного риформинга с неподвижным слоем цеолитсодержащего катализатора. Бифункциональный катализатор непрерывного риформинга содержит неорганический оксид с нанесенным на него металлическим компонентом платиновой группы, предпочтительно - платиной. Процесс в зоне непрерывного риформинга осуществляют при давлении 0,1-1 МПа, температуре 400-560°С, скорости подачи жидкого сырья 0,2-10 ч-1 и мольном отношении Н2/СН в интервале 0,1-10. Зона цеолитного риформинга может включать один или несколько параллельно или последовательно с промежуточным подогревом работающих реакторов с цеолитсодержащим катализатором. Цеолитсодержащий катализатор содержит цеолит L в некислой, калиевой форме и металлический компонент платиновой группы, предпочтительно - платину. Процесс в зоне цеолитного риформинга осуществляют при давлении 0,1-6 МПа, температуре 260-560°С и скорости подачи жидкого сырья 1-40 ч-1.

Известен способ каталитического риформинга бензиновых фракций [Пат. РФ №2471855, кл. C10G 59/02, 35/085; B01J 29/50, 23/42, 27/10, 27/12, 2011]. Согласно данному способу процесс осуществляют в блоке из пяти последовательно расположенных реакторов. В первый по ходу подачи сырья реакторе загружают катализатор на основе оксида алюминия с нанесенными на него платиной и смеси фтора и хлора, во второй-пятый реакторы загружают катализатор, содержащий кроме оксида алюминия и платины эрионит, причем содержание этого цеолита в катализаторе от второго реактора к пятому повышается от 0,5 до 3,7% мас. В первом реакторе процесс проводят при давлении 2,0 МПа, температуре 410°С, объемной скорости подачи сырья 20 ч-1 и кратности циркуляции водородсодержащего газа (ВСГ) 1200 нм33. В последующих реакторах процесс риформинга проводят при давлении 2,0 МПа, температуре сырья на входе в реактор 490°С, объемной скорости подачи сырья 5 ч-1 и кратность циркуляции ВСГ 1200 нм33.

Применение в составе катализаторов риформинга узкопористых цеолитов, к которым относятся эрионит, ферьерит, филлипсит и др., приводит к дополнительной переработке непрореагировавших на металлоксидном катализаторе н-парафинов, однако при этом не затрагиваются слаборазветвленные монометилпарафины, имеющие невысокие октановые числа, что приводит к получению бензиновых фракций с относительно низкими октановыми числами. В случае применения в составе катализаторов риформинга широкопористых цеолитов, таких как цеолиты L, бета, омега и пр., в переработку вовлекаются высокооктановые сильноразветвленные изопарафины, что в результате протекания побочных реакций гидрокрекинга приводит к снижению выхода бензиновых фракций. Таких недостатков лишены катализаторы, содержащие среднепористые цеолиты со структурой ZSM-5 и ZSM-11, вовлекающие в переработку монометил- и н-парафины, и не затрагивающие вследствие молекулярно-ситового эффекта сильноразветвленные изопарафины.

Наиболее близким по своей технической сущности является способ переработки бензиновых фракций [Пат. РФ №2024581, кл. C10G 35/095, 1994]. Согласно выбранному прототипу риформинг бензиновых фракций осуществляют при температуре 440-530°С и давлении 1-4 МПа путем последовательного контактирования сырья в присутствии водородсодержащего газа первоначально с металлоксидным катализатором, а затем с цеолитсодержащим катализатором при массовом соотношении первого и второго катализаторов (0,33-10):1. Металлоксидный катализатор содержит оксид алюминия, 0,5-2,5% мас. хлора, 0,3-1,2% платины или смеси платины с промотором в соотношении (0,5-12):1, а в качестве промотора возможно применение Re, Ir, Cd или Sn. В составе цеолитсодержащего катализатор применяют некислотный среднепористый цеолит со средним размером пор 0,58-0,60 нм, с модулем 25-1000 и величиной десорбции аммиака 0,05-0,30 ммоль/г в интервале температур 300-500°С (после его предварительной адсорбции из потока при температуре 100°С), что соответствует свойствам цеолитов ZSM-5 и ZSM-11. Применяемый цеолитсодержащий катализатор содержит 0,2-1,2% мас. платины или смеси платины с промотором, 40-75% цеолита и оксид алюминия - остальное; в качестве промотора возможно применение Re, Ir, Rh, W или Mo. Перед осуществлением процесса оба катализатора восстанавливают в токе водорода при температуре 450°С.

Основными недостатками прототипа и аналогов являются относительно высокая температуры выгорания кокса, образующегося на цеолитсодержащем катализаторе в ходе переработки бензиновых фракций и неполная глубина выгорания кокса при умеренных температурах регенерации катализатора.

В ходе превращения углеводородного сырья происходит постепенное закоксование катализаторов, приводящее к снижению их каталитической активности. Снижение каталитической активности катализаторов в свою очередь приводит к падению выхода ароматических углеводородов и к снижению октанового числа получаемых бензиновых фракций. Для восстановления начального уровня активности катализатора осуществляют его регенерацию, заключающуюся в регулируемом выжигании коксовых отложений с поверхности катализатора регенерирующим газом с определенным содержанием кислорода. Закоксование цеолитсодержащего катализатора происходит гораздо быстрее, чем закоксование полиметаллического катализатора риформинга для стационарного слоя катализатора (в случае применения системы реакторов с движущемся слоем катализатора риформинга часть катализатора постоянно выводится на регенерацию).

По сравнению с алюмосиликатной системой введение в кристаллический каркас цеолита на стадии его гидротермального синтеза атомов железа или железа и галлия, при синтезе ферроалюмосиликата или феррогаллийалюмосиликата, приводит к образованию в объеме их кристаллов активных центров, ускоряющих реакции выгорания катализаторного кокса, что при регенерации катализатора приводит к снижению температуры и увеличению глубины выжигания кокса. Введение в цеолитсодержащий катализатор модифицирующих металлов (Pt, Re, Pd и пр.) путем пропитки или ионного обмена не приводит к аналогичному эффекту, т.к. первые не внедряются внутрь кристаллов цеолитов типа ZSM-5 и ZSM-11 и поэтому не влияют на процесс выжигания катализаторного кокса, образовавшегося внутри цеолитных каналов. Вследствие этого коксовые отложения, находящиеся внутри цеолитных кристаллов, могут не выгорать полностью при умеренных температурах регенерации и постепенно накапливаться от регенерации к регенерации приводя к снижению уровня активности и/или к сокращению времени межрегенерационного пробега катализатора, чего не происходит в случае применения ферроалюмосиликата и феррогаллийалюмо силиката.

Целью настоящего изобретения является снижение температуры полного выгорания кокса, образующегося на цеолитсодержащем катализаторе в условиях процесса.

Поставленная цель достигается тем, что риформинг бензиновых фракций осуществляют путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором, включающим оксид алюминия, платину или смесь платины с промотором, а затем с катализатором, содержащим 5-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Поставленная задача достигается так же тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5% мас. железа, а феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% железа и 0,1-1,5% галлия.

Применяемый цеолитсодержащий катализатор может содержать в количестве 0,05-1,7% мас. по меньшей мере один из введенных известными методами модификаторов, выбранных из группы Pt, Pd, Re, Ni, Cr, Zr, Sn, La.

Поставленная цель достигается так же тем, что риформинг бензиновых фракций осуществляют в присутствии водородсодержащего газа при избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10 путем контактирования с металлоксидным катализатором при температуре 440-550°С и с цеолитсодержащим катализатором при температуре 320-520°С, а соотношение количества работающего металлоксидного катализатора риформинга к количеству работающего цеолитсодержащего катализатора может находиться в интервале 1-10.

Основным отличительным признаком предлагаемого способа является применение катализатора, в качестве цеолита содержащего кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11.

Данный вариант риформинга осуществляют следующим образом. Переработку бензиновых фракций осуществляют путем последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга, а затем с цеолитсодержащим катализатором. Металлоксидный катализатор риформинга может находиться в нескольких последовательно работающих реакторах со стационарным слоем катализатора или в системе реакторов с движущемся слоем катализатора по известным схемам, а цеолитсодержащий катализатор может находиться в одном или в двух параллельно расположенных реакторах со стационарным слоем. При применении одного реактора с цеолитсодержащим катализатором последний периодически отключают от работающих реакторов с металлоксидным катализатором риформинга, а в случае параллельно расположенных реакторов один из реакторов находится в работе, а другой - на стадии регенерации с последующим чередованием стадий в реакторах. Процесс в целом осуществляют при избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10 путем контактирования сырья с металлоксидным катализатором при температуре 440-550°С и с цеолитсодержащим катализатором при температуре 320-520°С. Соотношение объема работающего металлоксидного катализатора риформинга к объему работающего цеолитсодержащего катализатора (т.е. без учета объемов катализаторов, находящихся на стадии регенерации) может находиться в интервале 1-10.

В качестве металлоксидного катализатора применяют известные катализаторы риформинга, в т.ч. на основе гамма оксида алюминия содержащие платину и, возможно, содержащие олово или рений.

Перед осуществлением процесса металлоксидный катализатор риформинга восстанавливают в водороде при температуре 450-550°С и после восстановления водородом катализатор может быть предварительно осернен с добавлением H2S или сераорганических соединений из расчета 0,01-0,07% мас. серы на катализатор.

Сущность предлагаемого способа и его практическая применимость иллюстрируется нижеприведенными примерами. Для иллюстрации достижимости поставленной цели - снижения температуры выгорания кокса, образующегося на цеолитсодержащем катализаторе и увеличение полноты его выгорания, приведены примеры №№1-3 и Фиг. 1-3. Пример №1 и Фиг. 1 показывают глубину выгорания кокса, образующегося на цеолитсодержащем катализаторе, приготовленного подобно прототипу, а примеры №№2-3 и Фиг. 2-3 иллюстрируют выгорание кокса на цеолитсодержащем катализаторе предлагаемого способа. Примеры №№5-16 иллюстрируют предлагаемый способ риформинга бензиновых фракций, пример №4 аналогичен прототипу и приведен для сравнения с предлагаемым способом. Составы применяемых металлоксидных и цеолитсодержащих катализаторов приведены в таблице 1, условия и результаты испытаний катализаторов в риформинге модельной бензиновой фракции - в таблице 2.

Пример 1 (для сравнения).

Изучение процесса выжигания катализаторного кокса катализатора осуществляют по контролю изменения массы 0,2 г закоксованного образца катализатора в реакторе, близком к изотермическому. Выжигание кокса проводят путем контактирования с катализатором регенерирующего газа, содержащего 1,3% об. кислорода в смеси с азотом, которое осуществляют при атмосферном давлении, температуре 500-600°С и скорости подачи газа 50 л/ч.

Исходный катализатор №1 содержит 30% мас. γ-Al2O3 и 70% декатионированного цеолита ZSM-5 в Н-форме с мольным отношением SiO2/Al2O3 = 91. Выжиганию кокса подвергают катализатор, содержащий 5,1% мас. кокса, образовавшегося за 15 ч переработки углеводородной фракции С68.

Выжигание кокса из катализатора начинают при постоянной температуре 500°С и ведут 60 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 39% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 22% от начального содержания кокса. При температуре 550°С было удалено еще 8% кокса. Остаточный кокс в количестве 31% от начального его содержания выгорел при температуре 600°С за 70 мин. Общее время выжигания кокса составило ~250 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 1.

Пример 2.

Аналогичен примеру 1 с тем отличием, что применяют катализатор №2, содержащий 30% мас. γ-Al2O3 и 70% ферросиликата со структурой цеолита ZSM-5 с мольным отношением SiO2/Al2O3 = 96 и с содержанием железа 0,5% мас.

Выжиганию кокса подвергают проработавший в течение 15 ч катализатор, содержащий 5,2% мас. кокса. Выжигание кокса начинают при постоянной температуре 500°С и ведут 85 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 62% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 75 мин до стабилизации массы образца катализатора было удалено еще 28% от начального содержания кокса. Остаточный кокс в количестве 10% от начального его содержания выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~180 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 2.

Пример 3.

Аналогичен примеру 1 с тем отличием, что применяют катализатор №3, содержащий 25% мас. γ-Al2O3 и 75% феррогаллийалюмосиликата со структурой цеолита ZSM-11 с мольным отношением SiO2/Al2O3 = 105 и с содержанием железа - 0,4% мас. и галлия - 0,1%.

Выжиганию кокса подвергают проработавший в течение 100 ч катализатор, содержащий 10,2% мас. кокса. Выжигание кокса начинают при постоянной температуре 500°С и ведут 80 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 81% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 13% от начального содержания кокса. Остаточный кокс в количестве 6% от начального его содержания выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что говорит о полном выгорании кокса при температуре 550°С. Общее время выжигания кокса составило ~160 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 3.

Пример 4 (для сравнения).

В качестве сырья процесса риформинга применяют модельную фракцию углеводородов С68, содержащую нафтены, н-парафины и изопарафины в массовом соотношении 1:1:1. Испытание катализаторов проводят на лабораторной установке с двумя последовательно работающими трубчатыми изотермическими реакторами. В первом по ходу подачи сырья находится металлоксидный катализатор на основе γ-Al2O3 с нанесенными 0,3% мас. платиной и 0,3% олова. Во втором реакторе находится катализатор, содержащий 30% мас. γ-Al2O3 и 70% цеолита ZSM-5 с мольным отношением SiO2/Al2O3 = 91. Соотношение масс первого катализатора к массе второго равно 3.

Перед испытанием катализаторы активируют в токе воздуха в течение 1 часа при температуре 450°С, затем продувают азотом. Металлоксидный катализатор дополнительно восстанавливают в токе водорода при температуре 450°С в течение 4 часов. Риформинг углеводородной фракции С68 осуществляют при избыточном давлении 1,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1, и мольном отношении водорода к углеводородам Н2/СН = 5, температура реакции в первом реакторе - 480°С, во втором - 400°С. При этих условиях получаемая бензиновая фракция С5+ содержит, % мас.: н-парафины - 12,1; изопарафины - 23,0; нафтены - 3,2; ароматические углеводороды - 61,2; и имеет октановое число 85,1 ММ.

Примеры 5-16.

Аналогичны примеру 4. Составы применяемых катализаторов приведены в таблице 1, условия и результаты процесса риформинга - в таблице 2,

Как видно из приведенных примеров №№1-3 и Фиг. 1-3 предлагаемый цеолитсодержащий катализатор обладает способностью проводить удаление коксовых отложений с поверхности цеолитного компонента регенерируемого катализатора в более мягких условиях, заключающихся в уменьшении температуры полного выжигания кокса с 600°С до 550°С и сокращении общего времени регенерации. При этом его применение в комбинированном процессе риформинга бензиновых фракций позволяет за счет дополнительного превращения парафинов в получаемых риформатах - фракции С5+ - повысить содержание ароматических углеводородов и октановое число (см. примеры 4 и 5 в таблице 2).

1. Способ риформинга бензиновых фракций путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга, включающим оксид алюминия, платину или смесь платины с промотором, а затем с цеолитсодержащим катализатором, возможно модифицированным промотором, отличающийся тем, что цеолитсодержащий катализатор в качестве цеолита содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11 в количестве 5-75% мас.

2. Способ по п. 1, отличающийся тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5% мас. железа.

3. Способ по п. 1, отличающийся тем, что феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% мас. железа и 0,1-1,5% галлия.

4. Способ по любому из пп. 1-3, отличающийся тем, что цеолитсодержащий катализатор содержит по меньшей мере один из промоторов, выбранных из группы Pt, Pd, Re, Ni, Cr, Zr, Sn, La, в количестве 0,05-1,7% мас.

5. Способ по любому из пп. 1-4, отличающийся тем, что риформинг бензиновых фракций осуществляют в присутствии водородсодержащего газа при давлении 0,3-4,0 МПа, массовой скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10 путем контактирования с металлоксидным катализатором при температуре 440-550°С и с цеолитсодержащим катализатором при температуре 320-520°С, а соотношение объема или массы работающего металлоксидного катализатора риформинга соответственно к объему или массе работающего цеолитсодержащего катализатора в интервале 1-10.



 

Похожие патенты:

Изобретение относится к способу производства ароматических соединений из сырьевого потока нафты. Способ включает нагревание сырьевого потока нафты с получением нагретого сырьевого потока нафты; осуществление процесса риформинга нагретого сырьевого потока нафты во множестве эндотермических ступеней риформинга, размещенных последовательно, и получение выходящего потока продукта, полученного ниже по потоку, при этом процесс риформинга осуществляют в присутствии катализатора риформинга; при этом указанное множество ступеней риформинга функционирует при увеличивающихся температурах реакции; причем нагревание сырьевого потока нафты осуществляют путем передачи теплоты от выходящего потока продукта, полученного ниже по потоку, сырьевому потоку нафты до температуры первой реакции исключительно посредством передачи тепла от потока продукта, полученного ниже по потоку, с получением нагретого сырьевого потока нафты и охлажденного выходящего потока продукта.

Настоящее изобретение относится к системе приготовления этилированного авиационного бензина (вариантам). Один из вариантов системы содержит блок приготовления базовой смеси из углеводородных жидкостей для получения неэтилированного бензина, сообщенный через гидравлический насос с главным трубопроводом для подачи смеси в блок гомогенизации, выход которого сообщен с каналом выдачи готового этилированного бензина, блок подготовки корректора детонационных свойств в виде тетраэтилсвинца, включающий в себя по крайней мере один резервуар со средством перекачивания концентрированного тетраэтилсвинца из емкости перевозчика в этот резервуар и со средством его дозированной подачи через узел ввода в главный трубопровод на участке до входа в блок гомогенизации, блок подачи добавок, включающий в себя по крайней мере два дозатора импульсного типа для разведенных до жидкого состояния сухих веществ, относящихся к антиоксиданту и красителю, которые сообщены через узел ввода каждый с главным трубопроводом на участке между местом ввода тетраэтилсвинца и до входа в блок гомогенизации.

Настоящее изобретение относится к способу получения высокооктанового компонента бензина и может быть использовано в нефтеперерабатывающей промышленности. Способ включает каталитический риформинг фракции 85-180°С, выделение из риформата низкооктановой бензолсодержащей фракции, гидроизомеризацию выделенной фракции или ее смеси с прямогонной гидроочищенной фракцией 70-85°С и смешение продукта с оставшейся частью риформата.

Изобретение относится к способу и устройству для гидрообработки риформата. Способ включает приведение риформата в контакт с обладающим каталитическим гидрирующим действием катализатором в условиях жидкофазной гидрообработки в реакторе гидрирования, при этом часть водородсодержащего газа для гидрообработки получена из растворенного водорода, содержащегося в риформате; где гидрообработку проводят в присутствии дополнительного водородсодержащего газа, который инжектируют в риформат перед проведением контактирования и/или во время контактирования через поры с помощью смесителя, который содержит, по меньшей мере, один канал для жидкости, предназначенный для риформата, и, по меньшей мере, один канал для газа, предназначенный для дополнительного водородсодержащего газа, при этом канал для жидкости соединен с каналом для газа посредством компонента, по меньшей мере, часть которого представляет собой пористую область; при этом риформат получают из нижней части газожидкостного сепаратора путем инжекции смеси каталитического риформинга в газожидкостной сепаратор и в продукте, полученном путем проведения контактирования, удаляют летучие компоненты, причем риформат поступает в реактор гидрирования после теплообмена с нефтяным сырьем с удаленными летучими компонентами, нефтяное сырье с удаленными летучими компонентами инжектируют в колонну для удаления тяжелых компонентов и для извлечения ароматических углеводородов из верхней части колонны.

Настоящее изобретение относится к катализатору каталитического риформинга лигроина. Катализатор содержит a) благородный металл, содержащий один или нескольких представителей, выбранных из платины, палладия, родия, рутения, осмия и иридия; b) смесь лития и калия; c) олово или галогенид; и d) подложку.

Изобретение относится к способу повышения выхода ароматических соединений из углеводородного сырья. Способ включает: подачу углеводородного сырья, содержащего лигроин, и содержащего водород рециркулирующего газа, полученного из установки разделения ароматических соединений, в первый реактор для получения первого выходящего потока с пониженным содержанием нафтенов, при этом первый реактор представляет собой реактор дегидрирования или реактор риформинга, работающий при пониженной температуре; подачу первого выходящего потока в сепаратор для создания потока легких углеводородов, содержащего С7 и более легкие углеводороды, и потока тяжелых углеводородов, содержащего С8 и более тяжелые углеводороды; подачу потока тяжелых углеводородов во вторую реакторную систему для получения второго выходящего потока с повышенным содержанием ароматических соединений; подачу второго выходящего потока и потока легких углеводородов в третью реакторную систему для получения третьего выходящего потока, содержащего ароматические соединения; и подачу третьего выходящего потока в колонну разделения продуктов риформинга для получения верхнего погона, содержащего С7 и более легкие ароматические соединения и углеводороды, и нижнего погона, содержащего С8 и более тяжелые ароматические соединения и углеводороды.

Изобретение относится к способу получения ароматических соединений из потока углеводородного сырья, включающему пропускание потока углеводородного исходного сырья в первую установку риформинга, которую эксплуатируют при температуре от 500°C до 540°C, для получения отходящего потока из первой установки риформинга; нагревание отходящего потока из первой установки риформинга до второй температуры и пропускание нагретого потока во вторую установку риформинга, которую эксплуатируют при температуре, большей, чем 540°C, и в которой на внутренние металлические поверхности реактора нанесено покрытие из незакоксовывающегося материала, для получения тем самым, технологического потока, содержащего ароматические соединения; пропускание указанного технологического потока в установку фракционирования для получения, тем самым, головного потока, содержащего С4 и более легкие углеводороды, и кубового потока, содержащего С5 и более тяжелые углеводороды; и пропускание указанного кубового потока в установку экстрагирования ароматических соединений для получения, тем самым, технологического потока ароматических соединений и потока рафината.

Изобретение относится к способу риформинга углеводородного потока, включающему его разделение на легкий углеводородный поток и более тяжелый поток с относительно высокой концентрацией нафтенов.

Изобретение относится к способу каталитического риформинга бензинов с регенерацией. Регенерация указанного катализатора включает в себя этап восстановления катализатора в атмосфере водорода согласно трем следующим вариантам: подают газовые отходы этапа восстановления катализатора частично на вход рекуперативного теплообменника, расположенного перед первым реактором серии, а частично - непосредственно в головную часть реактора; полностью направляют в головную часть первого реактора; полностью направляют на вход рекуперативного теплообменника, и в котором газовые отходы из компрессора рециркуляции, расположенного между разделительным резервуаром и блоком реакторов, подают полностью в головную часть предпоследнего реактора или подают частично в головную часть предпоследнего реактора и частично в головную часть последнего реактора.

Изобретение относится к способу получения ароматических соединений из исходного углеводородного потока, в котором: пропускают исходный углеводородный поток в узел разделения, формируя таким образом легкий технологический поток, содержащий C7-углеводороды и имеющий пониженную концентрацию эндотермичных углеводородных компонентов, и тяжелый технологический поток, содержащий C8+-углеводороды, а также C6 и C7-нафтены и имеющий повышенную концентрацию эндотермичных компонентов; пропускают легкий технологический поток в первый реактор риформинга, при этом первый реактор риформинга имеет первую рабочую температуру более 540°C; пропускают тяжелый технологический поток во второй реактор риформинга, формируя таким образом выходной поток второго реактора риформинга, при этом второй реактор риформинга имеет вторую рабочую температуру, причем первая рабочая температура выше второй рабочей температуры; пропускают выходной поток второго реактора риформинга в первый реактор риформинга, формируя таким образом выходной поток первого реактора риформинга; пропускают выходной поток первого реактора риформинга в узел отделения ароматических соединений, формируя таким образом поток ароматических продуктов и поток рафината.
Наверх