Теплообменный аппарат



Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат

Владельцы патента RU 2673119:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности. Теплообменный аппарат содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, профилированные теплообменные трубы, установленные внутри корпуса в трубных досках. Поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде прямоугольника со скругленными переходами между его сторонами, при этом соотношение сторон указанного прямоугольника составляет h=(0,1…0,5)b, где h - высота прямоугольника, b - ширина прямоугольника. Входная и выходная части упомянутых труб выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному. Проходная площадь профилированного поперечного сечения теплообменной трубы равна или больше проходной площади каждого цилиндрического участка указанной трубы. В варианте исполнения, поперечное сечение трубы выполнено в виде плоской спирали. 3 з.п. ф-лы, 6 ил.

 

Изобретение относится к области теплотехники, а именно: к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных прямых труб (А.Г. Касаткин. Основные процессы и аппараты химической технологии. Издательство Альянс, Москва, 2008, стр. 326-333).

Основными недостатками указанных конструкций является недостаточно интенсивный теплообмен в связи с низким коэффициентом теплопередачи из-за слабой турбулизации потоков, проходящих как внутри труб, так и в межтрубном пространстве, высокая материалоемкость и значительные габариты.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных труб в виде пространственно-спиральных змеевиков, установленных в зазорах между витками друг друга (патенты РФ №2152574, МПК: F28D 7/02 от 16.09.1999 и №2238500, МПК: F28D 7/02 от 27.12.2002).

Основными недостатками указанных конструкций является сложность изготовления змеевиков, формирование трубных пучков в межтрубном пространстве теплообменного аппарата, теплообмен между средами недостаточно интенсивный, особенно в межтрубном пространстве, низкий коэффициент теплопередачи на уровне 150 ккал/ч*м2 («Теплообменное оборудование ООО «АНОД-ТЦ»»).

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и змеевиковые элементы из труб, установленных в зазорах между витками змеевиковых элементов (патент РФ №2451875, МПК: F22B 37/00, F28D 7/02 от 14.10.2010).

Основным недостатком указанной конструкции является недостаточно интенсивный теплообмен между средами, особенно при движении теплопередающей среды снаружи змеевиковых элементов поперек оси пучка труб и изготовления змеевиковых пучков труб вложением одного пучка труб в другие пучки.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является теплообменный аппарат с оребренными теплообменными трубами, в частности аппарат воздушного охлаждения, содержащий корпус, входной и выходной коллекторы с устройствами ввода и вывода горячего и холодного потоков и пучок теплообменных прямых оребренных труб (Основы расчета и проектирования теплообменников воздушного охлаждения.: Справочник А.Н. Бессонов, Г.А., Дрейцер, В.Б. Кунтыш и др. СПб, «Недра», 1996, стр. 89-104).

Основными недостатками указанной конструкции является недостаточно интенсивный теплообмен из-за слабой турбулизации потока, проходящего внутри прямых труб, и низкого коэффициента теплоотдачи от стенки к потоку внутри труб, лимитирующего общий коэффициент теплопередачи.

Задача, на решение которой направлено заявленное изобретение, заключается в интенсификации теплообмена как в трубном, так и межтрубном пространствах пучков теплообменных труб с одновременным увеличением удельной площади теплообмена.

Решение указанной задачи достигается тем, что, в предложенном теплообменном аппарате, содержащем корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные трубы, установленные внутри корпуса в трубных досках, при этом полости указанных труб сообщены с соответствующими полостями подвода и отвода, согласно изобретению, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде геометрической фигуры с несколькими лучами, причем полости лучей сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока, при этом входная и выходная части трубы выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному, при этом проходная площадь профилированного поперечного сечения теплообменной трубы, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде прямоугольника со скругленными переходами между его сторонами, при этом соотношение сторон указанного прямоугольника составляет h=(0,1…0,5)b, где: h - высота прямоугольника, b - ширина прямоугольника,

В варианте исполнения, каждая труба по длине выполнена в виде плоской спирали.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде трехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что выступ вертикального луча поперечного сечения каждой предыдущей трубы располагается во впадине между лучами поперечного сечения каждой последующей трубы в поперечном сечении пучка труб, причем лучи смежных участков труб расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде четырехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что расстояние между противоположно расположенными выступами равно ширине луча, причем лучи смежных участков труб расположены параллельно или практически параллельно между собой.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов, причем полости указанных секторов сообщаются между собой.

В варианте исполнения, указанные радиальные каналы располагаются по спирали по длине трубы.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показан продольный разрез предложенного теплообменного аппарата, на фиг. 2 - поперечное сечение предложенного теплообменного аппарата, на фиг. 3 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменных труб плоским с двумя лучами, в виде прямоугольника со скругленными торцами, на фиг. 4 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным в виде трехлучевой звезды с полыми лучами, на фиг. 5 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным в виде четырехлучевой звезды с полыми лучами, на фиг. 6 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов.

Описание основного варианта исполнения

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода.

Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде звезды с полыми лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11. Полости лучей 9 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде звезды с полыми лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную с лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11.

Такое изменение формы поперечного сечения трубы позволяет улучшить условия теплообмена за счет увеличения поверхности теплообмена при неизменной площади поперечного сечения.

Описание варианта исполнения с плоским сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде прямоугольника 15, образованного сторонами 16 и 17. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде прямоугольника, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет (0,6…0,8) диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде прямоугольника, образованными сторонами 16 и 17.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,8…2,2 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча. Изменение формы поперечного сечения - со сплошного круглого на профилированное прямоугольное с одновременным уменьшением толщины - позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонким поперечным сечением. Кроме того, такое исполнение поперечного сечения - переход от сплошного круглого к профилированному прямоугольному и обратно - позволяет дополнительно турбулизовать поток, так как в местах деформации потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде прямоугольника 9, образованными сторонами 16 и 17.

Выполнение центральных участков теплообменных труб плоскими позволит более компактно разместить теплообменные трубы в полости корпуса, что, в конечном итоге, позволит на 30-40% уменьшить радиальные размеры теплообменного аппарата, улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока.

Описание варианта исполнения с трехлучевым сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода.

Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде трехлучевой звезды с полыми лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20. Полости лучей 18 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде трехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы. Теплообменные трубы 6 расположены таким образом, что выступ 19 вертикального луча 18 поперечного сечения каждой предыдущей трубы располагается во впадине 20 между лучами 18 поперечного сечения каждой последующей трубы в поперечном сечении пучка труб. Лучи 18 смежных участков труб 6 расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей 18 не превышает толщину луча.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде трехлучевой звезды с полыми лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча, что приведет к улучшению условий теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами без ярко выраженной центральной части струи. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде трехлучевой звезды с лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча, что позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не периферийная часть струи, а вся струя, причем видоизменение формы струи приводит к ее дополнительной турбулизации за счет того, что в местах разделения сплошной струи на лучи и в местах слияния лучей в сплошную струю будет возникать турбулизация потока, что приведет к дополнительному перемешиванию слоев потока между собой и позволит улучшить условия теплообмена и теплопередачи.

Кроме того, расположение лучей смежных участков труб параллельно или практически параллельно между собой, таким образом, что максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча, позволит значительно увеличить длину пути другого потока от входного патрубка к выходному, что, в конечном итоге, также позволит улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока.

Описание варианта исполнения с четырехлучевым сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде четырехлучевой звезды с полыми лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23. Полости лучей 21 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходных зон 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде четырехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы. Лучи 21 смежных участков труб 6 расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей 21 не превышает толщину луча.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет (0,6…0,8) диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде четырехлучевой звезды с полыми лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,2…1,4 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в два-три раза и позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде четырелучевой звезды с лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23.

Кроме того, расположение лучей смежных участков труб параллельно или практически параллельно между собой, таким образом, что максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча, позволит значительно увеличить длину пути другого потока от входного патрубка к выходному, что, в конечном итоге, также позволит улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока. При этом поток, проходя от входного патрубка к выходному, будет проходить через участки «расширения - сжатия», образованные монотонно чередующимися выступами 22 и впадинами 23, что приведет к дополнительному перемешиванию слоев внутри потока.

Описание варианта исполнения с полыми радиальными каналами Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде трехлучевой звезды с полыми радиальными каналами 24, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов 25, причем полости указанных секторов сообщаются между собой в центральной части сечения 26 и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде трехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде трехлучевой звезды с полыми радиальными каналами 24, делящими поперечное сечение на несколько секторов 25.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза и улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами, при этом прогрев/теплоотдача будут происходить не только по периметру теплообменной трубы, но и по стенкам полых радиальных каналов 24, расположенных в центральной части сечения. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8.

Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде трехлучевой звезды с секторами 25, образованными монотонно чередующимися радиальными каналами 24.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. Такое изменение формы поперечного сечения - со сплошного круглого на профилированное трехлучевое с одновременным уменьшением толщины - позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не периферийная часть струи, а вся струя. Такое видоизменение формы струи приводит к ее дополнительной турбулизации за счет того, что в местах разделения сплошной струи на лучи и в местах слияния лучей в сплошную струю будет возникать турбулизация потока, что приведет к дополнительному перемешиванию слоев потока между собой и позволит улучшить условия теплообмена и теплопередачи.

В варианте исполнения, монотонно чередующиеся радиальные каналы 24 выполнены по спирали. Такое исполнение позволяет придать дополнительное вращение потоку компонентов, находящихся как внутри канала 24, так и внутри секторов 25, что, в конечном итоге, дополнительно позволит интенсифицировать теплообмен за счет вращения потоков.

Использование предложенного технического решения позволит интенсифицировать теплообмен как в трубном, так и межтрубном пространствах пучков теплообменных труб с одновременным увеличением удельной площади теплообмена, что, в конечном итоге, позволит уменьшить габаритные размеры теплообменного аппарата, либо увеличить площадь теплообмена при неизменных габаритных размерах.

1. Теплообменный аппарат, содержащий корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, профилированные теплообменные трубы, установленные внутри корпуса в трубных досках, при этом полости указанных труб сообщены с соответствующими полостями подвода и отвода, отличающийся тем, что поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде геометрической фигуры с несколькими лучами, исходящими из одного центра, причем полости лучей сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока, при этом входная и выходная части трубы выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному, при этом проходная площадь профилированного поперечного сечения теплообменной трубы равна или больше проходной площади каждого цилиндрического участка указанной трубы.

2. Теплообменный аппарат по п. 1, отличающийся тем, что поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде трехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что выступ вертикального луча поперечного сечения каждой предыдущей трубы располагается во впадине между лучами поперечного сечения каждой последующей трубы в поперечном сечении пучка труб.

3. Теплообменный аппарат по п. 1, отличающийся тем, что поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде четырехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами.

4. Теплообменный аппарат по п. 1, отличающийся тем, что поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов, причем полости указанных секторов сообщаются между собой.



 

Похожие патенты:

Кожухотрубчатый теплообменный аппарат относится к области теплотехники, а именно к теплообменному оборудованию, и может использоваться в химической, пищевой и других отраслях промышленности.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных отраслях техники, в частности в регенеративных теплообменниках газотурбинных установок реакторостроения.

Теплообменный аппарат содержит корпус с патрубками подвода и отвода теплоносителей трубной и межтрубной полостей и пучок непрямых трубок. Погиб каждой трубки пучка имеет стохастический характер.

Изобретение относится к области теплотехники и может быть использовано в теплообменных устройствах для утилизации тепла, нагрева и охлаждения жидких пищевых продуктов; дистилляции, опреснения воды.

Изобретение относится к области теплотехники и может быть использовано в секционных биметаллических радиаторах. Радиатор содержит верхний и нижний коллекторы, которые сообщены между собой трубчатыми колонками, на каждой колонке закреплены лицевой и тыльный профили, образующие собой коробчатую секцию радиатора, на верхнем коллекторе закреплен верхний профиль, профили выполнены с ребрами теплообмена и жесткости, расположенными внутри профилей.

Охлаждающее устройство содержит базовые элементы (2), выполненные с возможностью вхождения в поверхностный контакт вдоль поверхности (100A) металлического трубчатого элемента (100) в высокотемпературных условиях; теплорассеивающие элементы (3), которые выступают от поверхности базовых элементов (2); и средство (4) поддержания теплопередачи, выполненное с возможностью поддержания свойств передаваемого тепла от металлического трубчатого элемента (100) к базовым элементам (2).

Изобретение относится к теплообменнику (10), содержащему внутреннюю направляющую (32) для направления текучей среды и теплоотводящее тело (12, 12’) для отвода тепла текучей среды.

Изобретение относится к теплотехнике и может быть применено в отопительных котлах. У трубы (5) теплообменника отопительного котла (2), имеющей наружную трубу (10), по которой могут протекать уходящие газы топки котла, и которая может быть окружена с наружной стороны греющей водой, и вдвинутую в наружную трубу профильную вставку (11), которая для увеличения внутренней поверхности наружной трубы (10) имеет ребра (14), проходящие в ее продольном направлении (12), и находится в теплопроводящем контакте с наружной трубой (10), первый продольный участок (22) наружной трубы (10) выполнен в виде гладкостенного цилиндра, а второй продольный участок (23) наружной трубы (10) имеет по меньшей мере один элемент (24) для сужения поперечного сечения, сужающий проточное поперечное сечение, при этом профильная вставка (11) распространяется исключительно по первому продольному участку (22) наружной трубы (10).

Изобретение относится к области теплотехники. Котел водотрубный содержит топочную камеру, переднюю и заднюю стенки, патрубки подачи и обратки, газоход и теплообменник, образованный из оребренных труб, расположенных параллельно друг другу Оребренные трубы приварены к обеим стенкам, расположены по периметру топочной камеры в один ряд и зигзагообразно соединены отводами с образованием единого водяного тракта.

Изобретение относится к теплотехнике и может быть применено в котлах и паротурбинных установках. Внутренняя часть экранной трубы топочной камеры имеет сверхкритическое давление и содержит пазы (36) на внутренней периферийной поверхности, имеющие спиральную форму к направлению оси трубы; и ребра (37), выступающие внутрь в радиальном направлении за счет пазов (36), при этом в поперечном сечении, рассматриваемом вдоль направления оси трубы, когда ширина (мм) пазов (36) в направлении оси трубы задается как Wg, высота (мм) ребер (37) в радиальном направлении задается как Hr и внешний диаметр трубы (мм) задается как D, ширина Wg (мм) пазов (36), высота Hr (мм) ребер (37) и внешнего диаметра D трубы (мм) удовлетворяют соотношению "Wg/(Hr*D)>0,40".

Кожухотрубчатый теплообменный аппарат относится к области теплотехники, а именно к теплообменному оборудованию, и может использоваться в химической, пищевой и других отраслях промышленности.

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит цилиндрический корпус, во внутренней полости которого установлены концентрически соединенные между собой втулки, на наружной поверхности которых выполнены кольцевые каналы, соединенные с подводящим и отводящим коллекторами одного из теплоносителей, расположенными в одной из крышек, установленных на торце корпуса, с помощью двух диаметрально расположенных продольных каналов, при этом втулки одного теплоносителя и втулки другого теплоносителя чередуются между собой.

Теплообменный аппарат содержит корпус с патрубками подвода и отвода теплоносителей трубной и межтрубной полостей и пучок непрямых трубок. Погиб каждой трубки пучка имеет стохастический характер.

Изобретение относится к области теплотехники и может быть использовано в конденсаторах. Вертикальный кожухотрубный прямотрубный противоточный конденсатор, в котором конденсирующийся пар протекает по межтрубному пространству конденсатора, а охлаждающая вода в трубном пространстве, является двухходовым как в межтрубном пространстве, так и в трубном пространстве, при этом поверхность нагрева первого хода в межтрубном пространстве образована из труб (9) поверхности нагрева в паровом пространстве (14) этого хода, прикрепленных своими верхними концами к верхней трубной доске (5) и нижними концами к нижней трубной доске (7), через эти трубы протекает охлаждающая вода второго хода трубного пространства, при этом поверхность нагрева второго хода межтрубного пространства образована трубами (10) поверхности нагрева в паровом пространстве (15) второго хода, прикрепленными своими верхними концами к верхней трубной доске (5) и нижними концами к другой нижней трубной доске, через эти трубы протекает охлаждающая вода первого хода трубного пространства, таким образом, упомянутые паровые пространства (14, 15) соединены посредством отверстия (12) между верхним концом (11) разделительной стенки (4, 50), разделяющей пространство оболочки, и верхней трубной доской (5), при этом направление потока пара в паровом пространстве (14) первого хода межтрубного пространства направлено вверх, а в другом паровом пространстве (15) направлено вниз, при этом направление потока охлаждающей воды в трубах (9 и 10) поверхности нагрева обоих ходов является противоточным потоку пара, протекающему снаружи упомянутых труб.

Концентрическая симметричная система (10) теплообменников с разветвленной поверхностью включает в себя впускной коллектор (11), который равномерно разделяет основной поток в первой секции системы, а также группу (13) трубчатых концентрических теплообменников (14), расположенных параллельно и последовательно.

Теплообменник с жидким теплоносителем относится к теплопередающим системам и может использоваться для охлаждения тепловыделяющего оборудования, в частности для охлаждения силовых модулей электронной аппаратуры вычислительной и телекоммуникационной техники или в качестве нагревающих радиаторов при построении модульных инженерных систем для обогрева помещений.

Теплообменный аппарат, содержащий пучок теплопередающих труб, расположенный в корпусе с патрубками подвода и отвода теплоносителей трубной и межтрубной полостей, снабжен дополнительным патрубком подвода теплоносителя межтрубной полости, который расположен на корпусе в месте совпадения температур потока теплоносителя межтрубной полости, поступающего через этот патрубок, и потока теплоносителя межтрубной полости, движущегося внутри корпуса от другого патрубка к патрубку отвода.

Изобретение относится к области теплотехники и может быть использовано в устройствах для нагрева текучей среды. Устройство нагрева теплоносителя, представляющее собой теплообменную поверхность из продольно расположенных стальных трубопроводов, с переменным направлением движения теплоносителя посредством разворота стальных трубопроводов в сторону расположения горелочного устройства на 180 градусов, и примыкание друг к другу с образованием цилиндрической конструкции из рядов трубопроводов, при этом концевой трубопровод имеет ответвление, которое соединяется с поворотной плитой, образующейся за счет трубопроводов, являющихся продолжением цилиндрической конструкции и расположенных по отношению к цилиндрической конструкции под углом 90 градусов, имеющих различную длину, и с помощью стальных отводов обеспечивающих поворот движения теплоносителя на 180 градусов таким образом, что трубопроводы поворотной плиты, идущие в противоположном направлении, примыкают к трубопроводам поворотной плиты, идущим в прямом направлении, формируя поворотную плиту в виде круглого диска.

Изобретение относится к теплотехнике и может быть применено в отопительных котлах. У трубы (5) теплообменника отопительного котла (2), имеющей наружную трубу (10), по которой могут протекать уходящие газы топки котла, и которая может быть окружена с наружной стороны греющей водой, и вдвинутую в наружную трубу профильную вставку (11), которая для увеличения внутренней поверхности наружной трубы (10) имеет ребра (14), проходящие в ее продольном направлении (12), и находится в теплопроводящем контакте с наружной трубой (10), первый продольный участок (22) наружной трубы (10) выполнен в виде гладкостенного цилиндра, а второй продольный участок (23) наружной трубы (10) имеет по меньшей мере один элемент (24) для сужения поперечного сечения, сужающий проточное поперечное сечение, при этом профильная вставка (11) распространяется исключительно по первому продольному участку (22) наружной трубы (10).

Изобретение относится к теплотехнике и может быть использовано в теплообменниках и реакторах кожухотрубчатой конструкции. В теплообменник, состоящий из корпуса, трубных решеток, перегородок и труб, трубы установлены с предварительным прогибом, при этом предварительный прогиб осуществляется за счет смещения отверстий для труб в перегородках или за счет смещения перегородок механизмом перемещения, а перегородки установлены с возможностью смещения в направлении предварительного смещения, причем перегородки в средней части теплообменника установлены неподвижно со смещением отверстий для труб, а корпус может быть выполнен с прогибом.

Концентрическая симметричная система (10) теплообменников с разветвленной поверхностью включает в себя впускной коллектор (11), который равномерно разделяет основной поток в первой секции системы, а также группу (13) трубчатых концентрических теплообменников (14), расположенных параллельно и последовательно.
Наверх