Устройство соплового парораспределения паровой турбины с выносной камерой смешения

Изобретение относится к области энергетического машиностроения и призвано устранить все отрицательные последствия, присущие сопловому парораспределению. Предлагается новая система соплового парораспределения с выносной камерой смешения, преимущественно для паровых турбин, содержащая стопорный клапан и ряд последовательно открывающихся регулирующих клапанов. При этом пар после регулирующих клапанов направляется не к сопловому аппарату регулирующий ступени, а в выносную камеру смешения с внутренней защитной сеткой-фильтром, после которой поступает в цилиндр высокого давления. Изобретение обеспечивает существенное увеличение КПД цилиндра высокого давления на всех сниженных нагрузках турбины. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области энергетического машиностроения и призвано устранить все отрицательные последствия, присущие сопловому парораспределению. В современных паровых турбинах наибольшие распространение получило сопловое парораспределение, при котором имеется последовательность открытия ряда регулирующих клапанов по мере повышения мощности турбины. В этом случае дросселируется только та часть пара, которая проходит через частично открытый клапан, а потери давления в полностью открытых клапанах не превышают 5% от начального давления пара. Естественно, чем больше число регулирующих клапанов, тем меньшими оказываются потери давления при работе в условия переменных нагрузок. Однако, конструктивно сопловое парораспределение оказывается существенно более сложным, чем альтернативное чисто дроссельное парораспределение, когда все клапана открываются одновременно. Наиболее полно недостатки соплового парораспределения рассмотрены в [1] (Зарянкин А.Е., Зройчиков Н.А., Рогалев Н.Д., Рогалев А.Н., Митрохова О.М. «Влияние типа парораспределения на экономичность цилиндров высокого давления энергетических турбин». Вестник МЭИ 2015 №5 с. 5-10). Недостатки соплового парораспределения обусловлены усложненной конструкцией цилиндра высокого давления, так как пар от каждого клапана подводится к первой регулирующей ступени через несколько сопловых коробок. При использовании соплового парораспределения существенно усложняется конструкция цилиндра высокого давления (ЦВД), т.к. пар от каждого клапана подводится к первой (регулирующей) ступени через несколько (чаще всего четыре) сопловых коробки.

Для иллюстрации сказанного на фигуре 1 показан поперечный разрез по плоскости расположения регулирующих клапанов турбины Т-100-130 УТЗ (прототип, [2] Трухний А.Д. Стационарные паровые турбины, М: Энергоатомиздат, 1990 г.) На этой фигуре приняты специальные обозначения: 1 - корпус клапанной коробки, 2 - регулирующий клапан, 3 - сопловые коробки, 4 - паропроводы, подводящие пар к регулирующим клапанам. Кроме того, при сопловом парораспределении в конструкцию турбины приходится вводить специальную (регулирующую) ступень, работающую даже при открытии всех четырех клапанов с парциальным подводом пара, т.е. с подводом пара не по всей окружности рабочего колеса этой ступени. Таким образом, потери от дросселирования в регулирующих клапанах при сопловом парораспределении перенесены в потери регулирующей ступени и нерегулируемых ступеней ЦВД.

Отмеченные недостатки соплового парораспределения резко снижают практическую значимость этого способа парораспределения, широко распространенного на всех турбинах, работающих в режиме глубоких изменений вырабатываемой мощности, и в настоящие время вновь вырастает интерес к дроссельному парораспределению. В [1] (Зарянкин А.Е., Зройчиков Н.А., Рогалев Н.Д, Рогалев А.Н., Митрохова О.М. Влияние типа парораспределения на экономичность цилиндров высокого давления (ЦВД) энергетичеких турбин. Вестник МЭИ 2015 №5 с. 5-10) произведено экономическое сопоставление этих двух способов парораспределения на основании лабораторных и натурных испытаний.

На фигуре 2 показаны конечные результаты такого сравнения в виде зависимости кпд ηoi ЧВД турбины К-200-130 ЛМЗ от безразмерной мощности , где Ni - текущая мощность, a Ninom - расчетная мощность турбины. Здесь кривая 5 определяет зависимость при учете только потерь от дросселирования в регулирующих клапанах, а кривая 6 соответствует аналогичной расчетной зависимости при использовании дроссельного парораспределения. Видно, что при половинной нагрузке турбины () кпд ЦВД рассматриваемой турбины снижается на 22% при использовании дроссельного парораспределения относительно соплового парораспределения. На основе приведенных двух зависимостей и сформировалось представление о явных преимуществах соплового парораспределения. Однако, если учесть последствия соплового регулирования на экономичность всех ступеней цилиндра высокого давления, то станет понятной экспериментальная зависимость 7 на фигуре 2, полученная на ряде однотипных турбин К-200-130 с сопловым парораспределением, где хорошо видно, что при нагрузках превышающих 75% от максимальной мощности, преимущество оказывается на стороне дроссельного парораспределения и только при кпд ЦВД с сопловым парораспределением превышает на 3-5% кпд турбины с дроссельным парораспределением.

На основании проведенного анализа и прямых опытных данных техническая задача, решаемая предлагаемым изобретением, заключается в том, чтобы сохранить все преимущества соплового парораспределения и полностью ликвидировать все отмеченные недостатки такого решения, повысив тем самым кпд ЦВД на высоких нагрузках турбины на 2-3%, и приблизить реальную зависимость 7 на фигуре 2 к теоретической зависимости 5.

Поставленная техническая задача решается тем, что в устройстве соплового парораспределения паровой турбины, содержащем расположенные перед цилиндром высокого давления стопорный клапан и ряд последовательно открывающихся регулирующих клапанов, расположенных на корпусе ЦВД и подводящих пар к регулируемой ступени и последующей камере смешения, после которой расположены нерегулируемые ступени ЦВД, цилиндр среднего давления паровой турбины, цилиндр низкого давления паровой турбины, электрогенератор, к выходу цилиндра низкого давления подсоединен конденсатор и конденсатный насос, согласно изобретению, камера смешения установлена перед ЦВД высокого давления, ее входы соединены с выходами регулирующих клапанов, а выходы из камеры смешения - с цилиндром высокого давления. Кроме того, камера смешения может быть снабжена сеткой-фильтром.

Предпосылками к решению указанной технической задачи является тот факт, что сейчас практически все регулирующие клапана, используемые на энергетических турбинах, уже отделены от корпусов турбин, и пар от вынесенных за пределы корпуса ЦВД регулирующих клапанов по внешним трубопроводам прямо подводится к сопловым коробкам регулирующей ступени. В этой ситуации сохранение сопловых коробок и сохранение регулирующей ступени является явным анахронизмом.

В силу сказанного логически и технически обоснованным является решение переноса камеры смешения пара из проточной части турбины в ее внешнюю часть, прямо соединив ее со всеми внешними регулирующими клапанами, и после смешения подводить свежий пар к первой ступени ЦВД. В этом случае автоматически отпадает необходимость в сопловых коробках и неэкономичных регулирующих ступенях, а подвод пара к ступеням проточной части конструктивно становится идентичным с системой дроссельного парораспределения при сохранении всех преимуществ соплового парораспределения. Соответственно, согласно предлагаемому изобретению, схема новой сопловой системы парораспределения должна быть такой, какая изображена на фигуре 3.

На фиг. 3 представлена схема предлагаемого устройства соплового парораспределения паровой турбины. Устройство содержит расположенные перед входом в цилиндр высокого давления паровой турбины стопорный клапан 8, ряд последовательно соединенных с ним первого 9, второго 10, третьего 11 и четвертого 12 регулирующих клапанов паровой турбины, выходы которых подсоединены к камере смешения 13, снабженной сеткой-фильтром 14, расположенной внутри нее. Выходы камеры смешения 13 соединены с цилиндром высокого давления 15 паровой турбины, содержащей цилиндр среднего давления 1, цилиндр низкого давления 17, на валу которого установлен электрогенератор 18. Выходы цилиндра низкого давления 17 подсоединены к конденсатору 19, снабженному конденсатным насосом 20.

Устройство работает следующим образом. Здесь после стопорного клапана 8, как и в прототипе (фигура 1), пар по четырем паропроводам подводится к четырем последовательно открывающимся клапанам 9, 10, 11, 12, осуществляя тем самым принцип соплового парораспределения, но после них он идет не к сопловому аппарату регулирующей ступени, а в выносную камеру смещения 13, где пар, проходящий через полностью открытые клапана смешивается с паром, который дросселируется в частично открытом клапане. Поскольку при таком решении камера смешения 13 не связана с габаритами корпуса 15 ЦВД турбины, то ее размеры могут быть выполнены такими, чтобы скорости пара внутри этой камеры не превышали 15-20 м/с. При таких скоростях гидравлическое сопротивление камеры при давлении пара 23,8 МПа и начальной температуре пара t0=540°С не превышает 60 кПа - соответственно внутри камеры смешения 13 может быть установлена защитная сетка 14 с мелкими ячейками, играющая роль фильтра тонкой очистки пара. После камеры смешения 13 пар по двум паропроводам, как и при дроссельном парораспределении, поступает в головную часть ЦВД 15 к обычным ступеням мощной трехкорпусной (15, 16, 17) паровой турбины, после которой конденсируется в конденсаторе 19.

В случае практической реализации представленного изобретения по сравнению с существующей в настоящие время схемой соплового парораспределения при номинальной мощности турбины кпд ЦВД возрастает на 3-4% (чего нельзя достигнуть в современных энергетических турбинах никаким другим способом, а при снижении нагрузки на 50% от номинальной мощности повышение кпд ЦВД может достичь 10-15%. При этом важно отметить, что одновременно с существенным повышением экономичности ЦВД ликвидируются все отмеченные выше недостатки соплового парораспределения и, соответственно, повышается надежность работы турбины, увеличивается ее маневренность. По сравнению с дроссельным парораспределением представленная схема парораспределения обеспечивает существенное увеличение кпд ЦВД на всех сниженных нагрузках турбины.

Таким образом, предлагается принципиально новая схема соплового парораспределения, содержащая стопорный клапан и ряд последовательно открывающихся регулирующих клапанов, отличающаяся тем, что пар после регулирующих клапанов направляется не к сопловому аппарату регулирующий ступени, а к выносной камере смешения, внутри которой располагается сетка - фильтр, защищающая турбину от попадания в ее проточную часть окалин и других твердых фракций, и далее после камеры смешения пар, как и при дроссельном парораспределении подводится в головную часть турбины к ее первой ступени.

Источники информации

1. Зарянкин А.Е., Зройчиков Н.А., Рогалев Н.Д., Рогалев А.Н., Митрохова О.М., Влияние типа парораспределения на экономичность цилиндров высокого давления энергетических турбин. Вестник МЭИ, 2015 г., №5, стр. 5-10.

2. Трухний А.Д. Стационарные паровые турбины. М: Энергоатомиздат. 1990 (прототип)

1. Устройство соплового парораспределения паровой турбины с выносной камерой смешения, содержащее расположенные перед частью высокого давления стопорный клапан и ряд последовательно открывающихся регулирующих клапанов, цилиндр высокого давления паровой турбины, цилиндр среднего давления паровой турбины, цилиндр низкого давления паровой турбины, соединенный с электрогенератором, конденсатор с конденсатным насосом, отличающееся тем, что камера смешения установлена перед цилиндром высокого давления, ее входы соединены с выходами регулирующих клапанов, а выходы камеры смешения соединены с цилиндром высокого давления.

2. Устройство соплового парораспределения паровой турбины с выносной камерой смешения по п. 1, отличающееся тем, что камера смешения снабжена сеткой-фильтром.



 

Похожие патенты:

Изобретение относится к регулировочному клапану для регулирования газообразного объемного потока среды, в частности объемного потока пара. Регулировочный клапан (1) предназначен для регулирования газообразного объемного потока, в частности объемного потока (2) пара, при этом содержит корпус (3) клапана, седло (5) клапана, а также дроссельный элемент (6) клапана, который может перемещаться относительно седла (5) клапана вдоль оси (7) перемещения.

Газотурбинный двигатель содержит двигатель внутреннего контура, внутреннюю гондолу, гондолу вентилятора, вентиляторное сопло с изменяемой площадью сечения, вентилятор и редуктор.

Изобретение относится к области авиационного двигателестроения, а именно к клапанным устройствам для газотурбинных двигателей. Клапанный узел вентилятора содержит корпус канала перепуска с установленным на нем с возможностью осевого перемещения кольцевым клапаном и механизм перемещения кольцевого клапана с приводом, размещенным над корпусом канала перепуска.

Изобретение относится к области машиностроения и может быть использовано в конструкциях турбомашин, в частности в узлах соединения гидроцилиндра привода направляющих аппаратов с промежуточным корпусом газотурбинного двигателя.

Устройство для уменьшения массового расхода воздуха через компрессор в одновальном газотурбинном двигателе, имеющем расширенный рабочий диапазон, включая условия частичной нагрузки, для обеспечения сгорания с низкими выбросами.

Изобретение относится к турбокомпрессору, работающему на отработавших газах, для двигателя внутреннего сгорания, содержащему корпус (14) и ротор (18), при этом корпус (14) содержит выполненный с возможностью протекания участок (15) отвода отработавших газов, а ротор (18) содержит турбинное колесо (20) и жестко соединенный на кручение с турбинным колесом (20) вал (21) с осью (22) вращения, при этом турбинное колесо (20) установлено в опорах с возможностью вращения в участке (15) отвода отработавших газов и выполнено с возможностью подачи на него отработавших газов, а в участке (15) отвода отработавших газов расположено направляющее устройство (29) для изменения подачи отработавших газов на турбинное колесо (20), причем направляющее устройство (29) содержит выполненное с возможностью протекания направляющее решетчатое кольцо (30) и осевую задвижку (31), а направляющее решетчатое кольцо (30) содержит стойку (37) для фиксации, а также выполненные с возможностью протекания направляющие лопатки (36), а осевая задвижка (31) выполнена с возможностью захватывания направляющих лопаток (36).

Изобретение относится к области энергетического арматурострения и предназначено в качестве дроссельно-регулирующего клапана для использования, например, в устройствах паровпуском паровых турбин.

Сопловой аппарат реверсивной турбины включает сопловой аппарат прямого хода, расположенный на нижнем ярусе турбины, сопловой аппарат заднего хода, расположенный в верхнем ярусе турбины, и промежуточный корпус.

Изобретение относится к области утилизации энергии продуктов сгорания двигателей внутреннего сгорания. Техническим результатом является увеличение мощности и КПД всех типов ДВС.

Способ повышения реактивной тяги в турбореактивном двухконтурном двигателе включает подачу окислительного и горючего рабочего тела в проточный тракт первого контура, их смесеобразование, сгорание и последующее истечение из него продуктов сгорания с получением механической энергии для вращения вентилятора двигателя.

Изобретение относится к лопатке спрямляющего аппарата газотурбинного двигателя (1). Содержит множество сечений (35) лопатки, наслоенных вдоль радиальной оси Z.

Изобретение относится к турбине (1), частично являющейся центробежной, для расширения сжимаемой рабочей текучей среды, например газа или пара. Турбина преимущественно содержит группу ступеней, называемых центростремительными ступенями (4), проходящую в радиальном направлении относительно оси X-X, что обеспечивает возможность первого расширения рабочей текучей среды радиально центростремительно.

Изобретение относится к автомобильному двигателестроению, позволяющему использовать в качестве рабочего тела продукты сгорания с температурой рабочего тела около 2000°.

Изобретение относится двухвальным газотурбинным силовым установкам наземного применения, у которых в качестве двигателя используется турбокомпрессор от ДВС с внешней камерой сгорания.

Изобретение относится к турбостроению, в частности к радиальным турбинам, и может быть использовано в механических транспортных средствах и в установках для выработки механической и электрической энергии.

Изобретение относится к турбине на воздушном или водном потоке. Турбина состоит, по меньшей мере, из двух полых объемных колес, вложенных одно в другое.

Изобретение относится к области турбостроения, в частности к реверсивным силовым судовым турбинам, содержащим турбину заднего хода. Ступень турбины заднего хода содержит сопловой аппарат, рабочие лопатки, подвижный П-образный экран, установленный над рабочими лопатками, в дне которого выполнены окна.

Изобретение относится к машиностроению, а именно к пневматическим, газовым и паровым турбинам для привода электрогенераторов, двигательных установок, компрессоров холодильных установок, тепловых насосов. Способ получения механической энергии реализуется в однопоточной и двухпоточной реактивных турбинах, и выполненной на их основе турбореактивной установке, включает подачу рабочего тела в каналы однопоточного или двухпоточного центробежного рабочего колеса, в котором осуществляют его сжатие, при этом реактивная турбина начинает работать при недостаточном для ее запуска и выхода на штатный режим работы начальном давлении рабочего тела с помощью принудительного вращения вала центробежного рабочего колеса, а с увеличением скорости вращения центробежного рабочего колеса до значений, близких к расчетным, рабочее тело сжимают за счет совокупности как воздействующих центробежных каналов, так и центробежных сил, полученное сжатое рабочее тело с высокими значениями скорости, температуры и давления поступает во внутреннюю полость торообразного коллектора, где затормаживается, при этом осуществляется интенсивное турбулентное перемешивание массы рабочего тела во всем объеме полости коллектора с выравниванием градиентов плотности, температуры, давления и скорости с уменьшением скорости потока и повышением в нем давления до максимально возможного значения, а именно до давления заторможенного потока, под действием которого рабочее тело разгоняется в сверхзвуковых реактивных соплах и истекает из них в окружающее пространство со сверхзвуковой скоростью, создавая при этом импульс реактивной силы, обеспечивающий вращение центробежного рабочего колеса однопоточной или двухпоточной реактивной турбины. Техническим результатом заявляемого изобретения является повышение эффективности получения механической энергии в однопоточной и двухпоточной реактивных турбинах и в турбореактивной установке, выполненной на их основе, при неоптимальных параметрах рабочего тела перед реактивной турбиной. 4 н. и 13 з.п. ф-лы, 13 ил.
Наверх