Способ определения расстояния до границы сред с различными удельными электрическими сопротивлениями для геонавигации ствола горизонтальных скважин

Предлагаемое изобретение относится к области геофизических исследований направленных скважин в процессе бурения и может быть использовано при проводке стволов скважин вдоль пластов, продуктивных на углеводороды. Область преимущественного применения - бурение горизонтальных геологоразведочных скважин. Технический результат предлагаемого изобретения - увеличение дальности определения границ горных пород с различными удельными электрическими сопротивлениями при навигации ствола скважины. Технический результат достигается тем, что в предлагаемом способе индукционного каротажа индукционные токи во вмещающих горных породах возбуждают с помощью генераторной установки, создающей вращающееся гармоническое магнитное поле, токами, равными по амплитуде, но находящимися в противофазе, в системе двух генераторных катушек с равными по модулю моментами, ориентированными ортогонально друг другу и оси скважины и перемещаемыми по исследуемой скважине. Величины мнимых квадратур горизонтальных составляющих магнитной индукции ImBx и ImBy измеряют с помощью двух измерительных катушек, расположенных на одинаковом расстоянии L от генераторных катушек, и по отношению мнимых квадратур горизонтальных составляющих магнитной индукции ImBx и ImBy определяют расстояние до границы сред с различными удельными электрическими сопротивлениями. 3 ил.

 

Предлагаемое решение относится к области геофизических исследований направленных скважин в процессе бурения и может быть использовано при проводке стволов скважин вдоль пластов, продуктивных на углеводороды, во избежание неконтролируемого вскрытия водоносных слоев подошвы коллектора или глинистой кровли.

Известен способ навигации горизонтальных скважин, основанный на возбуждении импульсного электромагнитного поля с помощью электрического диполя, питаемого импульсным разнополярным током. Измерение магнитных полей проводят в период паузы между импульсами тока индуктивными датчиками, ориентированными в трех ортогональных направлениях. По анализу кривых спада магнитных полей формируют команды на управление положением отклонителя бурильного инструмента. Измерительный модуль выполнен в виде немагнитной трубы с расположенными на концах питающими электродами с индуктивными датчиками, расположенными внутри трубы [1]. Основным недостатком способа является применение в качестве источника питающего поля электрического диполя с системой гальванических питающих электродов, питаемых импульсным током. Использование гальванических контактов в скважинах старого фонда в условиях корродированной и поврежденной в интервале перфорации обсадной колонны не дает возможности добиться необходимой идентичности условий возбуждения в каждой точке наблюдения.

Известен способ навигации горизонтальных скважин, включающий проведение высокочастотного индукционного каротажного изопараметрического зондирования (ВИКИЗ) с измерением не менее пяти разностей фаз на пяти различных разносах (длинах) зонда, выделение коллекторов и техногенных электрических неоднородностей. По изменению разности фаз судят о точности проводки скважины по пласту-коллектору [2]. Способ пригоден для навигации наклонно-направленных скважин в продуктивных пластах большой мощности и неэффективен в пластах малой мощности.

Известен способ индукционного каротажа скважин в процессе бурения, который может быть использован для целей навигации ствола скважины. Способ включает пропускание импульсов тока через генераторную катушку, регистрацию ЭДС переходных процессов в измерительной катушке. Катушки размещены соосно на немагнитной металлической трубе, встроенной в компоновку низа бурильной колонны, источник импульсного тока, соединенный с генераторной катушкой, измерительная катушка соединена с устройством обработки результатов [3].

Основным недостатком способов [2, 3] является малый радиус исследований, что существенно ограничивает область их применения.

Известен способ каротажа скважин в процессе бурения, который может быть использован для целей геонавигации ствола скважины, включающий определение удельного электрического сопротивления пород на разных радиусах измерения, путем изменения расстояния между генераторными и приемной катушками. По данным о сопротивлениях пород на разных радиусах измерений, определяют расстояния до границ пласта и осуществляют изменение направления бурения в случае отличающихся друг от друга значений сопротивления [4].

В индукционных способах каротажа скважин, используемым в для геонавигации ствола скважин [2, 3], применяется предложенная Г. Доллем установка с соосным расположением генераторных и измерительных катушек с гармоническим или импульсным режимом изменения тока источника [5]. Сопротивление вмещающих пород определяют по величинам индуцируемого токами вторичного магнитного поля или ЭДС спада, измеряемых приемной катушкой, соосной генераторной.

Наиболее близким к предлагаемому способу техническим решением является способ [6], взятый нами в качестве прототипа.

В способе - прототипе электромагнитное поле в окружающем пространстве возбуждают гармоническими токами, равными по амплитуде и находящихся в противофазе в системе двух генераторных катушек с равными моментами, ориентированными ортогонально друг другу и оси скважины и перемещаемых по исследуемой скважине. Величина радиального момента общей системы двух генераторных катушек в течение одного периода остается постоянной, а направление момента изменяется по азимуту, описывая окружность с круговой частотой ω. По значениям квадратур Re, Im и фаз двух измеряемых составляющих магнитной индукции, ортогональных оси скважины, определяют величины удельного электрического сопротивления горных пород.

Способ-прототип с радиальным магнитным полем обладает вдвое большим радиусом исследования пород в окрестности скважины, по сравнению со способами [2, 3] с частотным или импульсным режимами изменения тока в источнике, поскольку магнитное поле магнитного диполя в квазистационарном случае на полярной оси вдвое превосходит по величине магнитное поле в экваториальной плоскости [7], используемое в способах индукционного каротажа с соосным расположением генераторных и измерительных катушек.

Способ-прототип позволяет определять удельное сопротивление вмещающих пород в случаях радиально-неоднородных сред или сред, пересекаемых скважиной по направлению, близкому к нормали.

Цель предполагаемого технического решения - увеличение дальности определения границ горных пород с различными удельными электрическими сопротивлениями при навигации ствола геологоразведочной скважины.

Поставленная цель достигается тем, что в предлагаемом способе индукционного каротажа индукционные токи во вмещающих горных породах возбуждают с помощью генераторной установки, создающей вращающееся гармоническое магнитное поле, токами частотой ω, равными по амплитуде, но находящимися противофазе, в системе двух генераторных катушек с равными по модулю моментами MX и MY, ориентированными ортогонально друг другу и оси скважины Z и перемещаемых по исследуемой скважине, описанной в патенте [6]. Величины мнимых квадратур горизонтальных составляющих магнитной индукции ImBx и ImBy измеряют с помощью двух измерительных катушек, расположенных на одинаковом расстоянии L от генераторных катушек, и по соотношению мнимых квадратур горизонтальных составляющих магнитной индукции ImBx и ImBy определяют расстояние до границы сред с различными удельными электрическими сопротивлениями.

Сущность изобретения иллюстрируется следующими чертежами. На фиг. 1 представлена модель среды и индукционной установки, создающей вращающееся магнитное поле, с магнитными диполями с моментами MX, My.

На фиг. 2 представлены эллипсы величин составляющих магнитного поля ImBx и ImBy за период изменения тока в источнике при контрастности сред ρ21=4 в зависимости от расстояния до границы сред h в долях разноса L (шифр кривых).

На фиг. 3 приведены зависимости отношения составляющих магнитного поля ImBx/ImBy от расстояния до границы сред h в долях разноса L=2 м на частоте ƒ=1 кГц при различной контрастности сред по удельному электрическому сопротивлению ρ21 (шифр кривых).

В однородной проводящей среде или в цилиндрически-симметричной неоднородной среде амплитуды составляющих магнитной индукции Bx и By, создаваемых магнитными диполями с моментами MX и MY на одинаковом расстоянии L, равны [8]. За один период времени изменения тока в источниках вектор измеряемого магнитного поля описывает окружность.

При наличии вблизи установки в направлении оси Y границы раздела сред с различными удельными электрическими сопротивлениями ρ1 и ρ2, за

один период времени изменения тока измеряемое магнитное поле описывает эллипс. В начале периода t=0 и через половину периода t=Т/2 величина Bx - составляющей равна величине магнитного поля, создаваемого магнитным диполем с моментом MX, параллельным границе раздела сред. Во времена t=Т/4 и t=3Т/4 величина By - составляющей равна величине магнитного поля, создаваемого магнитным диполем с моментом MY, ортогональным границе раздела сред.

Отношение амплитуд составляющих магнитного поля By/Bx вблизи границы сред зависит от контрастностей сред по удельному электрическому сопротивлению ρ12, используемой частоты тока ƒ, расстояния от границы сред до установки h и разноса установки L.

Для определения расстояния h от индукционной установки до границы сред, обладающих различными известными удельными электрическими сопротивлениями ρ1 и ρ2, с помощью предложенного способа выполнено математическое моделирование для установки с магнитными диполями, моменты которых ортогональны и параллельны границе раздела сред [7].

Для основных нефтенасыщенных коллекторов (водонасыщенная подошва, глинистая кровля) удельное электрическое сопротивление пород распределяется следующим образом (к примеру): удельное сопротивление глинистой кровли 3÷6 Ом⋅м, удельное сопротивление пород коллектора 10÷20 Ом⋅м. Фактически породы нефтенасыщенного коллектора являются контрастной зоной по значениям удельного электрического сопротивления. Определяемые отношения измеряемых величин составляющих магнитного поля позволяют фиксировать геометрическое положение ствола скважины относительно системы кровля - коллектор при условии, что петрофизические свойства пород залежи и вмещающих отложений известны заранее.

Эллипсы составляющих магнитной индукции ImBx и ImBy, поперечных оси скважины, создаваемых магнитными диполями с равными по модулю моментами MX=MY=1 А*м2 частотой ƒ=1 кГц, за один период изменения

тока при контрастности сред ρ21=4 в зависимости от расстояния до границы сред h в долях разноса L приведены на фиг. 2. В вещественных квадратурах составляющих магнитной индукции ReBx и ReBy зависимость от расстояния до границы сред существенно меньше.

Зависимости отношения составляющих магнитного поля ImBx/ImBy от расстояния до границы сред h в долях разноса L на частоте ƒ=1 кГц при различной контрастности сред по удельному электрическому сопротивлению ρ21 приведены на фиг. 3..

Как видно из фиг. 2 и 3, предлагаемый способ с использованием питающей установки, создающей вращающееся гармоническое магнитное поле, позволяет определять расстояние до границы горных пород, обладающих различными удельными электрическими сопротивлениями, по отношению горизонтальных составляющих магнитной индукции ImBx и ImBy, измеряемых вдоль оси скважины.

Сущность заявляемого изобретения выражается в совокупности существенных признаков, достаточных для достижения технического результата, который выражается в увеличении радиуса исследуемой зоны и определении границы горных пород, залегающих вблизи бурящейся скважины и обладающих отличающимся удельными электрическими сопротивлениями.

Заявленная совокупность существенных признаков находится в прямой причинно-следственной связи с достигаемым результатом. Анализ современного уровня техники показал, что предлагаемое техническое решение соответствует критериям "новизна" и "изобретательский уровень" и может быть промышленно реализовано при использовании существующих технических средств.

Источники, использованные при составлении заявки:

1. Теплухин В.К. Способ геонавигации горизонтальных скважин и устройство для его реализации. Патент РФ №2395823. 27.07.2010. Бюл. №21.

2. Антонов Ю.Н., Эпов М.И., Глебочева Н.К., Медведев Н.Я., Ихсеанов

Р.К. Способ геонавигации горизонтальных скважин. Патент РФ №2230343. 10.08.2003. Бюл. №22.

3. Потапов А.П., Судничников В.Г., Чупров В.П., Бельков А.В., Судничков А.В. Способ индукционного каротажа скважин в процессе бурения. Патент РФ №2466431. 10.11.2012. Бюл. №31.

4. Seydoux J, Legendre Е, Taherian R. Look ahead logging system. Patent WO 2009029517 A2. 05.03.2009.

5. Долль Г. Теория индукционного метода исследования разрезов скважин и его применение в скважинах, пробуренных с глинистым раствором на нефти. // Вопросы промысловой геофизики. - М.: Гостоптехиздат, 1957. С. 252-274.

6. Ратушняк А.Н., Теплухин В.К. Способ индукционного каротажа. Патент РФ №2575802.20.02.2016 Бюл. №5.

7. Бурсиан В.Р. Теория электромагнитных полей, применяемых в электроразведке. - Л.: Недра, 1972. 368 с.

8. Ратушняк А.Н., Байдиков С.В., Теплухин В.К. Индукционный каротаж с радиальным источником магнитного поля // Уральский геофизический вестник. 2016. №2 (28). С. 61-70.

Способ определения расстояния до границы сред с различными удельными электрическими сопротивлениями для геонавигации ствола горизонтальных скважин, заключающийся в возбуждении индукционных токов в пространстве магнитным полем от гармонических токов, равных по амплитуде, но находящихся в противофазе, в системе двух совмещенных генераторных катушек с равными моментами, ориентированными ортогонально друг другу и направлению перемещения, и измерении составляющих магнитной индукции, совпадающих с направлениями моментов генераторных катушек, и регистрации поперечных составляющих магнитной индукции в двух приемных измерительных катушках, отличающийся тем, что измерения мнимых квадратур двух составляющих магнитной индукции ImBx и ImBy выполняют на одинаковом расстоянии от генераторных катушек и по их отношению определяют расстояние до границы сред с различными удельными электрическими сопротивлениями.



 

Похожие патенты:

Изобретение относится к каротажу геологоразведочных обсаженных скважин и может быть использовано для определения сопротивления вмещающих пород в заколонном пространстве скважин.

Изобретение относится к поверхностной калибровке каротажного прибора. Сущность: размещают излучатель типа петля и приемника с рамочной антенной вдоль каротажного прибора в некотором местоположении на поверхности, причем излучатель типа петля отделен от приемника с рамочной антенной.

Изобретение относится к устройствам обнаружения объектов из металла, проносимых проверяемыми лицами через контрольное пространство. Технический результат заключается в расширении технических возможностей многозонного металлообнаружителя при обнаружении объектов из металла в контрольном пространстве.

Изобретение относится к электромагнитному каротажу в процессе бурения. Сущность: получают измерения сигнала, собранные азимутально-чувствительным электромагнитным каротажным инструментом, как функцию местоположения в скважине.

Изобретение относится к области добычи нефти и газа. Способ бурения скважины, в котором: осуществляют сбор сигналов, генерируемых в результате работы зонда в скважине; осуществляют обработку собранных сигналов в процессорном модуле; генерируют геофизический сигнал, содержащий представление для определения разности между связной составляющей XX и связной составляющей YY; и управляют операцией, связанной с бурением, в соответствии с этим геофизическим сигналом.

Изобретения относятся к измерениям удельного сопротивления с использованием многокомпонентных антенн при бурении скважин. Сущность: способ может включать в себя получение одного или нескольких первых многокомпонентных измерений со скважинного прибора, расположенного в буровой скважине.

Изобретение относится к каротажу промысловых геологоразведочных обсаженных скважин на переменном токе, возбуждаемом в земле индуктивным способом, и может быть использовано для определения сопротивления вмещающих пород в заколонном пространстве скважин.

Изобретения относятся к геофизике и предназначены для быстрой оценки угла падения формации. Сущность: каротажное устройство содержит по меньшей мере одну передающую антенну, по меньшей мере одну приемную антенну и управляющее устройство.

Изобретение относится к автономной аппаратуре волнового акустического каротажа и играет существенную роль при проведении геофизических исследований в сильнонаклонных и горизонтальных скважинах с доставкой на бурильных трубах.

Изобретение относится к области геофизических исследований в открытом стволе скважин, бурящихся на нефть и газ, а именно к устройствам для изучения электрических свойств горных пород, окружающих скважину.

Изобретение относится к бурению скважин и может быть использовано для определения расстояния или направления сближенных скважин. Техническим результатом является расширение арсенала технических средств для направленного бурения.

Изобретение относится к нефтегазовой отрасли промышленности и предназначено для диагностики прискважинной зоны коллекторов с целью определения насыщения и фазового состояния углеводородов в пластах-коллекторах газовых и нефтегазовых скважин комплексом разноглубинных нейтронных методов.

Группа изобретений относится к измерительному устройству для измерения характеристик текущей среды в скважине, внутрискважинному инструменту и способу для перфорирования отверстий в скважинной обсадной колонне и измерения характеристик текучей среды.

Изобретение относится к средствам передачи и приема данных. Техническим результатом является расширение арсенала технических средств для телеметрии в скважине.

Изобретение относится к средствам передачи информации в скважине по гидроимпульсному каналу связи. Техническим результатом является расширение арсенала технических средств для скважинного гидроимпульсного канала связи.

Изобретение относится к бурению скважин и может быть использовано для обнаружения намагничиваемой конструкции в подземной среде. Техническим результатом является увеличение чувствительности системы датчиков за счет максимизации выталкивающего магнитного поля в радиальном направлении от системы датчиков.

Изобретение относится к нефтегазодобывающей промышленности в области бурения и может быть использовано для контроля параметров процесса бурения, в частности при проведении спускоподъёмных операций в режиме реального времени в процессе бурения скважин на нефть и газ.

Изобретение относится к бурению скважин и может быть использовано для определения расстояния между скважинами. Техническим результатом является повышение точности и надежности позиционирования скважины относительно другой скважины.

Изобретение относится к геофизическим измерениям в стволе скважины, в том числе к телеметрическим системам передачи сигналов между наземным блоком управления и скважинным инструментом, размещенным в стволе скважины, проходящей через геологический пласт.

Изобретение относится к средствам передачи и приема сигналов. Техническим результатом является расширение арсенала технических средств для передачи сигналов в скважине.

Изобретение относится к геофизической технике, в частности для нефтегазовой промышленности, и может быть использовано для исследования нефтяных и газовых скважин и позволяет обеспечить надежность работы измерительных приборов стандартного температурного исполнения в высокотемпературных скважинах, за счет обеспечения возможности регулирования температуры в зоне расположения приборов при резком повышении температуры в зоне закачки горюче-окислительного состава в пласт. Комплексный прибор для исследования высокотемпературных скважин содержит основной корпус с размещенными в нем последовательно сверху вниз датчиками гамма-каротажа, локатора муфт, давления и датчика температуры с рабочим диапазоном до +175°С, а также нижний корпус, соединенный с основным корпусом высокотемпературным геофизическим кабелем, с размещенным в нем датчиком температуры с рабочим диапазоном до +300°С. 1 ил.
Наверх