Способ получения комплексного соединения состава 2xef6xmnf4

Изобретение относится к способу получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF6×MnF4 и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины. Способ осуществляют путем взаимодействия эквимолярной смеси порошков XeF2 и MnF3, распределенной равномерными порциями, со фтором в соотношении 2:1 в реакторе из никеля или монель-металла при нагреве смеси до температуры 350±10°С при начальном давлении в реакторе 400±15 атм и выдержке в течение не менее пяти часов до достижения давления 100±15 атм. Технический результат заключается в получении комплексного соединения 2XeF6×MnF4 с высоким выходом целевого продукта. 5 пр.

 

Изобретение относится к способам получения комплексных соединений гексафторида ксенона и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины.

Известен патент, в котором соединение гексафторида ксенона входит в состав композиции для дегазации и дезинфекции, см., например, РФ №2099115.

Известен патент РФ №2232711. Изобретение касается получения дифторида ксенона, его очистки и использования. Дифторид ксенона получают из ксенона и фтора в тлеющем разряде переменного тока. Дифторид ксенона используют в качестве основы средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицинской промышленной гигиены,

Известен способ получения комплексного соединения гексафторида ксенона с трифторидом бора путем фторирования дифторида ксенона в безводном фтористом водороде газообразным фтором при 298-373°К до гексафторида ксенона а затем образованием комплекса с трифторидом бора при 298°К (RU 2 243 152). Однако это способ получения комплекса гексафторида ксенона другого химического состава и полностью отличается от предлагаемого способа получения 2XeF6×MnF4. Общим можно считать только то, что XeF6×BF3 и 2XeF6×MnF4 являются комплексными соединениями гексафторида ксенона.

В литературе отсутствует информация о способе получения 2XeF6×MnF4.

Поскольку содержание активного фтора в комплексе 2XeF6×MnF4 выше, чем в комплексе XeF6×BF3, его использование в вышеназванных областях применения является более эффективным.

Таким образом, техническим результатом является получение комплексного соединения предлагаемого состава получение 2XeF6×MnF4 высоким выходом целевого продукта (98÷99%), которое за счет высокого содержания фтора является более эффективным средством для использования для дезинфекции, стерилизации и детоксикации.

Для достижения указанного результата предложен способ получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF6×MnF4 путем взаимодействия эквимолярной смеси порошков XeF2 и MnF3, распределенной равномерными порциями, со фтором в соотношении 2:1 в реакторе из никеля или монель-металла, при нагреве смеси до температуры 350±10°С при начальном давлении в реакторе 400±15 атмосфер, и выдержке в течение не менее пяти часов до достижения давления 100±15 атмосфер.

Описание способа.

Способ осуществляется следующим образом. В «сухом» боксе готовят эквимолярную смесь XeF2 и MnF3 состава 2:1. Берут соответствующие количества порошков XeF2 и MnF3, тщательно перемешивают, добиваясь гомогенности смеси и равными порциями распределяют смесь на одиннадцати никелевых «лодочках». Сборку «лодочек» помещают в реактор. Реактор выполнен из никеля или монель-металла, так как эти материалы наиболее коррозионноустойчивы в данной реакционной системе. Реактор герметизируют с помощью фланцевого соединения, используя в качестве уплотняющего элемента медную прокладку. Реактор подсоединяют к стенду высокого давления с конденсатором из никеля, всю систему вакуумируют до остаточного давления ≈ 10 мм.рт.ст., подают фтор до избыточного давления пять атмосфер, выдерживают два часа, проверяя на герметичность. Затем конденсатор, помещенный в сосуд Дьюара, охлаждают жидким азотом до -196°С и в него из мерного объема конденсируют необходимое количество фтора. Реактор и конденсатор нагревают до 350°С и термостатируют при этой температуре (350±10°С). Давление в системе вырастает до 400±15 атмосфер и начинает падать. Через пять часов давление достигает 100±15 атмосфер и перестает падать, что означает окончание реакции и образование конечного продукта состава 2XeF6×MnF4. Нагрев прекращают и реактор с конденсатором естественным путем охлаждаются до комнатной температуры за 16÷17 часов. Оставшийся фтор отбирают в ресивер для последующего использования. Реактор вакуумируют до остаточного давления ≈10 мм.рт.ст., заполняют азотом до атмосферного давления, вскрывают в вытяжном шкафу и в «сухом» боксе проводят выгрузку целевого продукта. Продукт взвешивают, подводят материальный баланс и затаривают в герметичные контейнеры из нержавеющей стали. Реактор промывают водой, тщательно просушивают, взвешивают и определяют коррозионные потери материала реактора. По данным гравиметрического и химического анализов в результате реакции образуется продукт состава 2XeF6×MnF4 с выходом 98÷99%. Потери обусловлены в основном операциями разгрузки реактора. Задающиеся параметры процесса имеют довольно жесткие ограничения, поскольку выход и чистота продукта зависят от соотношения исходных реагентов, температуры, давления в реакционной зоне, времени протекания процесса. Изменение соотношения исходных реагентов приводит к появлению других продуктов реакции. При соотношении XeF2 к MnF3 больше двух появляется гексафторид ксенона, при соотношении меньше двух образуется смесь комплексных соединений 2XeF6×MnF4 и 2XeF6×MnF4. Уменьшение температуры, давления, времени процесса - к появлению тетрафторида ксенона. Увеличение этих параметров - к дополнительному износу оборудования и загрязнению целевого продукта фторидом никеля.

Пример 1. В «сухом» боксе готовят гомогенную смесь из 676 г XeF2 и 224 г MnF3, равномерно распределяют на 11 никелевых «лодочках» и сборку лодочек помещают реактор объемом 1,0 литр. В конденсатор, охлаждаемый жидким азотом, конденсируют 280 нормальных литров фтора. Избыток фтора по сравнению со стехиометрическим составляет 64 нормальных литра. Это необходимо для создания рабочего давления в реакционной системе в начале и в конце процесса. Реактор и кондбнеатфр нагревают до 350°С и термостатируют (350±10°С). Давление вырастает до ≈ 400 атмосфер и начинает падать. Процесс ведут в течение пяти часов. Давление в реакторе достигает 100 атмосфер и перестает падать, что означает завершение процесса. Нагрев прекращают и реактор с конденсатором естественным путем охлаждаются до комнатной температуры (16-17 часов). После этого избыточный фтор отбирают в ресивер для дальнейшего использования или хранения. Реактор вакуумируют до остаточного давления, прокачивая газовую фазу через ловушку, охлаждаемую жидким азотом. Реактор заполняют азотом до одной атмосферы, вскрывают в вытяжном шкафу, перемещают в «сухой» бокс и проводят выгрузку продукта. Получено 1229 граммов продукта. Выход равен 99% от теоретического. По данным иодометрического анализа и материального баланса состав продукта соответствует формуле 2XeF6×MnF4.

Пример 2. В реактор загружено 824 г смеси, содержащей 600 г XeF2 и 224 г MnF3. Остальные параметры те же, что и в примере 1. Выгружено 1090 г продукта. Выход составил 99% по отношению к исходному количеству XeF2. По данным иодометрического анализа состав продукта соответствует формуле l,78XeF6×MnF4, то есть имеем избыток тетрафторида марганца в продукте.

Пример 3. В реактор загружено 876 г смеси XeF2 и MnF3, содержащей 676 дифторида ксенона и 200 г трифторида марганца. Остальные параметры те же, что и в примере 1.

Выгружено 1087 г продукта. Выход по трифториду марганца равен 98%. Состав продукта соответствует формуле 2XeF6×MnF4. В прокачной ловушке собрано 129 г XeF6, который не связался в комплексе из-за недостатка MnF3 в исходной смеси XeF2-MnF3.

Пример 4. Гомогенную смесь 676 г XeF2 и 224 г MnF3 равномерно распределяют на 11 никелевых «лодочках» и сборку лодочек помещают в реактор. Остальные параметры, кроме времени процесса, как и в примере 1. Процесс ведут четыре часа. Выгружено 1105 г продукта с примесью тетрафторида ксенона порядка 8÷9% по данным иодометрического анализа.

Пример 5. Параметры такие же, как и в примере 1, кроме температуры процесса, которая поддерживалась в пределах 300±10°С пять часов. Выгружено 1113 г продукта. По данным иодометрического анализа продукт содержит ≈29% тетрафторида ксенона.

Способ получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF6×MnF4 путем взаимодействия эквимолярной смеси порошков XeF2 и MnF3, распределенной равномерными порциями, со фтором в соотношении 2:1 в реакторе из никеля или монель-металла при нагреве смеси до температуры 350±10°С при начальном давлении в реакторе 400±15 атм и выдержке в течение не менее пяти часов до достижения давления 100±15 атм.



 

Похожие патенты:
Изобретение относится к неорганической химии, в частности к технологии получения безводного хлористого марганца. .
Изобретение относится к химии. .

Изобретение относится к металлургии марганца и может быть использовано при гидрометаллургической переработке высокофосфористых карбонатных и смешанных марганцевых руд, а также концентратов или отходов, получающихся при их физическом обогащении, для получения обогащенного по марганцу низкофосфористого концентрата, необходимого для производства высокосортных марганцевых сплавов или прямого легирования стали.
Изобретение относится к технологии получения безводного хлористого марганца (II). .

Изобретение относится к криогенной технике и может быть использовано в химической и нефтехимической промышленности. Способ сбора и смешения потоков криптоноксенонового концентрата включает подачу по линиям отдельных потоков криптоноксенонового концентрата из группы источников 1-3 и 4-5, их смешение соответственно в коллекторе 13, 12 с образованием суммарного потока криптоноксенонового концентрата в линии 17 и подачу его в устройство получения криптоноксеноновой смеси III, при этом дополнительно осуществляют сбор и смешение в коллекторе 18, 10 по крайней мере одного отдельного потока криптоноксенонового концентрата группы источников 6-7 и 8-9, удаленных от устройства получения криптоноксеноновой смеси III, с образованием общего потока криптоноксенонового концентрата, который инжектируют с помощью инжектора 22, дожимают в компрессоре 23, транспортируют по линии 24 к устройству получения криптоноксеноновой смеси III и перед подачей в устройство III смешивают в инжекторе 25 с суммарным потоком криптоноксенонового концентрата в линии 17, образуя итоговый поток криптоноксенонового концентрата 26, направляя общий поток криптоноксенонового концентрата в качестве рабочего потока, а суммарный поток криптоноксенонового концентрата - в качестве инжектируемого потока.

Изобретение относится к нефтегазовой и химической промышленности и касается способа обогащения гелием гелийсодержащего природного газа. Способ содержит этапы, на которых обеспечивают канал, выполненный в виде, по меньшей мере, одной винтообразной однообъёмной спирали, состоящей из, по меньшей мере, одного витка, вводят в канал в качестве основного потока гелийсодержащий природный газ, обеспечивают ламинарность основного потока, обеспечивают перераспределение гелия, содержащегося в основном потоке, посредством центробежной силы с насыщением гелием той части основного потока, которая расположена ближе к центру вращения потока, полностью отделяют часть основного потока, насыщенного гелием, от остального потока, содержащего тяжелые компоненты основного потока, с помощью перегородки такой формы и установленной в канале таким образом, что обеспечивается минимальное сопротивление движению потоков, обеспечивают ламинарность насыщенного гелием потока, обеспечивают перераспределение гелия, содержащегося в насыщенном гелием потоке, посредством центробежной силы с обогащением гелием той части насыщенного гелием потока, которая расположена ближе к центру вращения потоков, из насыщенного гелием потока отбирают обогащённый гелием поток, который проходит вдоль внутренней поверхности канала, ближайшей к центру вращения потоков, при этом отбор осуществляют, не нарушая ламинарность насыщенного гелием потока.

Изобретение относится к области разделения газовых смесей и может быть использовано в газовой, нефтяной и химической отраслях промышленности. Осуществляют трестадийную обработку гелийсодержащего природного газа.

Заявляемая группа технических решений относится к области мембранного газоразделения. Способ мембранного газоразделения, включающий сжатие исходной газовой смеси в ступенях компрессора, подачу газа из промежуточной ступени сжатия в газоразделительное устройство с мембранными элементами, разделение потока газовой смеси на пермеат и ретентат, повышение давление пермеата, покинувшего газоразделительное устройство и подачу пермеата в промежуточную ступень сжатия, предшествующую газоразделительному устройству, при этом давление пермеата повышают первым запорно-регулирующим устройством, часть пермеата, покинувшего газоразделительное устройство, отводят через второе запорно-регулирующее устройство, часть ретентата после газоразделения подают на вход газоразделительного устройства.

Изобретение относится к технологическим процессам получения инертных газов и может быть использовано для получения концентрата ксенона и криптона. Способ осуществляется путем подачи в реактор природного или попутного нефтяного газа, причем одновременно с природным или попутным газом в реактор подают диспергированную воду и создают термобарические условия по давлению в интервале от 0,1 до 20 МПа и по температуре в интервале от -50 до +50°С для образования концентрата газовых гидратов этана, пропана, изобутана и криптона.

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке.

Изобретение относится к способу и системе для выделения гелия из природного газа в процессе высокого давления. Способ включает этапы, где пропускают поток сжатого природного газа высокого давления через холодильную камеру для конденсации по меньшей мере части потока сжатого природного газа с получением охлажденного потока, дозируют охлажденный поток в колонну криогенной отгонки, извлекают сырой гелиевый продукт из верхней части колонны криогенной отгонки и извлекают поток жидкого продукта из нижней части колонны криогенной отгонки.

Описаны способ и устройство для повышения степени извлечения гелия. Поток, содержащий гелий и по меньшей мере один способный окисляться компонент, вводят в зону окисления в присутствии кислорода для окисления способного окисляться компонента с образованием первого потока паров и первого потока жидкости.

Изобретение относится к химической промышленности, в частности к способу получения сверхчистого сжатого гелия в баллонах. Газообразный гелий с концентрацией 99,99% подают на всасывание в компрессор [1], где сжимают до давления 15-25 кгс/см2.

Изобретение относится к способу выделения гелия из гелийсодержащей фракции, в частности из гелий-, азот- и метансодержащей фракции. .
Наверх