Способ и устройство для синтеза углеводородов

Изобретение относится к способу синтеза углеводородов. Способ синтеза углеводорода осуществляют путем восстановления диоксида углерода в воде, в котором нанопузырьки кислорода образуются путем подачи кислорода в воду, содержащую диоксид углерода; вода, содержащая нанопузырьки кислорода, облучается ультрафиолетовым светом в присутствии фотокатализатора для производства активного кислорода; и диоксид углерода восстанавливается в присутствии активного кислорода. Заявлено также устройство для синтеза углеводородов. Технический результат – повышение выхода углеводородов. 2 н. и 1 з.п. ф-лы, 2 ил., 1 табл.

 

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к способу синтеза углеводорода путем восстановления диоксида углерода в воде.

Уровень техники

[0002] В качестве способа синтеза углеводорода с помощью восстановления диоксида углерода в воде до настоящего времени был известен способ, в котором синтез выполнялся путем добавления водорода в условиях высокой температуры и высокого давления. Однако такой традиционный способ выполнения синтеза, требующий добавления водорода в условиях высокой температуры и высокого давления, к сожалению, в свою очередь требует использования дорогого оборудования, и делает проблематичным обслуживание оборудования.

[0003] В связи с этим, был предложен способ синтеза углеводорода, в котором не требуется добавление водорода в условиях высокой температуры и высокого давления (например, см. патент Японии № 5131444). В способе синтеза углеводорода, предложенном в патенте Японии № 5131444, в воде формируется столб газообразного диоксида углерода, вокруг этого газообразного столба образуется вихревой поток воды, таким образом, получается, что диоксид углерода подается в воду в виде пузырьков разреженного газа, в свою очередь вода, содержащая пузырьки разреженного газообразного диоксида углерода, облучается ультрафиолетовым излучением в присутствии фотокатализатора при атмосферном давлении окружающей среды для восстановления диоксида углерода, и за счет этого синтезируется углеводород.

[0005] Однако, в способе синтеза углеводорода, как показано в патенте Японии № 5131444, всегда требуется формирование газообразного столба диоксида углерода в воде, и также всегда требуется образование вокруг этого газообразного столба вихревого потока воды, таким образом, становится необходимым механизм для формирования газообразного столба диоксида углерода и вихревого потока воды, за счет чего механизм реакции, к сожалению, является сложным.

[0006] В соответствии с этим, задачей настоящего изобретения является обеспечение способа синтеза углеводорода, в котором возможно эффективно синтезировать углеводород путем восстановления диоксида углерода в воде на основе не требующих особых усилий механизма реакции и устройства для синтеза углеводорода.

Описание настоящего изобретения

[0007] Настоящее изобретение в соответствии с первым аспектом настоящего изобретения представляет собой способ синтеза углеводорода путем восстановления диоксида углерода в воде, где нанопузырьки кислорода образуются путем подачи кислорода в воду, содержащую диоксид углерода, где воду, содержащую нанопузырьки кислорода, затем облучают ультрафиолетовым излучением в присутствии фотокатализатора для производства активного кислорода, и в присутствии активного кислорода диоксид углерода вынужден восстанавливаться.

[0008] Настоящее изобретение в соответствии со вторым аспектом настоящего изобретения представляет собой способ, в котором для того, чтобы синтезировать углеводород в соответствии с первым аспектом, диоксид углерода восстанавливается в присутствии отдельно приготовленного жидкого углеводорода и активного кислорода, произведенного из нанопузырьков кислорода.

[0009] Настоящее изобретение в соответствии с третьим аспектом настоящего изобретения представляет собой устройство для синтеза углеводорода путем восстановления диоксида углерода в воде, включающее устройство генерации нанопузырьков для получения нанопузырьков кислорода при подаче кислорода в воду, содержащую диоксид углерода, и устройство облучения ультрафиолетовым излучением для облучения воды, содержащей нанопузырьки кислорода, образованные устройством генерации пузырьков, ультрафиолетовым излучением в присутствии фотокатализатора, причем диоксид углерода восстанавливается в присутствии активного кислорода, полученного при облучении воды, содержащей нанопузырьки кислорода, ультрафиолетовым излучением с помощью устройства ультрафиолетового облучения.

[0010] В соответствии с настоящим изобретением, углеводород синтезируется путем восстановления диоксида углерода в присутствии активного кислорода, полученного при облучении воды, содержащей нанопузырьки кислорода, ультрафиолетовым излучением, и соответственно, углеводород может быть синтезирован простым способом с использованием воды, содержащей диоксид углерода. Следовательно, углеводород может быть синтезирован в соответствии с простым механизмом реакции, и в то же время углеводород может быть синтезирован эффективно.

[0011] Кроме того, в соответствии с настоящим изобретением, диоксид углерода восстанавливается в присутствии отдельно приготовленного жидкого углеводорода и активного кислорода, полученного из нанопузырьков кислорода, при этом углеводород может быть синтезирован в большем количестве.

Краткое описание чертежей.

[0012] На фигуре 1 представлен схематический чертеж, иллюстрирующий схему конфигурации варианта воплощения устройства для синтеза углеводорода с помощью способа синтеза углеводорода в соответствии с настоящим изобретением; и

на фигуре 2 представлен схематический чертеж, иллюстрирующий схему конфигурации другого варианта воплощения устройства для синтеза углеводорода с помощью способа синтеза углеводорода в соответствии с настоящим изобретением.

Описание вариантов осуществления

[0013] Первым представляется способ синтеза углеводорода в соответствии с настоящим изобретением (первый способ), и устройства для синтеза первого способа.

[0014] Как показано на фигуре. 1, установка синтеза 10 для синтеза углеводорода согласно способу синтеза углеводорода в соответствии с настоящим изобретением включает: резервуар воды 11 для содержания воды с растворенным диоксидом углерода A; генератор пузырьков 12 (пример "устройства генерации пузырьков") для получения нанопузырьков кислорода (ультрамелких пузырьков кислорода размером несколько сотен нанометров или менее); и фотокатализаторное устройство 14 (пример "устройства облучения ультрафиолетовым излучением") для облучения воды A, содержащей нанопузырьки кислорода, ультрафиолетовым излучением в присутствии фотокатализатора (такого как оксид титана или оксид цинка).

[0015] В резервуаре воды 11, содержится предопределенное количество воды A, которой позволено проходить через мембрану обратного осмоса. В воде A, которая содержится в резервуаре для воды 11, растворяется диоксид углерода. Следует заметить, что хотя это не показано на фигуре 1, источник подачи диоксида углерода, такой как баллон с диоксидом углерода, расположен вне резервуара для воды 11, и может быть использована схема расположения, при которой диоксид углерода подается из вышеупомянутого источника подачи диоксида углерода в резервуар для воды 11 (схема расположения для заполнения внутренней части резервуара для воды 11 диоксидом углерода). Вода A не ограничивается водой, которой позволено проходить через мембрану обратного осмоса, может быть принята любая вода с растворенным диоксидом углерода. Вода A предпочтительно представляет собой воду, которой позволено проходить через мембрану обратного осмоса для удаления примесей, таких как ионы или соли.

[0016] Генератор нанопузырьков 12 представляет собой генератор ультрадисперсных пор типа нанопузырьков. Генератор нанопузырьков 12 соединен с источником подачи кислорода 15, таким как кислородный баллон, и генерирует нанопузырьки, получаемые на основе кислорода, подаваемого из источника подачи кислорода 15, во внутреннюю часть резервуара для воды 11.

[0017] Генератор нанопузырьков 12 включает в себя кислородную секцию впрыскивания газообразного слоя (пузырьков газа) кислорода и секцию струйной подачи воды для струйного впрыскивания воды A в резервуар воды 11. Расположенные в генераторе нанопузырьков 12, секция впрыскивания кислорода и секция струйной подачи воды помещены в резервуар для воды 11.

[0018] В секции для струйного впрыскивания кислорода расположен специальный керамический фильтр, имеющий мелкие поры наноразмера, и из вышеупомянутых мелких пор выбрасывается газообразный слой (пузырьки газа) кислорода. В секции струйной подачи воды вода A в резервуаре для воды 11 подается на специальный керамический фильтр, и, следовательно, жидкий поток воды A течет по поверхности специального керамического фильтра.

[0019] В генераторе нанопузырьков 12, при подаче жидкого потока воды A в резервуаре для воды 11 к границам мелких пор специального керамического фильтра, газовый слой (пузырьки газа) кислорода, поступающий из кислородной секции (через мелкие поры), является рассеченным на очень тонкие струйки. Затем, рассеченный газообразный слой (пузырьки газа) кислорода сжимается поверхностным натяжением воды A в резервуаре для воды 11 и, таким образом, происходит образование нанопузырьков (сверхмелких пузырьков газа) кислорода. Следует отметить, что генератор нанопузырьков 12 не ограничен типом ультрамелких пор, и может быть любым другим ранее известным генератором нанопузырьков, который представляет собой устройство, способное генерировать нанопузырьки кислорода.

[0020] Как показано на фигуре 1, у фотокаталитического устройства 14 имеются УФ-лампы 13 для облучения воды A, содержащей нанопузырьки кислорода, ультрафиолетовым излучением и реакционная трубка 17, обеспеченная фотокатализатором, находящимся внутри нее. Уф-лампы 13 расположены вокруг реакционной трубки 17, и испускают ультрафиолетовое излучение в реакционную трубку 17. Реакционная трубка 17 представляет собой трубчатый сосуд, способный пропускать ультрафиолетовое излучение, и сформирована таким образом, чтобы дать возможность воде A, содержащей нанопузырьки кислорода, проходить через его внутреннюю часть.

[0021] В фотокаталитическое устройство 14, вода A, содержащая нанопузырьки кислорода, подается с предопределенной объемной скоростью потока во внутреннюю часть реакционной трубки 17, загруженной фотокатализатором, и вышеупомянутая вода A, проходя через внутреннюю часть реакционной трубки 17, облучается ультрафиолетовым излучением. Затем, вода A, прошедшая через фотокаталитическое устройство 14, снова возвращается в фотокаталитическое устройство 14 с помощью циркуляционного насоса 16, и циркулирует в течение заданного времени с помощью циркуляционного насоса 16.

[0022] В установке синтеза 10, вначале, нанопузырьки кислорода генерируются с помощью генератора нанопузырьков 12 в воде A, содержащей диоксид углерода в резервуаре для воды 11. Таким образом, образованные нанопузырьки кислорода остаются в воде A в резервуаре для воды 11 (визуально прозрачны). После этого вода A, содержащая образованные нанопузырьки кислорода, подается в фотокаталитическое устройство 14, где вода A, содержащая нанопузырьки кислорода, облучается ультрафиолетовым светом в присутствии фотокатализатора. Таким образом, как показано в формуле реакции (1), активный кислород, такой как супероксидный анион-радикал или гидроксильный радикал, произведен из кислорода в нанопузырьковом состоянии через посредство озона.

3O2 → 2O3 → активный кислород (O2-., OH. или т.п.) (1)

В то же самое время, как показано в формуле реакции (2), происходит реакция восстановления диоксида углерода растворенного в воде A.

CO2+H2O → CO+H2+O2 (2)

Реакция восстановления диоксида углерода, как показано в формуле реакции (2), происходит в присутствии активного кислорода, произведенного таким образом, как показано в формуле реакции (1), и далее соответственно, происходит реакция, показанная в формуле реакции (3). С помощью реакции, показанной в формуле реакции (3), происходит синтез углеводорода.

(2n+1)H2+nCO → CnH2n+2+nH2O (3)

Другими словами, углеводород синтезируется путем восстановления диоксида углерода в присутствии активного кислорода, полученного из кислорода, находящегося в состоянии пузырьков.

[0023] Как описано выше, установка синтеза 10 имеет такую конструкцию, что нанопузырьки кислорода образуются в воде A, содержащей диоксид углерода, растворенный в ней, и углеводород синтезируется путем восстановления диоксида углерода при облучении воды A ультрафиолетовым излучением в фотокаталитическом устройстве 14, в то время как вода A, содержащая вышеупомянутые нанопузырьки кислорода, циркулирует; следовательно, углеводород может быть синтезирован простым способом путем использования воды, содержащей диоксид углерода и нанопузырьки кислорода (без формирования газообразного столба диоксида углерода или образовывающего завихрения потока воды). Следовательно, углеводород может быть синтезирован на основе легко достижимого механизма реакции, и при этом углеводород может быть эффективно синтезирован.

[0024] Затем описывается другой способ синтеза (второй способ) углеводорода в соответствии с настоящим изобретением и установка синтеза другого способа синтеза.

[0025] Другой способ из возможных способов синтеза углеводорода в соответствии с настоящим изобретением представляет собой способ для иного синтеза жидкого углеводорода, который заключается в восстановлении диоксида углерода в присутствии отдельно приготовленного жидкого углеводорода и активного кислорода, произведенного с помощью вышеописанного способа синтеза (первый способ).

[0026] В настоящем документе отдельно приготовленный жидкий углеводород означает жидкий углеводород, предварительно приготовленный с помощью способа, отличного от вышеупомянутого второго способа, и, являясь жидким углеводородом (исходное масло), имеет примерно такой же состав, как состав жидкого углеводорода, который должен быть синтезирован с помощью второго способа. Другими словами, отдельно приготовленный жидкий углеводород означает жидкий углеводород (исходное масло), предварительно приготовленный с помощью другого способа, отличного от вышеописанного первого способа и вышеупомянутого рассматриваемого второго способа. В случае, когда жидкий углеводород предварительно синтезируется с помощью вышеописанного первого способа, полученный жидкий углеводород также включается в отдельно приготовленный жидкий углеводород. Кроме того, примеры отдельно приготовленного жидкого углеводорода (исходное масло) включают углеводород, имеющий от 6 до 36 атомов углерода, такой как легкое масло или керосин.

[0027] Установка синтеза 20 для синтеза углеводорода с помощью этого способа (второй способ) включает в себя: первый резервуар исходного продукта 21 для подачи отдельно приготовленного жидкого углеводорода E (исходное масло); второй резервуар исходного продукта 22 для подачи воды A, содержащей активный кислород, полученный вышеописанным первым способом; реакционный резервуар 23 для обеспечения возможности взаимодействия углеводорода E и воды A, содержащей активный кислород; и стоящий неподвижно резервуар 24, позволяющий жидкому углеводороду E (новое масло) после реакции отстаиваться в воде А.

[0028] В установке синтеза 20, вначале, жидкая смесь, состоящая из отдельно приготовленного жидкого углеводорода E (исходное масло) и воды A, содержащей активный кислород, полученный с помощью вышеописанного первого способа, подается в реакционный резервуар 23, при этом жидкая смесь распыляется под заданным давлением.

В этом случае образуются мицеллы между жидким углеводородом E и водой A, содержащей активный кислород. В то же время внутренняя часть реакционного резервуара 23 заполняется диоксидом углерода путем подачи диоксида углерода из источника подачи диоксида углерода 25, такого как баллон с диоксидом углерода, в реакционный резервуар 23. При этом диоксид углерода проникает во внутрь образовавшихся мицелл, описанных выше. Одновременно, в реакционном резервуаре 23, заполненном диоксидом углерода, жидкий углеводород E и вода A, содержащая активный кислород, перемешиваются с помощью мешалки 26 реакционного резервуара 23. Следует отметить, что температура внутри реакционного резервуара 23 находится в диапазоне от комнатной температуры до предпочтительно приблизительно 40°C и более предпочтительно до приблизительно 30°C. Кроме того давление внутри реакционного резервуара 23 является атмосферным давлением.

[0029] После перемешивания (после реакции), жидкая смесь D, состоящая из жидкого углеводорода E и воды A подаются из реакционного резервуара 23 в стоящий неподвижно резервуар 24. Затем вышеупомянутой жидкой смеси D дают возможность оставаться неподвижной в течение установленного времени (например, 24 часа). При этом жидкий углеводород E получается в виде всплывающей жидкости из жидкой смеси D в верхнем слое последней в неподвижно стоящем резервуаре 24. Количество жидкого углеводорода E (новое масло), полученное в верхнем слое жидкой смеси D, увеличивается на 10% - 15% по сравнению с количеством отдельно приготовленного жидкого углеводорода E (исходное масло). Другими словами новый жидкий углеводород E (новое масло) произведен с помощью второго способа.

[0030] В качестве альтернативы, можно повторить второй способ путем изоляции жидкого углеводорода E (новое масло), полученного в верхнем слое жидкой смеси D из жидкой смеси D, затем смешивая изолированный жидкий углеводород E (новое масло) с водой A, содержащей активный кислород, опять подавать полученную смесь в реакционный резервуар 23. Таким образом, количество жидкого углеводорода E (новое масло), полученного в верхнем слое жидкой смеси D, повышается на 20-30% по сравнению с количеством отдельно приготовленного жидкого углеводорода E (исходное масло). Другими словами путем повторения множества раз второго способа, количество вновь полученного жидкого углеводорода E (новое масло) дополнительно увеличивается.

[0031] Таким образом, в установке синтеза 20, диоксид углерода может быть восстановлен путем смешивания отдельно приготовленного жидкого углеводорода (исходное масло) и воды, содержащей нанопузырьки кислорода, и соответственно по сравнению со случаем, когда отдельно приготовленный жидкий углеводород (исходное масло) не включается в процесс, восстановление диоксида углерода поддерживается, и углеводород может синтезироваться в большом количестве. Другими словами путем дополнительного добавления отдельно приготовленного жидкого углеводорода в присутствии активного кислорода, произведенного путем облучения воды, содержащей нанопузырьки кислорода, ультрафиолетовым излучением, восстановление диоксида углерода поддержано, и углеводород эффективно синтезируется.

[0032] В дальнейшем в этом документе описываются пример 1 настоящего изобретения, а так же сравнительный пример 1 и сравнительный пример 2 относительно примера 1. Следует отметить, что настоящее изобретение совершенно не ограничено примером 1.

Пример 1

[0033] В установке синтеза 10, воду в количестве 50 л, полученную путем позволения водопроводной воде пройти через мембрану обратного осмоса, помещали в резервуар для воды 11. Затем, генератор нанопузырьков 12 включали в резервуаре для воды 11 для струйного впрыска нанопузырьков кислорода в упомянутую выше воду, диоксид углерода подавали в упомянутую выше воду из баллона диоксида углерода, расположенного с внешней стороны резервуара для воды 11.

[0034] Вода, в которую нанопузырьки кислорода и диоксид углерода были струйно введены, подавалась с объемной скоростью 18 л/мин в фотокаталитическое устройство 14, упомянутая выше вода облучалась ультрафиолетовым излучением с использованием УФ-ламп 13 в присутствии оксида титана (фотокатализатора). Вышеупомянутая вода циркулировала между фотокаталитическим устройством 14 и резервуаром для воды 11 в течение 24 часов.

[0035] Следует отметить, что для того, чтобы позволить нанопузырькам кислорода и диоксиду углерода оставаться (чтобы быть растворенными) в достаточном количестве в резервуаре для воды 11, нанопузырьки кислорода и диоксид углерода постоянно впрыскивали в резервуар для воды 11 для того, чтобы они могли быть растворенными в воде даже в то время, когда вода циркулировала между фотокаталитическим устройством 14 и резервуаром для воды 11 в течение 24 часов. Для того чтобы предотвратить улетучивание полученного углеводорода, верхнюю поверхность резервуара для воды 11 герметизировали уплотняющим материалом.

Сравнительный Пример 1

[0036] В установке синтеза 10, вода в количестве 50 л, полученная путем позволения водопроводной воде пройти через мембрану обратного осмоса, была помещена в резервуар для воды 11. Затем, подавали кислород в резервуар для воды 11 из кислородного баллона, расположенного за пределами емкости резервуара для воды 11 для струйного введения кислорода в вышеупомянутую воду, и диоксид углерода также впрыскивали в вышеупомянутую воду из баллона диоксида углерода, расположенного с внешней стороны резервуара для воды 11. Другими словами, кислород не находящийся в состоянии нанопузырьков подавали в воду.

[0037] Кроме того вода, в которую кислород и диоксид углерода были струйно введены, подавалась с объемной скоростью потока 18 л/мин в фотокаталитическое устройство 14, где эта вода облучалась ультрафиолетовым излучением с помощью использования УФ-ламп 13 в присутствии оксида титана (фотокатализатора). Упомянутая выше вода циркулировала между фотокаталитическим устройством 14 и резервуаром для воды 11 в течение 24 часов.

[0038] Следует отметить, что аналогично примеру 1, чтобы позволить кислороду и диоксиду углерода оставаться (чтобы быть растворенными) в достаточном количестве в резервуаре для воды 11, в указанный резервуар постоянно впрыскивались кислород и диоксид углерода для того, чтобы быть растворенными в воде даже в то время, когда вода циркулировала между фотокаталитическим устройством 14 и резервуаром для воды 11 в течение 24 часов. Для того чтобы предотвратить улетучивание произведенного углеводорода, верхняя поверхность резервуара для воды 11 была герметизирована материалом уплотнения.

Сравнительный Пример 2

[0039] В установке синтеза 10, воду в количестве 50 л, полученную путем позволения водопроводной воде пройти через мембрану обратного осмоса, помещали в резервуар для воды 11. Затем, в то время как упомянутая выше вода подавалась с объемной скоростью потока 18 л/мин в фотокаталитическое устройство 14, ее облучали ультрафиолетовым излучением с помощью использования УФ-ламп 13 в присутствии оксида титана (фотокатализатора). Затем, упомянутая выше вода циркулировала между фотокаталитическим устройством 14 и резервуаром для воды 11 в течение 24 часов. Другими словами, в Сравнительном примере 2, были использованы только растворенный кислород и растворенный диоксид углерода, находящиеся в растворенном состоянии в воде, помещенной в резервуар для воды 11, и количества кислорода и диоксида углерода, подаваемые в воду, были меньшими по сравнению с примером 1 и Сравнительным примером 1. Для того чтобы предотвратить улетучивание произведенного углеводорода, верхняя поверхность резервуара для воды 11 была герметизирована материалом уплотнения.

[0040] В каждом из примеров: примера 1, Сравнительного примера 1 и Сравнительного примера 2, отбирали определенное количество воды из той воды, которая циркулировала между фотокаталитическим устройством 14 и резервуаром для воды 11 в течение 24 часов, и из отобранной воды экстрагировали углеводород с помощью использования диэтилового простого эфира. Далее экстрагированный углеводород был полностью дегидратирован, и затем проанализирован с помощью прибора газовой хроматографии (SHIMADZU GC-2010).

[0041] В результате проведенного газохроматографического анализа углеводородов, экстрагированных в примере 1, Сравнительном примере 1 и Сравнительном примере 2, было найдено, что углеводороды являются насыщенными углеводородами, имеющими от 15 до 20 атомов углерода.

[0042] В результате измерения количества насыщенных углеводородов, произведенных в примере 1, Сравнительном примере 1 и Сравнительном примере 2, было подтверждено, что 500 мг насыщенного углеводорода, 200 мг насыщенного углеводорода и 100 мг или менее насыщенного углеводорода, были получены в примере 1, Сравнительном примере 1 и Сравнительном примере 2, соответственно. Другими словами, было установлено, что насыщенный углеводород получен с высоким выходом при помощи обработки воды, содержащей нанопузырьки кислорода, в фотокаталитическом устройстве 14. Было также установлено, что для получения высокого выхода насыщенного углеводорода необходимо подавать достаточное количество кислорода и диоксида углерода к воде, которая впоследствии обрабатывается.

[0043] Затем описываются пример 2 настоящего изобретения и Сравнительный пример 3, относительно примера 2. Следует отметить, что настоящее изобретение вообще не ограничено примером 2.

Пример 2

[0044] В установке синтеза 10, вода в количестве 100 л, полученная путем позволения водопроводной воде пройти через мембрану обратного осмоса, была помещена в резервуар для воды 11. Затем, генератор нанопузырьков 12 эксплуатировался в течение 120 минут в резервуаре для воды 11 для впрыскивания нанопузырьков кислорода в воду, после чего нанопузырьки кислорода были сохранены в воде.

[0045] Кроме того, в то время как вода, содержащая нанопузырьки кислорода, подавалась с объемной скоростью 18 л/мин в фотокаталитическое устройство 14, ее облучали ультрафиолетовым светом с помощью использования УФ-ламп 13 в присутствии оксида титана (фотокатализатора). Затем вода, содержащая нанопузырьки кислорода, циркулировала в фотокаталитическом устройстве 14 в течение 30 минут.

[0046] Кроме того жидкая смесь, составленная из 2,5 л предварительно приготовленной легкого масла (исходное масло) и 2,5 л воды, содержащей нанопузырьки кислорода и обработанной в фотокаталитическом устройстве 14, была подана в реакционный резервуар 23, при этом жидкая смесь распылялась под давлением 1,0 МПа. Одновременно 500 л или более диоксида углерода было подано при давлении 0,3 МПа в реакционный резервуар 23 для наполнения реакционного резервуара 23 диоксидом углерода. Одновременно легкое масло и вода были перемешаны в течение 4 минут в реакционном резервуаре 23, заполненном диоксидом углерода. Следует отметить, что температура в реакционном резервуаре 23 была установлена на уровне 30°C. Реакция проводилась при атмосферном давлении окружающей среды.

[0047] После перемешивания в течение 4 минут (после реакции) жидкая смесь, состоящая из легкого масла и воды, была подана из реакционного резервуара 23 в неподвижно стоящий резервуар 24, и выдерживалась в неподвижно стоящем резервуаре 24, в течение 24 часов. Температура внутри неподвижно стоящего резервуара 24 была установлена на уровне 35°C. Неподвижное отстаивание жидкой смеси проводилось при атмосферном давлении окружающей среды.

Сравнительный пример 3

[0048] В Сравнительном примере 3, была выполнена обработка при тех же самых условиях, как и в примере 2, за исключением того, что кислород, который должен быть подан в воду, помещенную в резервуар для воды 11, в виде "нанопузырьков кислорода", как в упомянутом примере 2, был заменен на "кислород не находящийся в состоянии нанопузырьков", который был подан из кислородного баллона, расположенного с внешней стороны резервуара для воды 11 (состояние, при котором кислород, подаваемый из кислородного баллона, непосредственно выбрасывался в виде струи в резервуар для воды 11).

[0049] В примере 2, после неподвижного стояния в течение 24 часов, всплывшая жидкость была изолирована из вышеупомянутой жидкой смеси, находящейся в неподвижно стоящем резервуаре 24, и изолированная всплывшая жидкость (новое масло) была проанализирована. Анализ выполнялся в отношении пунктов, показанных в таблице 1. В качестве сравнения легкое масло (исходное масло) перед обработкой в реакционном резервуаре 23 была также проанализирована относительно тех же самых пунктов. Таким образом, как показано в таблице 1, всплывшая жидкость (новое масло) оказалась легким маслом, сопоставимым с легким маслом (исходным маслом) перед обработкой в реакционном резервуаре 23.

[0050]

Таблица 1
Пункты Единицы измерения Результаты Методы испытания
Исходное масло Новое масло
1.Реакция - Нейтральная Нейтральная JIS K2252
2.Температура воспламенения(РМСС) °C 73,0 82,0 JIS K2265-3
3.Кинематическая вязкость (30°C) мм2 3,479 3,710 JIS K2283
4.Температура застывания °C -15,0 -12,5 JIS K2269
5.Содержание коксового остатка 10% остаточного масла Массовая дол
я %
0,01 0,04 JIS K2270-2
6.Абсолютная влажность по способу Карла Фишера Массовая доля % 0, 0063 0,010 JIS K2275
7.Зольность Массовая доля % 0,001 0,001 JIS K2272
8.Содержание серы Массовая доля % 0,0007 0,0007 JIS K2541-6
9.Плотность (15°C) г/см3 0,8295 0,8311 JIS K2249-1
10.Дистилляционные характеристики
10% Температура дистилляции °C 217,0 226,0 JIS K2254
50% Температура дистилляции °C 271,5 274,5
90% Температура дистилляции °C 326,0 328,5
11.Цетановый индекс - 56,2 56,9 JIS K2280-5
12.Высшая теплотворная способность Дж/г 45990 46010 JIS K2279
13.Фильтруемость - -10 -10 JIS K2269

[0051] В каждом из примеров: примере 2 и Сравнительном примере 3, было измерено количество всплывающей жидкости (легкого масла), выделенной из вышеупомянутой жидкой смеси в неподвижно стоящем резервуаре 24. Соответственно, в примере 2, количество всплывающей жидкости (легкого масла) было 2,80 л. При этом количество предварительно приготовленного легкого масла было 2,5 л, и в результате количество нового синтезированного легкого масла, как было найдено, составляло 0,3 л (выход: 12%). С другой стороны, в Сравнительном примере 3, количество всплывшей жидкости (легкого масла) составляло 2,58 л. При этом количество нового синтезированного масла, как было найдено, составляло 0,08 л (выход: 3,2%). Исходя из вышеописанных результатов, было установлено, что использование "нанопузырьков кислорода" повышает количество (выход) вновь синтезированного легкого масла.

1. Способ синтеза углеводорода путем восстановления диоксида углерода в воде,

в котором нанопузырьки кислорода образуются путем подачи кислорода в воду, содержащую диоксид углерода;

вода, содержащая нанопузырьки кислорода, облучается ультрафиолетовым светом в присутствии фотокатализатора для производства активного кислорода; и

диоксид углерода восстанавливается в присутствии активного кислорода.

2. Способ синтеза углеводорода по п.1, в котором диоксид углерода восстанавливается в присутствии отдельно приготовленного жидкого углеводорода и активного кислорода, произведенного из нанопузырьков кислорода.

3. Устройство для синтеза углеводорода путем восстановления диоксида углерода в воде, содержащее:

блок генерации пузырьков для получения нанопузырьков кислорода путем подачи кислорода в воду, содержащую диоксид углерода; и

блок облучения ультрафиолетовым излучением для облучения воды, содержащей нанопузырьки кислорода, полученные с помощью блока генерации пузырьков, ультрафиолетовым излучением в присутствии фотокатализатора,

где диоксид углерода восстанавливается в присутствии активного кислорода, полученного с помощью облучения воды, содержащей нанопузырьки кислорода, ультрафиолетовым излучением с помощью блока ультрафиолетового облучения.



 

Похожие патенты:
Изобретение относится к способу производства жидкого топлива. Способ включает: а) конверсию твердого углеродсодержащего материала в блоке газификации с образованием сингаза газификатора; b) проведение сингаза газификатора в блок обработки газа и обработку в нем сингаза газификатора, при этом указанный блок обработки газа включает в себя блок удаления кислого газа, предназначенный для удаления менее 50% CО2, присутствующего в сингазе газификатора; c) образование по меньшей мере потока обработанного сингаза газификатора, содержащего по меньшей мере 50% CО2 сингаза газификатора, газового потока, обогащенного CО2, и потока, обогащенного серой; d) использование по меньшей мере 90% обогащенного CО2 газового потока при образовании сингаза газификатора; e) конверсию легкого ископаемого топлива в блоке конверсии легкого ископаемого топлива с образованием обогащенного H2 сингаза, содержащего H2 и CO в молярном отношении H2/CO по меньшей мере 2:1; f) объединение обработанного сингаза газификатора и обогащенного H2 сингаза с образованием смешанного сингаза, имеющего более высокое отношение Н2/СО, чем в потоке обработанного сингаза газификатора; g) конверсию смешанного сингаза с образованием жидкого топливного продукта и потока побочного продукта, содержащего одно или более веществ из водорода, CO, водяного пара, метана и углеводородов, содержащих 2-8 атомов углерода и 0-2 атомов кислорода; и h) реакцию до 100% потока побочного продукта в блоке конверсии легкого ископаемого топлива, чтобы способствовать образованию обогащенного H2 сингаза.

Изобретение относится к синтезу Фишера-Тропша. Способ синтеза Фишера-Тропша предусматривает подачу газообразных реагентов, содержащих по меньшей мере СО, Н2 и СО2, в реактор, содержащий катализатор на основе железа, причем Н2 и СО подают в мольном отношении H2 : СО по меньшей мере 2:1, а СО2 и СО подают в мольном отношении СО2 : СО по меньшей мере 0,5:1; регулирование рабочей температуры реактора в диапазоне от 260°С до 300°С, отвод жидкого продукта и газообразного продукта, содержащих углеводороды, СО, Н2, воду и СО2, из реактора; причем приближение к равновесию конверсии водяным паром в газообразном продукте, отводимом из реактора, согласно уравнению 5 составляет менее 0,9, где Т является рабочей температурой реактора в градусах Кельвина, а Р является парциальным давлением газов СО, СО2, H2 и водяного пара в газообразном продукте.

Изобретение относится к усовершенствованному способу обработки природного газа с применением способа Фишера-Тропша (FT) для синтеза не содержащих серы полностью сгорающих углеводородных топлив, примерами которых являются, в частности, дизельное топливо и авиационное топливо.

Изобретение относится к области синтеза Фишера-Тропша в промышленном катализе. Описан катализатор на основе кобальта для синтеза Фишера-Тропша, способ его приготовления и его применение.
Изобретение относится к технической области каталитического синтеза жидких топливных фракций. Описан носитель для селективного синтеза керосиновой фракции из синтез-газа, данный носитель содержит следующие компоненты в частях по массе: 5-50 частей мезопористого диоксида циркония (ZrO2), 10-55 частей силикоалюмофосфатного (SAPO) молекулярного сита, 5-50 частей модифицированного мезопористого молекулярного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 10-70 частей глинозема.

Изобретение используется в способе синтеза углеводородов С5 и выше из природного газа через промежуточное превращение природного газа в синтез-газ и последующую конверсию СО и Н2 по реакции Фишера-Тропша.

Изобретение относится к способу синтеза углеводородов из сырья, содержащего синтез-газ, в котором применяют твердый катализатор Фишера-Тропша в трехфазной реакционной секции, выполненной таким образом, что упомянутый катализатор поддерживается в суспензии в жидкой фазе за счет циркуляции газовой фазы снизу вверх в упомянутой реакционной секции.

Описан катализатор синтеза Фишера-Тропша на основе кобальта, покрытый мезопористым материалом, и способ его получения. Катализатор содержит кремнеземный носитель, насыщенный на поверхности активным компонентом кобальта и селективным промотором циркония; снаружи активный компонент кобальта и селективный промотор циркония покрыт слоем оболочки мезопористого материала.

Изобретение относится к способу получения защищенного восстановленного нанесенного металлического катализатора в форме гранулы или пасты, применяемого в широком спектре химических реакций, таких как гидрирование углеводородных соединений в нефтехимических процессах; гидрирование ненасыщенных жиров и масел, а также ненасыщенных углеводородных смол, и в процессе Фишера-Тропша.

Настоящее изобретение относится к вариантам способа преобразования исходного топлива во вторичное топливо посредством установки реформинга. Один из вариантов способа включает следующие этапы: подачу исходного топлива в печь установки реформинга, причем исходное топливо содержит отходы в виде сточных вод и/или твердых отходов, содержащих углерод; подачу в печь метана в качестве дополнительного исходного топлива; подачу воды в печь; обеспечение одного или более плазменно-дуговых источников тепла в установке реформинга для расщепления указанных исходных топлив и указанной воды на один или более составляющих компонентов и/или их комбинации; преобразование по меньшей мере части указанного одного или более составляющих компонентов воды и исходных топлив и/или их комбинации в указанное вторичное топливо с использованием одного или более катализаторов; вывод указанного вторичного топлива из установки реформинга.

Изобретение относится к катализаторам получения углеводородов, в том числе жидких синтетических топлив, олефинов, твердых углеводородов из смеси СО и водорода (синтез-газа).

Изобретение относится к способу и установке для получения жидкого топлива из углеводородного газа. Заявлен способ получения жидкого топлива из углеводородного газа и выработки энергии, в котором осуществляют риформинг углеводородного газа для получения газа риформинга путем реакции парового риформинга углеводородного газа; осуществляют синтез бензина, диметилового эфира или дизельного топлива из газа риформинга через метанол; извлекают тепло термической энергии газа риформинга для получения насыщенного водяного пара, имеющего температуру не более 180°C, до использования указанного газа риформинга на стадии синтеза; осуществляют перегревание указанного насыщенного водяного пара с использованием теплового источника, имеющего температуру по меньшей мере 200°C, образовавшегося в указанном способе, чтобы получить перегретый водяной пар; и осуществляют выработку энергии с использованием указанного перегретого водяного пара, причем в качестве теплового источника для перегревания на стадии перегревания используют водяной пар, образовавшийся за счет экзотермической реакции на стадии синтеза.

Изобретение относится к улучшению в производстве жидких топлив из твердого сырья. Способ производства топлива из углеродистого сырьевого материала включает: (A) получение ископаемого углеводородного топливного исходного сырья, выбранного из группы, включающей природный газ, метан, нафту, жидкие нефтяные газы (LPG), (B) формирование из указанного углеводородного топливного исходного сырья потока газообразного продукта, включающего водород и моноксид углерода в мольном соотношении Н2:СО по меньшей мере в 2,0:1, (C) добавление потока газообразного продукта, сформированного на стадии (В), к потоку синтез-газа, содержащему водород и СО, который получают из углеродистого сырьевого материала, выбранного из биомассы, угля, кокса или битума путем газификации в достаточном количестве для образования смешанного потока синтез-газа, имеющего мольное соотношение Н2:СО, большее, чем у указанного потока синтез-газа, полученного из углеродистого сырьевого материала, (D) превращение указанного смешанного потока синтез-газа с образованием топлива-продукта и извлечения из указанного превращения потока побочных продуктов, включающего один или более из водорода, СО, водяного пара, метана и углеводородов, содержащих 2-8 атомов углерода и 0-2 атома кислорода, и включает стадию (E), где поток побочных продуктов делят-осуществляют реакцию до менее 100% указанного потока побочных продуктов в образовании указанного газообразного потока продукта на стадии (В) и также до менее 100% потока побочных продуктов, полученного на стадии (D), подают на стадию (В) и сжигают для производства тепла, которое потребляется в формировании указанного газообразного потока продукта на стадии (В), при этом далее способ включает испарение сырьевого потока воды при помощи тепла, полученного путем превращения указанного смешанного потока синтез-газа на стадии (D), с получением пара, введение этого потока пара в реакцию с углеводородным сырьем на основе ископаемого топлива на стадии (В) и в газификацию углеродистого сырьевого материала.

Изобретение относится к химической промышленности и используется для исследования химического процесса получения синтетической нефти. Установка для исследования процесса получения синтетической нефти, включающая в себя реактор, загруженный катализатором, накопительную емкость, средства контроля температуры и давления, запорно-регулирующую арматуру, отличается тем, что она дополнительно содержит ресивер, конденсатор-сепаратор, регистрирующие индикаторные устройства для измерения расхода газообразных потоков и отходящего газа, индикаторное устройство для измерения уровня жидкости, при этом на линии подачи газообразных потоков установлены последовательно регистрирующее индикаторное устройство для измерения расхода газообразных потоков, ресивер, каталитический реактор, выход которого соединен с последовательно установленными конденсатором-сепаратором и накопительной емкостью, причем каталитический реактор выполнен с возможностью электроподогрева слоя катализатора и имеет систему внешнего водяного охлаждения, состоящую из последовательно установленных водяного холодильника, сборника парового конденсата, дозирующего насоса и водонагревателя, при этом средства контроля температуры выполнены в виде индикаторного регистрирующего регулирующего устройства, установленного в водонагревателе, первого индикаторного устройства для измерения температуры, установленного в каталитическом реакторе, второго индикаторного устройства для измерения температуры, установленного в водяном холодильнике, третьего индикаторного устройства для измерения температуры, установленного в конденсаторе-сепараторе, четвертого индикаторного устройства для измерения температуры, установленного в накопительной емкости, средства контроля давления выполнены в виде первого индикаторного устройства для измерения давления, установленного перед водяным холодильником, и второго индикаторного устройства для измерения давления, установленного в конденсаторе-сепараторе, запорно-регулирующая арматура выполнена в виде регулирующего клапана, установленного на трубопроводе подачи газообразных потоков и связанного с регистрирующим индикаторным устройством для измерения расхода газообразных потоков, первого регулирующего вентиля, установленного между первым индикаторным устройство для измерения давления и водяным холодильником, второго регулирующего вентиля, установленного на трубопроводе подачи оборотной воды в водяной холодильник, третьего регулирующего вентиля, установленного на трубопроводе отвода отходящего газа из конденсатора-сепаратора между конденсатором-сепаратором и регистрирующим индикаторным устройством для измерения расхода отходящего газа, четвертого регулирующего вентиля, установленного на трубопроводе подачи оборотной воды в конденсатор-сепаратор, пятого регулирующего вентиля, установленного на трубопроводе подачи синтетической нефти потребителю и связанного с индикаторным устройством для измерения уровня жидкости.

Изобретение раскрывает способ получения жидких органических топлив из углекислого газа, окиси углерода и воды, включающий использование гетерополикислоты 2-18 ряда, имеющей химическую формулу H6[P2W18O62], где степень окисления вольфрама составляет +6, которую облучают в присутствии железных и цинковых пластин при температуре минус 5 - плюс 50°C электромагнитным излучением в диапазоне длин волн от 3·105 до 10-2 нм и короче с целью изменения степени окисления вольфрама от +6 до +3 и +2, после чего водный раствор обеих гетерополикислот поступает непосредственно на синтез органического жидкого топлива, где в присутствии хромовых и никелевых стружек при температуре от +10 до +70°C происходит образование жидкого органического топлива с одновременным окислением анионных комплексов гетерополикислот до окисленного состояния, в ходе чего образуется водный раствор гетерополикислоты, имеющей химическую формулу H6[P2W18O62], после чего полученная смесь поступает в емкость для декантации, где происходит разделение жидкого топлива и водного раствора гетерополикислоты, которая опять может быть использована для синтеза.

Изобретение относится к системе и способу для получения бензина или простого диметилового эфира из природного газа. Система для получения бензина или простого диметилового эфира из природного газа с промежуточным синтезом метанола включает: устройство (10) парового риформинга природного газа для получения газа риформинга; теплообменник (17) типа дымовой газ-пар для получения пара или тепла, используемых в системе, путем рекуперации тепла дымового газа, образующегося в зоне горения (12) устройства (10) парового риформинга; устройство (20) синтеза метанола из газа риформинга, получаемого в устройстве парового риформинга; теплообменник (19) типа газ риформинга-пар, предназначенный для получения пара или тепла, используемых в системе, путем рекуперации тепла газа риформинга до подачи газа риформинга в устройство (20) синтеза метанола; устройство (30) синтеза бензина или простого диметилового эфира из метанола, синтезированного в устройстве синтеза метанола, и по меньшей мере одно устройство, выбранное из группы, и ряд теплообменников как указано в формуле изобретения.

Изобретение относится к способу и устройству для проведения синтеза Фишера-Тропша. Двухстадийный способ синтеза Фишера-Тропша включает следующие стадии: a) реакцию первой стадии синтеза Фишера-Тропша: введение газового сырья, содержащего СО и H2, в реактор (102) первой стадии синтеза Фишера-Тропша для проведения реакции синтеза Фишера-Тропша под действием катализаторов с получением продуктов реакции первой стадии синтеза Фишера-Тропша; при этом степень превращения CO в реакторе (102) первой стадии синтеза Фишера-Тропша поддерживают при 30-70%, b) разделение продуктов реакции первой стадии синтеза Фишера-Тропша: разделение продуктов реакции первой стадии синтеза Фишера-Тропша таким образом, чтобы отделить воду от непрореагировавшего остаточного газа и получить углеводородные продукты и непрореагировавший остаточный газ (4) реакции первой стадии синтеза Фишера-Тропша, c) реакцию второй стадии синтеза Фишера-Тропша: введение непрореагировавшего остаточного газа (4), полученного на стадии b), в реактор (112) второй стадии синтеза Фишера-Тропша для проведения реакции синтеза Фишера-Тропша под действием катализаторов с получением продуктов реакции второй стадии синтеза Фишера-Тропша, d) разделение продуктов реакции второй стадии синтеза Фишера-Тропша: разделение продуктов реакции второй стадии синтеза Фишера-Тропша таким образом, чтобы отделить воду от непрореагировавшего остаточного газа и получить углеводородные продукты и непрореагировавший остаточный газ (10) реакции второй стадии синтеза Фишера-Тропша, при этом часть (27) непрореагировавшего остаточного газа реакции второй стадии синтеза Фишера-Тропша возвращают в реактор (112) второй стадии синтеза Фишера-Тропша для проведения реакций при рециркуляции, в котором непрореагировавший остаточный газ (4) реакции первой стадии синтеза Фишера-Тропша не возвращают в реактор (102) первой стадии синтеза Фишера-Тропша для проведения реакций при рециркуляции, на стадии а) свежий синтез-газ в качестве сырья проходит через реактор первой стадии синтеза Фишера-Тропша за один проход, в котором разделения на стадиях b) и а) включают разделения типа нефтепродукт-вода-газ верхних продуктов (2; 33) реакций синтеза Фишера-Тропша.

Изобретение относится к технологии переработки углеводородов, к способам и устройствам для переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты.

Изобретение относится к способу получения углеводородной продукции, включающему ряд стадий. Способ получения углеводородной продукции включает стадии : (а) получения синтез-газа, содержащего водород, монооксид углерода и диоксид углерода, (б) превращения по крайней мере части синтез-газа в смесь оксигенатов, в состав которой входят метанол и диметиловый эфир, в присутствии одного или нескольких катализаторов, которые вместе катализируют протекающую с образованием оксигенатов реакцию водорода и монооксида углерода под давлением, равным по крайней мере 3 МПа, (в) отвода со стадии (б) реакционной смеси, содержащей определенные количества метанола, диметилового эфира, диоксида углерода и воды вместе с непрореагировавшим синтез-газом, и проводят охлаждение реакционной смеси для получения жидкой фазы, содержащей определенные количества метанола, диметилового эфира и воды, а также одновременное растворение диоксида углерода в жидкой фазе, (г) отделения содержащей диоксид углерода жидкой фазы от остаточного количества газовой фазы, содержащей водород и монооксид углерода, (д) испарения и превращения жидкой фазы, которая была получена на стадии (г), в присутствии катализатора, проявляющего активность при превращении оксигенатов в высшие углеводороды, с получением абгазов, включающих диоксид углерода, (е) отделения абгазов от жидкой фазы с высшими углеводородами, при этом давление, используемое на стадиях от (в) до (е), в основном имеет то же самое значение, что и давление на стадии (б). Технический результат - разработка улучшенного интегрированного способа проведения процесса получения углеводородов с температурой кипения в области бензиновой фракции из синтез-газа с высоким содержанием монооксида углерода, а также синтез оксигенатных промежуточных продуктов, при этом нет необходимости в выделении диоксида углерода из питающего материального потока синтез-газа и из образующихся промежуточных продуктов синтеза оксигенатов.

Настоящее изобретение относится к способу осуществления синтеза Фишера-Тропша. Описан способ осуществления синтеза Фишера-Тропша, в котором: неочищенный газ, содержащий CO и H2, полученный при газификации угля, обессеривают и затем в качестве исходного газа подают в устройство (3) для синтеза Фишера-Тропша, в котором посредством каталитических реакций из оксида углерода и водорода образуются углеводороды, при этом углеводороды отводят в виде жидких продуктов (4), газовый поток, содержащий CO и CO2, выходящий из устройства (3) для синтеза Фишера-Тропша, сжимают и подают на участок (6) конверсии, на котором CO превращают водяным паром в H2 и CO2, и выходящий с участка (6) конверсии после очистки (9, 14) газ, из которого удалены CO2 и/или другие компоненты, кроме H2, отводится обратно в качестве газа с высоким содержанием H2 вместе с обессеринным исходным газом в устройство (3) для синтеза Фишера-Тропша, отличающийся тем, что частичный поток (8) обессеринного исходного газа отводят и подают перед компрессором (5) в контур с циркулирующим газовым потоком и что в газовом потоке, подаваемом в устройство (3) для синтеза Фишера-Тропша, задают молярное соотношение между H2 и CO, составляющее не менее 1,5:1.
Изобретение описывает способ изготовления оксидного катализатора, включающий: стадию (a) получения водной жидкой смеси A, содержащей Mo, V и Sb; стадию (b) смешивания исходного материала Nb, воды и органической кислоты с получением водного раствора Nb; стадию (c) смешивания водного раствора Nb и исходного материала диоксида кремния с получением водной жидкой смеси B; стадию (d) смешивания водной жидкой смеси A и водной жидкой смеси B с получением водной жидкой смеси C; стадию (e) высушивания водной жидкой смеси C с получением высушенного порошка D и стадию (f) прокаливания высушенного порошка D с получением оксидного катализатора.
Наверх