Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации и/или акустической эмиссии состоит из подводящего оптического волокна, резонатора Фабри-Перо, сформированного на оптическом волокне, и защитного капилляра. При этом пространство между капилляром и оптическим волокном заполнено силиконовым маслом, свободно передающим акустические колебания в диапазоне частот 1-500 кГц и демпфирующим деформации в диапазоне частот 0-100 Гц, при этом в качестве капилляра используется цилиндрическая трубка длиной (10-20) мм на основе кварцевого стекла диаметром (200-230) мкм. Технический результат – повышение прочности конструкции волоконно-оптического датчика. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к областям авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля в т.ч. регистрации образования и накопления дефектов в т.ч. вследствие ударного воздействия, в процессе эксплуатации конструкции, а также оценки ее технического состояния. Создание систем встроенного контроля, в т.ч. с применением волоконно-оптических акустических датчиков наиболее актуально для применения в конструкциях из полимерных композиционных материалов (ПКМ), технология изготовления которых позволяет внедрять как единичные датчики, так и системы датчиков на стадии изготовления.

Важным фактором, коренным образом влияющим на возможность интеграции таких систем в структуру материала конструкций из ПКМ, является конструктивное исполнение датчика, который, с одной стороны, должен обладать высокими прочностными характеристиками, соотносимыми со свойствами контролируемого материала конструкции, с другой стороны, так как ПКМ применяются при создании особо ответственных и высоконагруженных элементов конструкций, необходимо сведение к минимуму влияния вводимого датчика или сети датчиков на прочностные свойства материала конструкции и на несущую способность конструкции в целом.

Из уровня техники известна конструкция волоконно-оптического датчика акустической эмиссии на основе интерферометра Фабри-Перо, включающая два оптических волокна, соосно расположенных на расстояние 10 мм друг относительно друга, а также капилляра, в который встраиваются оптические волокна для формирования воздушного резонатора, при этом оптические волокна зафиксированы по отношению к капилляру, а регистрация акустической эмиссии осуществляется за счет изменения длины резонатора, причем зеркала резонатора сформированы за счет Френелевского отражения на торцах оптических волокон (патент США US 6289143, G01L 1/24, опубл. 11.09.2001).

Главным недостатком этого изобретения является формирование зеркал на торцах оптических волокон, что значительно снижает чувствительность датчика при этом функцией капилляра, использованного в конструкции датчика, является формирования оптического резонатора, а не обеспечение прочности конструкции датчика. Так, в случае деформаций конструкции выше 0,5% и при давлении 5-6 атм., оказываемых на датчик при эксплуатации, конструкция разрушается.

Из уровня техники известна конструкция акустического волоконно-оптического датчика на основе интерферометра Фабри-Перо, включающая оптическое волокно с перпендикулярным сколом на торце, приваренный к волокну капилляр и диафрагму, регистрация внешнего воздействия, включая акустическое, осуществляется за счет изменения длины резонатора при деформировании диафрагмы (патент США US 7054011, G01В 9/02, опубл. 30.06.2006).

Главным недостатком этого изобретения является невозможность интеграции конструкции датчика в структуру материала конструкции из ПКМ на стадии изготовления, так как воздействие технологического режима формования (температуры до 180° и удельного давления до 7 атм.) приводит к критической деформации диафрагмы и ее разрушению, при этом капилляр, использованный в конструкции, используется исключительно для формирования оптического резонатора, а не обеспечивает прочность конструкции датчика.

Наиболее близкой по технологической сущности и назначению к заявляемому изобретению, принятой за прототип, является конструкция волоконно-оптического датчика давления и ускорения, включающая волоконно-оптический резонатор на основе интерферометра Фабри-Перо, сформированного внутриволоконными зеркалами на торцах волокон, диафрагмы, защитного корпуса в виде трубки, изготовленного из керамики, пластика или металла, при этом регистрация внешнего воздействия, включая акустическое, осуществляется за счет изменения воздействия на диафрагму, которая передает воздействие на волоконный резонатор, находящийся в защитном корпусе и не имеющим непосредственного контакта с внешней средой (патент США US 6281976, G01B 9/02, опубл. 28.08.2001).

Недостатком указанного технического решения является наличие диафрагмы в конструкции датчика, через которую на датчик передается внешнее воздействие, что при деформациях, испытываемых конструкцией из ПКМ с интегрированными датчиками приводит к резкой потере чувствительности датчика вплоть до разрушения.

Задачей заявляемого изобретения является создание конструкции высокопрочного датчика, предназначенного как для поверхностного монтажа на конструкции из металлических, гибридных и полимерных композиционных материалов, так и для интеграции в структуру ПКМ на стадии изготовления, при этом конструкция датчика должна обеспечивать бесперебойную регистрацию образования и накопления дефектов в т.ч. вследствие ударного воздействия, а также оценивать ее техническое состояние в процессе эксплуатации конструкции во всем диапазоне нагружения.

Техническим результатом заявляемого изобретения является повышение прочности конструкции волоконно-оптического датчика, минимизация влияния введения конструкции датчика в материал конструкции из ПКМ на стадии изготовления на прочностные характеристики и несущую способность контролируемой конструкции, обеспечение непрерывного контроля технического состояния, регистрации факта возникновения и накопления дефектов в условиях динамических эксплуатационных нагрузок с частотой до 50 Гц, вызывающих деформации чувствительной части датчика до 1%, определение пороговых значений, при превышении которых дальнейшая эксплуатация конструкции невозможна.

Для достижения заявленного технического результата предлагается конструкция высокопрочного датчика, построенная на интерферометре Фабри-Перо с геометрической длиной (7-15) мм, причем зеркала внутриволоконного резонатора толщиной до 40 нм могут быть выполнены из Ni, Cr, TiO2, при этом прочность датчика обеспечивается за счет применения защитного капилляра в виде цилиндрической трубки длиной (10-20) мм на основе кварцевого стекла диаметром (200-230) мкм, заполненного силиконовым маслом с вязкостью (5-60000) сСт и герметично запаянного с обеих сторон таким образом, что чувствительный элемент датчика находится внутри заполненного силиконовым маслом капилляра, зазор между капилляром и оптическим волокном составляет (1-5) мкм, при этом для компенсации структурной неоднородности осуществляется перепокрытие акрилатом зачищенного участка волоконного световода до капилляра и самого капилляра, при этом максимальный диаметр конструкции датчика сравним с диаметром стандартного волоконного световода и составляет величину не более 250 мкм, таким образом, геометрически конструкция подобна стандартному волоконному световоду в защитном акрилатном покрытии и может интегрироваться в конструкции из ПКМ на стадии изготовления, минимально влияя на прочностные характеристики материала конструкции, ввиду объемного содержания менее 0,01%, вместе с тем обеспечивая функцию мониторинга возникновения и накопления дефектов, а также оценку фактического технического состояния, причем предлагаемое конструктивное исполнение обеспечивает передачу деформации от материала контролируемой конструкции непосредственно на чувствительную зону датчика, за счет чего регистрируются акустические сигналы в диапазоне (1-500) кГц, характеризующие состояние материала конструкции, при этом деформационное воздействие оказывается только на капилляр.

Данное изобретение поясняется чертежами на фигурах 1 и 2.

На фиг. 1 изображена конструктивная схема высокопрочного волоконно-оптического датчика акустической эмиссии.

На фиг. 2 изображено сечение образца из ПКМ, содержащее высокопрочный волоконно-оптический датчик акустической эмиссии, где:

1 - Подводящее оптическое волокно;

2 - Сердцевина оптического волокна;

3 - Кварцевая оболочка оптического волокна;

4 - Защитная акрилатная оболочка оптического волокна;

5 - Зеркала резонатора Фабри-Перо;

6 - Резонатор Фабри-Перо;

7 - Силиконовое масло;

8 - Капилляр;

9 - Акрилатное перепокрытие;

10 - Конструкция из ПКМ.

Конструкция высокопрочного датчика деформации и/или акустической эмиссии содержит подводящее волокно (1), по которому подводится оптическое излучение к резонатору (6). В качестве подводящего волокна (1), а также волокна, использованного для резонатора Фабри-Перо (6), могут выступать различные виды оптических волокон, включающие телекоммуникационные, двулучепреломляющие, микроструктурированные и другие. Оптические волокна состоят из сердцевины (2) и кварцевой оболочки (3), в которых осуществляется распространение оптической волны. От механических воздействий подводящее волокно защищается с помощью защитной акрилатной оболочки (4). Оптический резонатор Фабри-Перо (6) формируется с помощью зеркал (5), напыленных методом магнетронного напыления на торцы волокон или нанесенных другим способом, позволяющим получить отражающую способность зеркал (4-15) %. Чувствительный элемент датчика на основе резонатора Фабри-Перо (6) интегрируется в защитный капилляр (8), который предотвращает прямое воздействие деформаций на датчик, интегрированный в материал конструкции. Капилляр имеет диаметр не более 230 мкм. Для сохранения акустического контакта между резонатором Фабри-Перо (6) и композитным материалом зазор между капилляром и резонатором заполняется силиконовым маслом (5), которое выступает в роле проводника акустического сигнала. Конструкция высокопрочного датчика может быть интегрирована в конструкцию из ПКМ на стадии изготовления.

Примеры осуществления.

Пример 1.

Подводящее оптическое волокно зачищают от защитной акрилатной оболочки на длину (1-2) см, после чего напыляют зеркало с отражающей способностью 10% толщиной до 40 нм из TiO2. Берут зачищенное от защитной акрилатной оболочки оптическое волокно длиной (2-3) см и с помощью оптической сварки приваривают его к волокну с нанесенным зеркалом. Скалывают полученное оптическое волокно под углом 90° так, чтобы расстояние от зеркала до места скола составило 7 мм, после чего напыляют аналогичное зеркало на полученный торец оптического волокна. Сформированный интерферометр Фабри-Перо длиной 7 мм вводят в цилиндрический капилляр из кварцевого стекла длиной (10-15) мм диаметром 220 мкм, заполненный силиконовым маслом вязкостью (5-1000) сСт, причем зазор между капилляром и оптическим волокном составляет 2 мкм. Полученную конструкцию герметично запаивают с обеих сторон и наносят защитное перепокрытие вровень с исходным акрилатным покрытием подводящего оптического волокна, диаметр полученной конструкции не более 250 мкм.

Пример 2.

Подводящее оптическое волокно зачищают от защитной акрилатной оболочки на длину (1-2) см, после чего напыляют зеркало с отражающей способностью 15% толщиной до 40 нм из Cr. Берут зачищенное от защитной акрилатной оболочки оптическое волокно длиной (2-3) см и с помощью оптической сварки приваривают его к волокну с нанесенным зеркалом. Скалывают полученное оптическое волокно под углом 90° так, чтобы расстояние от зеркала до места скола составило 15 мм, после чего напыляют аналогичное зеркало на полученный торец оптического волокна. Сформированный интерферометр Фабри-Перо длиной 15 мм вводят в цилиндрический капилляр из кварцевого стекла длиной (17-20) мм диаметром 200 мкм, заполненный силиконовым маслом вязкостью (1000-10000) сСт, причем зазор между капилляром и оптическим волокном составляет 1 мкм. Полученную конструкцию герметично запаивают с обеих сторон и наносят защитное перепокрытие вровень с исходным акрилатным покрытием подводящего оптического волокна, диаметр полученной конструкции не более 250 мкм.

Пример 3.

Подводящее оптическое волокно зачищают от защитной акрилатной оболочки на длину (1-2) см, после чего напыляют зеркало с отражающей способностью 4% толщиной до 40 нм из Ni. Берут зачищенное от защитной акрилатной оболочки оптическое волокно длиной (2-3) см и с помощью оптической сварки приваривают его к волокну с нанесенным зеркалом. Скалывают полученное оптическое волокно под углом 90° так, чтобы расстояние от зеркала до места скола составило 10 мм, после чего напыляют аналогичное зеркало на полученный торец оптического волокна. Сформированный интерферометр Фабри-Перо длиной 10 мм вводят в цилиндрический капилляр из кварцевого стекла длиной (13-18) мм диаметром 230 мкм, заполненный силиконовым маслом вязкостью (10000-60000) сСт, причем зазор между капилляром и оптическим волокном составляет 5 мкм. Полученную конструкцию герметично запаивают с обеих сторон и наносят защитное перепокрытие вровень с исходным акрилатным покрытием подводящего оптического волокна, диаметр полученной конструкции не более 250 мкм.

1. Конструкция высокопрочного датчика деформации и/или акустической эмиссии, состоящая из подводящего оптического волокна, резонатора Фабри-Перо, сформированного на оптическом волокне, и защитного капилляра, отличающаяся тем, что подводящее оптическое волокно имеет зачищенный от защитной акрилатной оболочки участок на длину (1-2) см, а пространство между капилляром и оптическим волокном заполнено силиконовым маслом, свободно передающим акустические колебания в диапазоне частот 1-500 кГц и демпфирующим деформации в диапазоне частот 0-100 Гц, при этом в качестве капилляра используется цилиндрическая трубка длиной (10-20) мм на основе кварцевого стекла диаметром (200-230) мкм.

2. Конструкция высокопрочного датчика по п. 1, отличающаяся тем, что зачищенный участок оптического волокна диаметром (125±5) мкм со сформированным резонатором Фабри-Перо с геометрической длиной (7-15) мм помещается в кварцевый капилляр, заполненный силиконовым маслом, после чего капилляр герметично запаивается с обеих сторон.

3. Конструкция высокопрочного датчика по п. 1, отличающаяся тем, что силиконовое масло, заполняющее капилляр, имеет вязкость (5-60000) сСт, при этом зазор между капилляром и оптическим волокном составляет (1-5) мкм.

4. Конструкция высокопрочного датчика по п. 1, отличающаяся тем, что зачищенный участок волоконного световода имеет акрилатное перепокрытие до капилляра и самого капилляра, при этом максимальный диаметр конструкции датчика сравним с диаметром стандартного волоконного световода и составляет величину не более 250 мкм.

5. Конструкция высокопрочного датчика по п. 1, отличающаяся тем, что зеркала внутриволоконного резонатора Фабри-Перо толщиной до 40 нм могут быть выполнены из Ni, Cr, TiO2, обеспечивающих отражающую способность зеркал (4-15)%.



 

Похожие патенты:

Изобретение относится к измерительной технике. Способ измерения частотных характеристик механических конструкций заключается в том, что исследуемую конструкцию освещают когерентным лазерным излучением.

Изобретение относится к области измерительной техники. Способ индикации механических резонансов объекта вибрационной диагностики с использованием оптических средств заключается в том, что рядом с исследуемым объектом располагают фотокамеру с дистанционным управлением от компьютера, производят удаленную фокусировку фотокамеры в области расположения маркеров, синхронно с равномерным изменением частоты вибрации осуществляют регистрацию кадров, производят их компьютерную обработку, полученные изображения следов вибрационного размытия меток выводят на монитор и выявляют низкочастотные резонансы по калибровочной сетке на изображениях.

Изобретение относится к контрольно-измерительной технике и может быть использовано для получения информации о структуре акустических полей при разработке акустоэлектронных приборов, для регистрации акустических полей при физических исследованиях волновых процессов в акустике, для контроля структур в непрозрачных для видимого света объектах.

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на оптоволоконном кабеле.

Изобретение относится к прогнозированию на ранней стадии возникновения дефектов в больших инженерных сооружениях и направлено на увеличение чувствительности при снижении аппаратурных затрат.

Изобретение относится к измерительной технике. В распределенном датчике, предназначенном для измерения переменного параметра среды, содержащем чувствительный элемент, выполненный в виде заключенного в оболочку оптического волокна и предназначенный для помещения в упомянутую среду, и оптически соединенный с волокном через оптический интерфейс когерентный фазочувствительный оптический рефлектометр, содержащий оптически соединенные с интерфейсом источник периодической последовательности оптических тестирующих сигналов, выполненный в виде последовательно оптически соединенных непрерывного лазера и модулятора, формирующего периодическую последовательность импульсных тестирующих сигналов, и приемник рассеянного излучения, преобразующий рассеянное оптическое излучение в электрический сигнал, подаваемый в блок обработки, соединенный с блоком управления и синхронизации, соединенным с источником периодической последовательности оптических импульсов, блок обработки содержит частотный фильтр с полосой пропускания индуцируемых средой в чувствительном элементе колебаний в частотном диапазоне измеряемого параметра, при этом частотный фильтр может быть выполнен в виде набора сменных частотных фильтров с разными полосами пропускания, предназначенных для измерения разных переменных параметров среды, или в виде набора частотных фильтров с разными полосами пропускания, предназначенных для формирования набора полос пропускания в частотных диапазонах, характерных исключительно для измеряемого переменного параметра среды, в частности, для измерения температуры фильтр выполнен с диапазоном пропускания от 0 до 25 Гц, для измерения виброаккустических характеристик фильтр выполнен с диапазоном пропускания от 25 Гц до 1 кГц.
Изобретение относится к компьютерной технике и может быть использовано для создания и организации работы беспроводной компьютерной сети. Техническим результатом является то, что в каждом беспроводном канале связи этой беспроводной компьютерной сети для передачи данных используется видимый свет и при этом не используется модуляция с использованием изменения параметров излучения, производимого искусственными источниками видимого света.

Изобретение относится к области контрольно-измерительной техники, в частности к способам измерения вибрации поверхности морских объектов. С помощью когерентной РЛС или когерентного сонара, работающих в ультразвуковом диапазоне, облучают вибрирующую поверхность.

Изобретение относится к метрологии, в частности к устройствам контроля местоположения работников на железной дороге. Способ определения интересующего местоположения в области содержит этапы, на которых размещают по меньшей мере первый акустический источник в первом положении в интересующем местоположении и второй акустический источник во втором положении в интересующем местоположении, причем по меньшей мере одно из первого и второго положений представляет внешнюю протяженность интересующего местоположения, активируют по меньшей мере первый акустический источник и второй акустический источник для формирования заданного акустического выходного сигнала, выполняют распределенное акустическое измерение по меньшей мере для одного оптического волокна, размещенного по меньшей мере частично в упомянутой области, и анализируют акустические сигналы, обнаруженные посредством упомянутого распределенного акустического измерения, для обнаружения упомянутой заданной акустической последовательности и определения местоположения упомянутых по меньшей мере первого акустического источника и второго акустического источника.

Изобретение относится к устройствам виброакустического мониторинга внешних воздействий на трубопровод. Заявленное волоконно-оптическое устройство мониторинга трубопроводов содержит два объединенных в одну систему независимых рефлектометра, каждый из которых подключен к разным оптическим волокнам волоконно-оптической линии, при этом рефлектометр содержит лазерный источник непрерывного излучения, соединенный с модулятором интенсивности оптического излучения, циркулятор, один из выходов которого соединен с волоконно-оптической линией, первый и второй эрбиевые усилители, формирователь прямоугольных электрических импульсов, фотоприемник, выполненный в виде балансного детектора с дифференциальным усилителем, волоконно-оптический интерферометр Маха-Цендера, причем рефлектометр содержит фазовый модулятор, генератор тактовых импульсов, генератор прямоугольных электрических импульсов, при этом вход управления модулятора интенсивности оптического излучения соединен с выходом генератора прямоугольных электрических импульсов, который соединен с генератором тактовых импульсов, также модулятор интенсивности оптического излучения соединен с волоконно-оптическим интерферометром Маха-Цендера, имеющим разность плеч ΔL=Vg⋅Δt, где Vg - групповая скорость излучения в оптическом волокне, Δt - время задержки волоконно-оптического интерферометра Маха-Цендера, при этом волоконно-оптический интерферометр Маха-Цендера соединен с первым эрбиевым усилителем, на одном из плеч волоконно-оптического интерферометра Маха-Цендера установлен фазовый модулятор, причем вход фазового модулятора соединен с выходом формирователя прямоугольных электрических импульсов, соединенного с генератором тактовых импульсов, выход первого эрбиевого усилителя соединен с входом циркулятора, второй выход которого соединен со вторым эрбиевым усилителем, при этом второй эрбиевый усилитель также соединен с фотоприемником, выход которого соединен с входом устройства обработки сигнала.

Устройство предназначено для регистрации пространственного распределения фазовой задержки, вносимой оптически прозрачным микрообъектом, и измерению его характеристик.

Группа изобретений относится к устройству и способу для реализации устройства для оптической когерентной томографии с закодированным в дисперсии широким диапазоном.

Группа изобретений относится к оптической голографии и предназначена для формирования периодических интерференционных картин, которые применяются для записи голографических дифракционных решеток, создания периодических структур различной размерности (одно-, двух- и трехмерных) в фоточувствительных материалах.

Изобретение относится к области фотоэлектрического контроля и касается способа бесконтактного контроля тонкого средства обращения. Способ включает в себя получение моментов времени, когда целевой свет, отраженный от тонкого средства обращения, и опорный свет, отраженный от опорной плоскости, достигают линейного матричного фотоэлектрического детектора.

Изобретение относится к измерительной технике, а именно к технике измерений толщины пленок и покрытий. В устройстве реализован частотно-интерференционный способ измерения толщины, согласно которому наведение на поверхность покрытия и на границу раздела покрытия с основанием производится интерференцией в инфракрасной области спектра, а измерение толщины производится частотным способом.

Изобретение относится к технике измерений оптических характеристик оптическими средствами и может быть использовано при конструировании интерферометров для прецизионного контроля формы выпуклых сферических, вогнутых асферических и плоских отражающих поверхностей больших диаметров, в частности зеркал телескопов, выпуклых сферических астрофизических объективов и оптических систем для преобразования лазерного излучения.

Интерферометр относится к навигационному приборостроению и предназначен для работы на подвижном основании абсолютного гравиметра. Интерферометр содержит пробное тело с уголковым отражателем, опорный и измерительный лучи, совмещаемые в одной точке экрана.

Изобретение может быть использовано при сборке и юстировке зеркальных и зеркально-линзовых объективов. Способ включает формирование от когерентного источника сферических опорного и объектного волновых фронтов, получение интерференционной картины в результате взаимодействия отраженных от эталонной и асферической поверхностей опорного и объектного волновых фронтов и определение по ней положения оси асферической поверхности.

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления распространения волновых фронтов, осуществляют спектральную фильтрацию этих пучков и регистрируют двумерное спектральное интерференционное изображение.

Группа изобретений относится к медицинской технике, а именно к средствам диагностики дегенерации роговицы. Система содержит устройство для оптической когерентной томографии (ОКТ), выполненное с возможностью излучения первого светового пучка с первой длиной волны (λ1), спектрометр рассеяния Бриллюэна (BS), выполненный с возможностью излучения второго светового пучка со второй длиной волны (λ2), отличной от первой длины волны (λ1), устройство фокусировки пучков, выполненное с возможностью объединения первого светового пучка и второго светового пучка таким образом, что первый световой пучок и второй световой пучок распространяются вдоль одной и той же оптической траектории относительно роговицы, и устройство направления и фокусировки пучков, выполненное с возможностью фокусировки первого светового пучка и второго светового пучка вместе в заранее заданном положении (x,y,z) на или в роговице, устройство контроля и анализа для сканирования направляющей ориентации (kx,ky,kz) первого светового пучка и второго светового пучка таким образом, что первый световой пучок и второй световой пучок фокусируются (x,y,z) на или в роговице.

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации иили акустической эмиссии состоит из подводящего оптического волокна, резонатора Фабри-Перо, сформированного на оптическом волокне, и защитного капилляра. При этом пространство между капилляром и оптическим волокном заполнено силиконовым маслом, свободно передающим акустические колебания в диапазоне частот 1-500 кГц и демпфирующим деформации в диапазоне частот 0-100 Гц, при этом в качестве капилляра используется цилиндрическая трубка длиной мм на основе кварцевого стекла диаметром мкм. Технический результат – повышение прочности конструкции волоконно-оптического датчика. 4 з.п. ф-лы, 2 ил.

Наверх