Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода

Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода состоит из приводной газотурбинной установки утилизационной газотурбинной установки. Приводная газотурбинная установки содержит газогенератор, силовую газовую турбину, нагнетатель природного газа, регенеративный теплообменный аппарат, установленный в выхлопном газоходе силовой газовой турбины. Утилизационная газотурбинная установки содержит компрессор, камеру сгорания, газовую турбину, электрогенератор. Выход силовой газовой турбины связан с атмосферой через регенеративный теплообменный аппарат. Выход компрессора утилизационной газотурбинной установки связан напорным воздуховодом и трубопроводом сжатого воздуха через теплообменную поверхность регенеративного теплообменного аппарата и камеру сгорания утилизационной газотурбинной установки с газовой турбиной утилизационной газотурбинной установки, снабженной дополнительным регенеративным теплообменным аппаратом и дополнительным трубопроводом сжатого воздуха. Дополнительный регенеративный теплообменный аппарат установлен в выхлопном газоходе газовой турбины утилизационной газотурбинной установки. Выход компрессора утилизационной газотурбинной установки соединен дополнительным трубопроводом сжатого воздуха через теплообменную поверхность дополнительного регенеративного теплообменного аппарата и трубопровод подогретого сжатого воздуха с камерой сгорания утилизационной газотурбинной установки. Изобретение направлено на повышение электрической мощности утилизационной энергетической газотурбинной установки. 1 ил.

 

Изобретение относится к области транспорта газа по магистральным газопроводам и может быть использовано при создании высокоэкономичных утилизационных энергетических газотурбинных установок собственных нужд на компрессорных станциях магистральных газопроводов.

Известна энергоутилизационная паротурбинная установка с пентановым рабочим циклом, применимая для выработки электроэнергии на ГРС (Бухолдин Ю.С., Олефиренко В.М. Энергоутилизационная установка с пентановым рабочим циклом. // Газотурбинные технологии 2008. №1. С. 68-79). Несмотря на повышенную экономичность, недостатками утилизационных паротурбинных установок являются увеличение числа входящих в них агрегатов, потребность в использовании воды для конденсации пара низкокипящих жидкостей.

Наиболее близкой по технической сущности к предлагаемому изобретению является утилизационная энергетическая газотурбинная установка (УЭГТУ) для выработки электроэнергии собственных нужд на компрессорной станции. УЭГТУ состоит из приводной газотурбинной установки (ГТУ) компрессорной станции и утилизационной газотурбинной установки (УГТУ). При этом приводная ГТУ содержит газогенератор, силовую газовую турбину, нагнетатель природного газа, регенеративный теплообменный аппарат, установленный в выхлопном газоходе силовой газовой турбины. УГТУ содержит компрессор, камеру сгорания, газовую турбину, электрогенератор. Вход компрессора утилизационной газотурбинной установки связан с атмосферой, а выход компрессора связан через регенеративный теплообменный аппарат с камерой сгорания, соединенной с входом газовой турбины. Расширенные в силовой газовой турбине приводной ГТУ продукты сгорания передают теплоту в регенеративном теплообменном аппарате сжатому в компрессоре УГТУ воздуху и сбрасываются в атмосферу. В камеру сгорания приводной ГТУ и в камеру сгорания УГТУ подают топливо. Газовая турбина и компрессор УГТУ имеют общий вал с электрогенератором.

Утилизация теплоты уходящих газов силовой турбины приводной ГТУ в теплообменнике позволяет повысить тепловую экономичность УГТУ, а сжигание топлива в камере сгорания утилизационной энергетической газотурбинной установки увеличивает выработку электроэнергии в электрогенераторе, которая может быть использована для энергоснабжения собственных нужд компрессорной станции и для энергоснабжения внешних потребителей. (Р.З. Тумашев, С.С. Михеев, Б.А. Куникеев. Производство электроэнергии на компрессорных станциях утилизационными газотурбинными установками. Вестник МГТУ им. Баумана. Сер. «Машиностроение») 2016, №1, С. 44-53, Рис. 1).

Данное техническое решение принято за прототип предлагаемого изобретения.

Недостатком этой УЭГТУ является потеря теплоты уходящих газов газовой турбины УГТУ и ее небольшая электрическая мощность.

Технической задачей изобретения является повышение электрической мощности и тепловой экономичности утилизационной энергетической газотурбинной установки.

Поставленная задача достигается за счет того, что комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода состоит из приводной газотурбинной установки, содержащей газогенератор, силовую газовую турбину, нагнетатель природного газа, регенеративный теплообменный аппарат, установленный в выхлопном газоходе силовой газовой турбины, и утилизационной газотурбинной установки, содержащей компрессор, камеру сгорания, газовую турбину, электрогенератор; при этом выход силовой газовой турбины связан с атмосферой через регенеративный теплообменный аппарат, а выход компрессора утилизационной газотурбинной установки связан напорным воздуховодом и трубопроводом сжатого воздуха через теплообменную поверхность регенеративного теплообменного аппарата и камеру сгорания утилизационной газотурбинной установки с газовой турбиной утилизационной газотурбинной установки, причем она снабжена дополнительным регенеративным теплообменным аппаратом, и дополнительным трубопроводом сжатого воздуха, причем дополнительный регенеративный теплообменный аппарат установлен в выхлопном газоходе газовой турбины утилизационной газотурбинной установки, выход компрессора утилизационной газотурбинной установки соединен дополнительным трубопроводом сжатого воздуха через теплообменную поверхность дополнительного регенеративного теплообменного аппарата и трубопровод подогретого сжатого воздуха с камерой сгорания утилизационной газотурбинной установки.

На Фиг. 1 представлена тепловая схема комбинированной утилизационной энергетической газотурбинной установки компрессорной станции магистрального газопровода. Она содержит газогенератор 1, силовую газовую турбину 2, нагнетатель 3, регенеративный теплообменный аппарат 4, компрессор 5, газовую турбину 6, электрогенератор - 7, камеру сгорания 8, напорный воздуховод 9, трубопровод сжатого воздуха 10, дополнительный трубопровод сжатого воздуха 11, дополнительный регенеративный теплообменный аппарат 12, трубопровод подогретого сжатого воздуха 13.

Вход компрессора газогенератора 1 связан с атмосферой, а выход газогенератора связан по продуктам сгорания с входом силовой газовой турбины 2. Силовая газовая турбина 2 связана валом с нагнетателем 3. Выход силовой газовой турбины 2 связан по продуктам сгорания через регенеративный теплообменный аппарат 4 с атмосферой. Вход компрессора 5 соединен с атмосферой, а его выход связан по сжатому воздуху через напорный воздуховод 9, трубопровод сжатого воздуха 10, теплообменную поверхность регенеративного теплообменного аппарата 4, трубопровод подогретого сжатого воздуха 13 и камеру сгорания 8 с входом газовой турбины 6. Ее выход по продуктам сгорания связан через дополнительный регенеративный теплообменный аппарат 12 с атмосферой. Напорный воздуховод 9 связан дополнительным трубопроводом 11 сжатого воздуха через теплообменную поверхность дополнительного регенеративного теплообменного аппарата 12 с камерой сгорания 8.

Комбинированная утилизационная газотурбинная установка компрессорной станции магистрального газопровода работает следующим образом. Атмосферный воздух сжимают в компрессоре газогенератора 1, продукты сгорания из него подают на вход силовой газовой турбины 2. Ее полезную работу используют для привода нагнетателя 3, сжимающего природный газ. Воздух, сжатый в компрессоре 5, подают в напорный воздуховод 9. Продукты сгорания, расширенные в силовой газовой турбине 2 подают в теплообменную поверхность регенеративного теплообменного аппарата 4, где их теплоту используют для подогрева первой части воздуха (порядка 45-50%) от полного количества воздуха, сжатого в компрессоре 5. Эту часть воздуха подают по напорному воздуховоду 9 и трубопроводу сжатого воздуха 10 в теплообменную поверхность регенеративного теплообменного аппарата 4. Из него по трубопроводу подогретого сжатого воздуха 13 его подают в камеру сгорания 8. Вторую часть воздуха, сжатого в компрессоре 5, отбирают из напорного воздуховода 9 и по дополнительному трубопроводу сжатого воздуха 11 подают через теплообменную поверхность дополнительного регенеративного теплообменного аппарата 12 в камеру сгорания 8, куда также подводят топливо. Продукты сгорания расширяют в газовой турбине 6 и направляют в атмосферу через дополнительный регенеративный теплообменный аппарат 12. Теплоту этих продуктов сгорания используют в регенеративном теплообменном аппарате 12 для подогрева второй части сжатого воздуха, подаваемого в камеру сгорания 8. Полезную работу утилизационной газотурбинной установки используют для привода компрессора 5 и электрогенератора 7, вырабатывающего электроэнергию.

В регенеративном теплообменном аппарате 4 утилизируют теплоту выхлопных газов силовой газовой турбины 2, а в дополнительном регенеративном теплообменном аппарате 12 утилизируют теплоту выхлопных газов газовой турбины 6, что позволяет увеличить расход воздуха сжимаемого в компрессоре 5 и, соответственно, увеличить расход сжатого воздуха и топлива, подаваемых в камеру сгорания 8, мощность газовой турбины 6 и электрогенератора 7. Таким образом, применение в комбинированной утилизационной энергетической газотурбинной установке магистрального газопровода дополнительного регенеративного теплообменного аппарата и дополнительного трубопровода сжатого воздуха позволяет:

- повысить тепловую экономичность комбинированной утилизационной энергетической газотурбинной установки;

- при той же приводной газоперекачивающей установке, что и в прототипе, существенно увеличить электрическую мощность комбинированной утилизационной газотурбинной установки;

- увеличить мощность электрогенератора, выработку электрической энергии для энергоснабжения собственных нужд компрессорной станции и внешних потребителей.

Комбинированная утилизационная энергетическая газотурбинная установка компрессорной станции магистрального газопровода, состоящая из приводной газотурбинной установки, содержащей газогенератор, силовую газовую турбину, нагнетатель природного газа, регенеративный теплообменный аппарат, установленный в выхлопном газоходе силовой газовой турбины, и утилизационной газотурбинной установки, содержащей компрессор, камеру сгорания, газовую турбину, электрогенератор; при этом выход силовой газовой турбины связан с атмосферой через регенеративный теплообменный аппарат, а выход компрессора утилизационной газотурбинной установки связан напорным воздуховодом и трубопроводом сжатого воздуха через теплообменную поверхность регенеративного теплообменного аппарата и камеру сгорания утилизационной газотурбинной установки с газовой турбиной утилизационной газотурбинной установки, отличающаяся тем, что она снабжена дополнительным регенеративным теплообменным аппаратом и дополнительным трубопроводом сжатого воздуха, причем дополнительный регенеративный теплообменный аппарат установлен в выхлопном газоходе газовой турбины утилизационной газотурбинной установки, выход компрессора утилизационной газотурбинной установки соединен дополнительным трубопроводом сжатого воздуха через теплообменную поверхность дополнительного регенеративного теплообменного аппарата и трубопровод подогретого сжатого воздуха с камерой сгорания утилизационной газотурбинной установки.



 

Похожие патенты:

Двигатель // 2674832
Изобретение относится к двигателю, используемому в аэрокосмической области. Двигатель содержит ракетную камеру сгорания для сгорания топлива и окислителя, воздушно-реактивную камеру сгорания для сгорания топлива и окислителя, компрессор для создания давления воздуха для подачи в воздушно-реактивную камеру сгорания, первую систему подачи топлива для подачи топлива в ракетную камеру сгорания, вторую систему подачи топлива для подачи топлива в воздушно-реактивную камеру сгорания, систему подачи окислителя для подачи окислителя в ракетную камеру сгорания, причем воздушно-реактивная камера сгорания и ракетная камера сгорания выполнены с возможностью независимой эксплуатации, указанный двигатель выполнен с возможностью переключения из воздушно-реактивного режима в полный ракетный режим, причем двигатель дополнительно содержит первое устройство теплообменника, имеющего впуск и выпуск, установленное для охлаждения воздуха, подлежащего подаче в компрессор, с использованием теплопередающей среды, перед сжатием компрессором, контур теплопередающей среды для теплопередающей среды, второе устройство теплообменника, выполненное с возможностью охлаждения теплопередающей среды за счет топлива, подаваемого первой или второй системой подачи топлива.

Изобретение относится к вспомогательным силовым установкам летательных аппаратов. Система (3) питания воздухом вспомогательной силовой установки (2) летательного аппарата включает в себя канал (30) питания воздухом вспомогательной силовой установки, блок (4) управления расходом воздуха, поступающего во вспомогательную силовую установку, и клапан (31) впуска воздуха снаружи летательного аппарата, расположенный на входе канала (30) питания.

Изобретение относится к энергетике. Система теплообмена построена на основе регенерации тепла отработавших газов посредством вращающегося роторного теплообменника каркасного типа, установленного внутри корпуса двигателя между патрубком подвода от компрессора сжатого воздуха и патрубком отвода отработавших газов и соответствующими внутренними холодной и горячей полостями и соответственно для подвода сжатого воздуха в камеру сгорания и отвода отработавшего газа от рабочей турбины.

Конструкция турбомашины с теплообменником, интегрированным в выпускной газовоздушный тракт (10) потока горячих газов (1) турбомашины, отличающаяся тем, что элементы теплообмена (60, 60а-60i; 9), установленные в одном из элементов (11, 14, 14а, 14b, 15, 16, 16а, 16b, 18, 18а, 18с) выпускного газовоздушного тракта (10), выполнены с возможностью направлять часть потока горячих газов (1), проходящую через элементы теплообмена, с последующим использованием остаточной тепловой энергии указанной части потока горячих газов (1) для увеличения мощности на валу (30, 31) турбомашины (20, 20а, 20b), оставляя большую часть потока горячих газов (1) невозмущенной.

Изобретение относится к энергетическому машиностроению и может быть использовано в конструкциях турбокомпрессорных установок с замкнутым термодинамическим циклом Брайтона.

Когенерационная газотурбинная энергетическая установка содержит компрессоры низкого и высокого давления, камеру сгорания, газовую турбину высокого давления и газовую турбину низкого давления, имеющие между собой газовую связь, теплофикационное устройство и основной электрический генератор, подсоединенный к газовой турбине высокого давления и используемый в качестве полезной нагрузки.

Изобретение относится к воздухоочистительным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой (ГТУ). .

Изобретение относится к воздухоочистительным устройствам и может использоваться в составе газоперекачивающего агрегата с газотурбинной установкой (ГТУ). .
Изобретение относится к энергетике, а именно к системам генерации тепла для систем отопления и электроэнергии. В результате применения изобретения происходит прямое использование тепловой энергии продуктов сгорания топлива при одновременном получении тепла и электроэнергии за счет формирования смешанного потока продуктов сгорания и воздуха в камере смешения эжектора, который на выходе из эжектора имеет давление выше, чем давление воздуха на входе в эжектор.

Группа изобретений относится к регенеративным подогревателям. Теплоутилизационный парогенератор содержит корпус, змеевик испарителя низкого давления, разгонный змеевик предварительного подогрева выше по потоку от него и змеевик подогревателя питательной воды ниже по потоку от него.

Изобретение предназначено для выработки электроэнергии на энергетических установках газораспределительных станций и на газорегуляторных пунктах. Природный газ высокого давления расширяют в турбодетандере и снижают его давление до уровня, требуемого конкретному потребителю, поддерживая его температуру не менее 278 К.

Изобретение относится к способу получения водорода и генерирования энергии. Способ включает стадии, на которых: (a) газообразное углеводородное сырье подвергают эндотермической реакции парового риформинга контактированием в зоне реакции парового риформинга для получения газообразной смеси, содержащей водород и монооксид углерода; (b) извлекают водород из указанной смеси; (c) подают топливо и окислитель в турбину, содержащую последовательно компрессор, камеру горения и турбину расширения, где топливо сжигают со сжатым окислителем в камере горения с получением потока дымового газа; (d) подают по меньшей мере часть указанного потока дымового газа в турбину расширения для генерирования энергии и для получения отходящего газа турбины; (e) обеспечивают теплоту для указанной эндотермической реакции риформинга приведением потока горячего газа, генерированного на стадии (с) и/или стадии (d), в теплообменный контакт с зоной реакции парового риформинга, и на стадии (f) сжижают водород, извлеченный на стадии (b), подвергая извлеченный водород циклу сжижения, содержащему охлаждение и компримирование водорода.

Изобретение относится к энергетике. Система труб для передачи тепла из потока выхлопного газа питательной воде, содержащая экономайзер, который включает в себя четыре секции, а также теплообменник и множество клапанов.

Утилизационная турбоустановка содержит турбогенератор, силовую газовую турбину, газоохладитель, дожимающий компрессор. Силовая газовая турбину кинематически связана с турбогенератором и сообщена на входе по газу с выходом источника горячего газа по газу.

Изобретение относится к энергетическим установкам, предназначенным для выработки парогазовых смесей. Парогазогенератор содержит охлаждаемую горючим камеру, смесительную головку, включающую в себя корпус, на торцах которого закреплены верхнее и нижнее днище, промежуточное днище, расположенное между корпусом и верхним днищем, коллектор окислителя, установленный на корпусе, центробежную форсунку горючего, расположенную на оси смесительной головки, струйно-центробежные форсунки, расположенные равномерно по окружности и включающие в себя полый наконечник с винтовыми каналами и втулку, охватывающую с кольцевым зазором наконечник и соединяющую полость окислителя с полостью камеры, при этом осевой канал наконечника соединяет полость балластирующего компонента с полостью камеры, а полость горючего соединена с полостью камеры через тангенциальные отверстия, выполненные на цилиндрической поверхности центробежной форсунки горючего, причем полость тракта охлаждения камеры сообщается с полостью горючего смесительной головки.

Изобретение относится к газотранспортному оборудованию и может быть использовано при создании газотурбинных газоперекачивающих агрегатов. Газоперекачивающий агрегат с системой рекуперации тепла, содержащий газотурбинный двигатель, центробежный компрессор, воздухоочистительное устройство с противообледенительной системой, газовыхлопной тракт, систему рекуперации тепла отработавших газов.

Изобретение относится преимущественно к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую. Способ преобразования энергии предусматривает подачу в камеру сгорания сжатого воздуха и парометановодородной смеси, расширение продуктов ее сгорания в газотурбинной установке; последующее их охлаждение в утилизаторе путем испарения с образованием водяного пара высокого давления, который смешивают с природным газом с получением метансодержащей парогазовой смеси, которую пропускают через каталитический реактор конверсии метана с образованием на выходе парометановодородной смеси, охлаждаемой затем до температуры, не превышающей температурный диапазон 200÷240°C, с одновременной частичной конденсацией водяного пара, содержащегося в парометановодородной смеси, подаваемой в охлажденном виде в камеру сгорания газотурбинной установки; получение из конденсата водяного пара низкого давления, направляемого в свободную силовую газовую турбину.

Двухкамерная газотурбинная установка содержит последовательно расположенные компрессор (1), первую камеру сгорания (2), турбину высокого давления (3), вторую камеру сгорания (4), турбину низкого давления (5) и газовоздушный теплообменник (7).
Наверх