Теплоаккумулирующий состав

Изобретение относится к теплоэнергетике, в частности к разработке теплоаккумулирующих составов. Теплоаккумулирующий состав включает 11.4-12.0 мас.% фторида лития, 63.3-63,8 мас.% сульфата лития и 24,4-25,0 мас.% карбоната лития. Теплоаккумулирующий состав имеет работоспособность в интервале температур 476 - 480°С. Обеспечивается увеличение теплоаккумулирующей способности. 1 табл., 3 пр.

 

Предлагаемое изобретение относится к теплоэнергетике, в частности к разработке теплоаккумулирующих составов на базе фторидов, карбонатов и сульфатов лития, которые могут быть использованы для поддержания заданного интервала температур, представляющих интерес для теплотехники.

Известен теплоаккумулирующий состав содержащий: хлорид калия, фторид натрия, фторид калия, фторид лития, температура плавления соответствует 440-448°С (А.с. №1102800 Васина Н.А., Грызлова Е.С., Коробов Е.А., Кондратенков В.И. Теплоаккумулирующий состав 15.07.84 Бюл. №26);

Однако предлагаемая композиция способна аккумулировать тепловую энергию в интервале температур от 440 до 448°С.

Известен так же тепловой элемент способный аккумулировать тепловую энергию. (Патент US №4421661 А1 от 20.12.1983 г. Institute of gas Technology).

Однако в данном патенте не приводятся данные о величинах энтальпий фазовых переходов при соответствующих температурах.

Известен теплоаккумулирующий состав содержащий фторид стронция, хлорид стронция и хлорид натрия, температура кристаллизации расплава 499-502°С, удельная энтальпия плавления 315-318 Дж/г. (Патент РФ №2405019. Васильченко Л.М., Сотова Н.В. Теплоаккумулирующий состав Опубл.: 27.11.2010. Бюл. №33).

Однако предлагаемый состав способен аккумулировать тепловую энергию при 499-502°С.

Наиболее близким по составу к рассматриваемому образцу, и обладающему теплоаккумулирующими параметрами является композит, содержащий фторид, сульфат и бромид лития. Температура плавления указанной смеси 421-426°С, удельная энтальпия плавления 232-249 Дж/г.

Недостатком приведенных источников является невысокая удельная энтальпия плавления (Патент РФ №2326920. Флоров Е.И., Губанова Т.В., Гаркушин И.К., Егорцев Г.Е., Кондратюк И.М. Бюл. №17 от 20.06.2008). Этот состав поддерживает температуру при 421-426°С.

Недостатком данного состава является низкая удельная энтальпия плавления.

Задача изобретения - увеличение теплоаккумулирующей способности.

Достижение технического результата связано с увеличением удельной энтальпии плавления на 60-65 Дж/г.

Сущность изобретения в том, что в теплоаккумулирующий состав, включающий фторид, сульфат и бромид лития, качестве бромида лития взят карбонат лития, при следующем соотношении компонентов (мас. %):

LiF 11,4-12.0
Li2SO4 63,3-63,8
Li2CO3 24,4-25,0

Технический результат достигается тем, что при введении именно в таком соотношении компонентов в двойную смесь карбоната лития повышается энтальпия плавления до 305-315 Дж/г.

Примеры конкретного исполнения.

Температуры фазовых переходов и удельная энтальпия плавления определялись на установке синхронного термического анализа STA 449 F3 Phoenix, фирмы Netzsch, предназначенный для работы в интервале температур от комнатной до 1500°С, в атмосфере инертных газов. В качестве инертного газа использовался аргон. Квалификация исходных реактивов: LiF - «ос.ч.»; Li2SO4 и Li2CO3 - «ч.д.а.».

В электропечи установки синхронного термического анализа STA 449 F3 Phoenix, плавились безводные соли.

Пример 1. 0.0118 г (11,8 мас. %) LiF + 0.0638 г (63,8 мас. %) Li2SO4 + 0.0244 г (24,4 мас. %) Li2CO3. Температура плавления сплава 476°С, энтальпия плавления ΔmH = 315 Дж/г.

Пример 2. 0.0120 г (12.0 мас. %) LiF + 0.0633 г (63.3 мас. %) Li2SO4 + 0.0247 г (24,7 мас. %) Li2CO3. Температура плавления сплава 478°С, энтальпия плавления ΔmH = 305 Дж/г.

Пример 3. 0.0114 г (11.4 мас. %) LiF + 0.0636 г (63.6 мас. %) Li2SO4 + 0.0250 г (25,0 мас. %) Li2CO3. Температура плавления сплава 480°С, энтальпия плавления ΔmH = 310 Дж/г.

За пределами указанных концентраций температура плавления повышается и нарушается однофазность, снижается энтальпия фазового перехода, что приводит к неравномерному тепловыделению

В таблице приведены сравнительные характеристики физико-химических свойств прототипа и предлагаемого нами состава.

Таким образом, по сравнению с прототипом предлагаемый состав имеет существенные преимущества: обеспечивает работоспособность теплового аккумулятора в интервале температур 476-480; на 66-83 Дж/г выше удельная энтальпия плавления.

Предлагаемый состав может быть использован в качестве теплоносителя, теплонакопителя и флюса при сварке цветных металлов.

Теплоаккумулирующий состав, включающий фторид и сульфат лития, отличающийся тем, что он дополнительно включает карбонат лития при следующем соотношении составов компонентов (мас. %):

LiF 11,4-12,0
Li2SO4 63,3-63,8
Li2CO3 24,4-25,0

и имеет работоспособность в интервале температур 476-480°С.



 

Похожие патенты:

Изобретение относится к композиции для переноса тепла. Композиция содержит трифторэтилен (HFO-1123) и по меньшей мере одно первое соединение, выбранное из E-1,2-дифторэтилена, Z-1,2-дифторэтилена, 1,1-дифторэтилена, хлортрифторэтилена, E-1-хлор-1,2-дифторэтилена, Z-1-хлор-1,2-дифторэтилена, 1,1,2-трифторэтана и метана.

Изобретение относится к области биохимии. Предложена солнечная биогазовая установка для сбраживания биомассы с получением биогаза.

Изобретение относится к материалу с фазовым переходом (РСМ) для использования в системах хранения энергии. Материал с фазовым переходом (РСМ) содержит бромид стронция и по меньшей мере один галоид металла, РСМ обладает фазовым переходом в диапазоне температур в пределах приблизительно от 76°С до 88°С.

Хладагент // 2654721
Изобретение относится к смеси фторуглеводородных (HFC) хладагентов для применения в тепловом насосе, а также для систем кондиционирования воздуха и других систем тепловой накачки.

Изобретение относится к области создания теплопроводящих материалов и может быть использовано для сопряжения теплонапряженных различных устройств и деталей. Теплопроводная паста содержит теплопроводный неорганический наполнитель в виде частиц нитрида алюминия и связующее в виде органического полисилоксана, причем в качестве органического полисилоксана используют полидиметилсилоксан, а частицы нитрида алюминия имеют неправильную форму размером 110-300 мкм, которые составляют 80-100% по массе всех частиц, остальное - частицы размером до 100 нм.

Изобретение относится к полимерным теплопроводящим электроизоляционным композиционным материалам (КМ) и может быть использовано при изготовлении теплоотводящих элементов, в том числе радиаторов охлаждения, в электротехнических и электронных устройствах различного назначения.

Изобретение относятся к кондиционеру воздуха с компрессором, использующим хладагент R32. Он содержит компрессор для сжатия хладагента; наружный теплообменник; внутренний теплообменник; и расширительный клапан для уменьшения давления хладагента, причем хладагент образован из гидрофторуглерода (HFC); компрессор содержит компрессорный узел для сжатия хладагента, узел электродвигателя для передачи вращающей силы компрессорному узлу через вращающийся вал, соединенный с компрессорным узлом, и участок для вмещения компрессорного масла для содержания компрессорного масла с целью уменьшения трения между вращающимся валом и компрессорным узлом и понижения температуры компрессора; и масло содержит углеродную наночастицу, при этом объем компрессорного масла составляет около 35-45% от эффективного объема внутренней части компрессора, причем эффективным объемом является объем, полученный путем вычитания объемов узла электродвигателя и компрессорного узла из общего объема компрессора.

Изобретение относится к области теплотехники, в частности к производству легковесных огнеупорных теплоизоляционных изделий. Композиция включает связующее и легкий заполнитель и дополнительно содержит карбамидофурановую смолу марки ФК и катализатор отверждения марки ОК в количестве 10% от массы смолы.
Изобретение относится к использованию углеродного соединения Михаэля для уменьшения теплопередачи. Описан способ использования углеродного соединения Михаэля для уменьшения теплопередачи, включающий: локализацию углеродного соединения Михаэля между теплопередатчиком и теплоприемником, где углеродное соединение Михаэля представляет собой продукт реакции многофункционального акрилатного соединения с многофункциональным донором Михаэля; и теплопередатчик имеет температуру от 100 до 290°С.

Изобретение относится к пищевой промышленности, а именно, к способам производства замороженных овощных полуфабрикатов, состоящих из мелкого и среднего размеров плодов в целом и нарезанном на куски виде, разделенном на порции.
Изобретение относится к органическим теплоносителям, которые могут быть использованы для обогрева и охлаждения технологической аппаратуры в широких областях промышленности.

Изобретение относится к гибким листовым материалам из РСМ с большой плотностью накопления скрытой тепловой энергии для применения при регулировании тепловой энергии.

Изобретение относится к материалу с фазовым переходом (РСМ) для использования в системах хранения энергии. Материал с фазовым переходом (РСМ) содержит бромид стронция и по меньшей мере один галоид металла, РСМ обладает фазовым переходом в диапазоне температур в пределах приблизительно от 76°С до 88°С.

Изобретение относится к материалу с фазовым переходом (РСМ) для использования в системах хранения энергии. Материал с фазовым переходом (РСМ) содержит бромид стронция и по меньшей мере один галоид металла, РСМ обладает фазовым переходом в диапазоне температур в пределах приблизительно от 76°С до 88°С.

Изобретение относится к теплоаккумулирующим составам, которые могут быть использованы для поддержания заданного интервала температур, представляющих интерес для теплотехники.

Изобретение относится к устройству для ингаляции, включающему источник тепла. В качестве источника тепла предлагается состав на основе тригидрата ацетата натрия (SAT), выполненный с возможностью нагрева содержащегося в устройстве нагреваемого материала.

Изобретение относится к теплоаккумулирующим составам, которые могут быть использованы для поддержания заданного интервала температур и предназначены для использования в теплотехнике.

Изобретение относится к парафиновому воску, полученному способом Фишера-Тропша. Полученный способом Фишера-Тропша парафиновый воск содержит парафины, имеющие от 9 до 24 атомов углерода, имеет температуру плавления в диапазоне от 15 до 32°С, количество полученных способом Фишера-Тропша парафинов, имеющих от 16 до 18 атомов углерода, составляет в нем по меньшей мере 85% масс.

Изобретение относится к композиционному материалу для термического накопителя энергии с термопластичным материалом, а также к способу получения такого композиционного материала.

Изобретение относится к области электротехнической промышленности, в частности к разработке составов, включающих бромиды, метаванадаты, молибдаты калия и лития, которые применяются в качестве расплавляемых электролитов в химических источниках тока.

Изобретение относится к теплоэнергетике, в частности к разработке теплоаккумулирующих составов. Теплоаккумулирующий состав включает 11.4-12.0 мас. фторида лития, 63.3-63,8 мас. сульфата лития и 24,4-25,0 мас. карбоната лития. Теплоаккумулирующий состав имеет работоспособность в интервале температур 476 - 480°С. Обеспечивается увеличение теплоаккумулирующей способности. 1 табл., 3 пр.

Наверх