Способ получения антитурбулентной присадки к органическим средам, в том числе к нефти для снижения гидродинамического сопротивления при их перекачке по трубопроводам



Способ получения антитурбулентной присадки к органическим средам, в том числе к нефти для снижения гидродинамического сопротивления при их перекачке по трубопроводам
Способ получения антитурбулентной присадки к органическим средам, в том числе к нефти для снижения гидродинамического сопротивления при их перекачке по трубопроводам

Владельцы патента RU 2675701:

Федеральное государственное унитарное предприятие "Ордена Ленина и ордена Трудового Красного Знамени Научно-исследовательский институт синтетического каучука имени академика С.В. Лебедева" (ФГУП НИИСК) (RU)

Изобретение относится к химии высокомолекулярных соединений. Описан способ производства антитурбулентной присадки к органическим средам, в том числе к нефти для снижения гидродинамического сопротивления при их перекачке по трубопроводам, заключающийся в каталитической полимеризации гексена в присутствии (70-88) объемных % растворителя, титаномагниевого катализатора и алюминийорганического сокатализатора до содержания полимера (5-10) мас.% с получением раствора полимера, и выделения полимера из раствора методом водной дегазации с подачей раствора через паровое инжекторное устройство, при этом в полимеризат предварительно вводится смесь фенольного и аминного антиоксиданта, стабилизированное катионоактивным ПАВ, выбранным из группы четвертичных аммониевых солей при общей дозировке антиоксиданта 0,5-1,0 мас.% на полимер и весовым соотношении ПАВ : антиоксидант, равным (0,05-0,1):1,0, с последующим отделением крошки полимера от воды на вибросите, смешением крошки полимера с дисперсионной средой и дроблением крошки до размера 0,5-1 мм. Технический результат - разработка промышленного высокопроизводительного способа производства дисперсии поли-альфа-олефинов для получения из сверхвысокомолекулярных поли-альфа-олефинов, являющихся антитурбулентными присадками к органическим жидкостям без деструкции поли-альфа-олефинов на стадиях дегазации и дробления. 5 пр., 1 табл.

 

Изобретение относится к химии высокомолекулярных соединений, конкретно к способу получения сверхвысокомолекулярных поли-альфа-олефинов, которые являются веществами эффективно снижающими гидродинамическое сопротивление движению органических жидкостей по трубопроводам, так называемыми антитурбулентными присадками. Добавление поли-альфа-олефинов в небольших количествах к органическим жидкостям (5÷50) ррт при транспортировке по трубопроводам снижает гидродинамическое сопротивление, например, нефти на 25÷40%.

Известны методы получения антитурбулентных присадок путем полимеризации альфа-олефинов с числом углеродных атомов 2÷30 в органическом растворителе под действием катализаторов Циглера-Натта, включающих треххлористый титан и сокатализаторы, различные варианты алкилалюминия и алкилалюминий хлоридов с различными добавками [Пат. США №4415714, 1983 г.; Пат. США №4289679, 1981 г.]. Полимеризацию проводят в углеводородном растворителе: бутан, пентан, гексан, гептан, октан, бензол, толуол, ксилол и др. При этом возможно проведение полимеризации в легкокипящем растворителе, (например, бутане) с последующей заменой его на менее пожаровзрывоопасный (например, керосин). Полимеризацию проводят при перемешивании, отмечая при этом, что перемешивание не должно быть интенсивным. Интенсивное перемешивание снижает молекулярную массу полимера, что приводит к ухудшению антитурбулентных свойств. Получают полимер с концентрацией ≤20% и характеристической вязкостью (7÷8) дл/г (по методу Single-Buld).

Отсюда очевидно, что эти способы не позволяют получить полимер со сверхвысокой молекулярной массой (≥10000000), а следовательно, с высокой эффективностью антитурбулентного действия.

Известен способ получения антитурбулентной присадки суспензионного типа путем проведения полимеризации альфа-олефинов на катализаторах Циглера-Натта в среде перфторированных алканов с последующей их заменой на дисперсионную среду, содержащую антиагломератор, с использованием в качестве дисперсионной среды спиртов, гликолей, моно- или ди-эфиров гликолей [Пат. РФ №2443720, 2012 г. ].

Данный способ позволяет получать суспензию высокомолекулярного полиолефина с концентрацией ~ 30%, при этом молекулярная масса полимера составляет (5,7÷7,5)⋅106 угл. ед. Использование такого полимера в качестве антитурбулентной присадки в дозировке 14÷17 ppm снижает гидродинамическое сопротивление перекачиваемой углеводородной жидкости на 30%.

Недостатком данного технического решения является необходимость использования труднодоступных дорогостоящих перфторированных углеводородов, в среде которых ведется полимеризация, что делает проблематичной промышленную реализацию способа.

Известен также способ получения полигексена-1 путем полимеризации гексена-1 в инертной атмосфере в гептане в присутствии каталитической системы, полученной обработкой графита алюминийорганическим соединением, затем четыреххлористым титаном с последующим удалением под вакуумом непрореагировавших с графитом компонентов каталитической системы и дальнейшим активированием полученного продукта триэтилалюминием или диэтилалюминийхлоридом при молярном соотношении Al(C2H5)2Cl:Ti=(3,5+28,3):1,0 [Пат. РФ №2073024,1997 г.].

В соответствии с данным способом получают полимер в виде суспензии, содержащей ~ 30% графита в смеси гептана с непрореагировавшим мономером. После чего полимер отделяют высаждением спиртом и отмывают от остатков катализатора. В результате получают полимер с молекулярной массой 0,4÷14,7⋅106 угл. ед. Однако сложности всех описанных процедур получения полимера делают способ малопригодным для практической реализации.

Известен способ, реализованный в промышленности, получения сверхвысокомолекулярных поли-альфа-олефинов, используемых в качестве антитурбулентных присадок, путем проведения полимеризации альфа-олефинов в массе с использованием катализаторов Циглера-Натта при сильном охлаждении и без перемешивания реакционной массы [Пат. США №4720397, 1988 г.; Пат. США №4826728,1989 г.; Пат. США №4837249,1989 г.; Пат. США №5504131,1996 г.; Пат. США №6939902, 2005 г.].

В связи с тем, что полимеризация проходит с выделением большого количества тепла, реакционная масса разогревается. Повышение температуры приводит к деструкции полимера, то есть снижению его молекулярной массы. Во избежание этого явления приходится использовать специальные реакторы - как правило, цилиндрические контейнеры с диаметром цилиндра не более девяти дюймов. В этом случае осуществляется эффективный отвод тепла реакции. Образовавшийся полимер подвергают криогенному измельчению и из измельченной массы изготавливают суспензию в среде органического продукта, не растворяющего полимер, например, алифатических спиртов [Пат. США №6172151, 2001 г.; Пат. США №7012046, 2006 г. ].

Таким способом получают сверхвысокомолекулярные поли-альфа-олефины (молекулярная масса, Mw≥10000000 угл. ед.). Эти полимеры являются эффективными антитурбулентными присадками, снижающими гидродинамическое сопротивление при транспортировании углеводородных жидкостей по трубопроводу на 30 и более %.

Недостатки способа связаны с его низкой производительностью: необходимо использовать большое количество специфических реакторов, время полимеризации исчисляется неделями, невозможно введение и распределения антиоксиданта, необходимого для хранения полигексена.

Известен также способ получения высокомолекулярного полигексена, обладающего свойствами агента снижения гидродинамического сопротивления, путем полимеризации гексена-1 в присутствии каталитической системы, включающей четыреххлористый титан на магнийсодержащем носителе, электродонорное соединение и сокатализатор, состоящий из триалкилалюминия и электродонорного соединения, полимеризацию проводят при температуре 0÷50°С [Пат. РФ №2230074, 2004 г. ].

Данный способ позволяет получать высокомолекулярный полигексен с характеристической вязкостью (1,2÷1,71) м3/кг.

Полимеризацию гексена-1 проводят в среде углеводородного растворителя (гептан). Выделение полимера из раствора осуществляют высаживанием изопропиловым спиртом.

Однако в условиях промышленного производства поли-альфа-олефинов, применяемых для изготовления антитурбулентных присадок, как на стадии полимеризации, так и на стадии выделения полимера из раствора в виде дисперсии в органическом веществе, не растворяющем поли-альфа-алефин, сопровождается термическим или термо-механическим воздействием. В результате этого воздействия происходит деструкция свервысокомолекулярного полимера, молекулярная масса полимера и его характеристическая вязкость снижаются.

Проведение полимеризации гексена-1 в массе или в условиях, обеспечивающих минимальную деструкцию полимера за счет регулирования числа оборотов мешалки при величине критерия Рейнольдса в диапазоне 400-2700 об/мин [Пат РФ №2576004, 02.02.2016 г].

Что же касается предотвращения деструкции полигексена на последующих стадиях производства антитурбулентной присадки (дегазация, дробление крошки до размера (0,5-1,0) мм) технического решения не приводится ни в данном патенте, ни в другой литературе.

Как показывает практический опыт при термическом и механическом воздействии прежде всего деструктируют высокомолекулярные фракции, и образуются полимеры с молекулярной массой менее 5 млн. угл. ед., даже при наличии фенольного антиоксиданта НГ-2246, и их доля увеличивается с (3-5) % масс до (30-40) % масс, а низкомолекулярные фракции не эффективны как антитурбулентные присадки.

Наиболее близким по техническому решению является способ по патенту [Пат.РФ №2590535, 02.09.2015 г].

Согласно этому способу через мерники в емкостной аппарат полимеризатор в токе азота поместили при перемешивании подготовленные гексен-1 (мономер, полимеризационной чистоты, t кипения 63°С) и циклогексан (растворитель, полимеризационной чистоты, t кипения 80,74°С) в соотношении (1:3,5) по массе. Приготовленную таким образом шихту циклично вакуумировали и барботировали азотом (ОСЧ, 99,999%) при перемешивании до остаточного содержания кислорода в отходящем газе 0,0006%. Температуру реакционной массы поддерживали минус 20,0°С.

Дополимеризационную подготовку мономера и растворителя осуществляли путем осушения компонентов шихты на цеолитах до суммарного остаточного содержания влаги не более 0,0005% масс.

Далее в полимеризатор через мерники загрузили 10% раствор триэтилалюминия (алюминийорганический сокатализатор) в циклогексане и вели перемешивание в течение 20 минут. Еще через 20 минут добавили модифицированный титан-магниевый катализатор и вели перемешивание в течение 5 минут, после чего перемешивание было прекращено и реакционную массу выдержали при -20°С в течение 50 часов. Соотношение альфа-олефин : катализатор (в расчете на Ti составило 105:1, а катализатор (в расчете на Ti): алюминийорганический сокатализатор (в расчете на ТЭА) составило 1:10 по массе.

Полученный раствор полимера в углеводородном растворителе (с одновременным определением степени конверсии мономера) через форсунки с диаметром сопла 1 мм передавили в диссольвер с приготовленной смесью этилцеллозольва (10%), рапсового масла (44%), стеарата кальция (6%) и агидола-1 (0,05%), подогретой до 95°С, где вели отгонку циклогексана и оставшегося гексена-1 до прекращения конденсации их паров, после чего полученную суспензию полимера передали на ленточный пресс-фильтр, где произвели концентрирование суспензии с одновременной ее доочисткой от остаточных содержаний циклогексана и гексена-1 (содержание полимера в товарной форме составило 40% массовых). Напряжение сдвига при прохождении раствора полимера через сопла форсунок составило ровно 85 с-1. Процесс занял длительное время, агломерирования частиц не наблюдалось.

Сконденсированные пары разделили на ректификационной колонне, после чего направили мономер и растворитель на отмывку водой и осушение на цеолитах, а дисперсионную среду - в диссольвер, для их повторного использования.

Степень конверсии составила 97% по мономеру и 22% по всей смеси в целом.

Снижение гидродинамического сопротивления (DE) н-гексана суспензией ПТП в количестве 16 ppm составило 46,3%.

Размер 90% частиц дисперсионной фазы составил от 60 до 150 мкм.

Средневязкостная молекулярная масса полимера в массе перед подачей его в диссольвер, определенная методом гельпроникающей хроматографии, составила 2,027-107 а.е.м., а молекулярная масса полимера в полученной ПТП 1,974-107 а.е.м.

К недостаткам указанного способа, затрудняющего промышленную реализацию является:

- большая продолжительность процесса полимеризации (50 часов);

- низкая производительность выделения полимера и дегазации растворителя и остатков гексена-1, из-за низкой пропускной способности форсунки;

- высокая температура дегазации (95°С) и продолжительное время пребывание полигексена в зоне высокой температуры;

- использование пресс-фильтра приводит к слипанию крошки.

Целью настоящего изобретения является разработка промышленного высокопроизводительного способа производства дисперсии поли-альфа-олефинов для получения из сверхвысокомолекулярных поли-альфа-олефинов, являющихся антитурбулентными присадками к органическим жидкостям без деструкции поли-альфа-олефинов на стадиях дегазации и дробления.

Поставленная цель достигается:

1. Проведением полимеризации альфа-олефинов в массе или среде органического растворителя, с использованием катализаторов Циглера-Натта, при перемешивании, осуществляемом с интенсивностью, обеспечивающей для исходной полимеризационной шихты соблюдение центробежного критерия Рейнольдса в диапазоне 400÷2700, при температуре (0÷30)°С, с получением полимера с характеристической вязкостью не менее 1,7 м3/кг.

2. Полимеризацией альфа-олефинов в органическом растворителе с конверсией мономеров в полимер (30-85) % масс.

3. Выделением поли-альфа-олефина водной дегазацией в присутствии фенольного и аминного антиоксиданта и изготовление суспензии при механическом дроблении полимера.

Изобретение иллюстрируется примерами конкретного исполнения.

Пример 1. В реактор объемом 3 м3 в атмосфере азота загружали 2,2 м3 очищенную примесей шихту, содержащую растворитель - нефрас и 12,5% масс гексен-1. Реактор снабжен рамной мешалкой с регулируемым числом оборотов, рубашкой рассольного охлаждения, приборами для контроля давления и температуры.

Далее включали охлаждение и при температуре 0°С подавали 9 литров раствора триизобутилалюминия в нефрасе (концентрация 4%). Перемешивали шихту со скоростью мешалки 48 об/мин, вводили суспензию титано-магниевого катализатора (25 г по титану) и перемешивают с той же скоростью в течение 10 минут. Затем устанавливали скорость вращения мешалки 10 об/мин (соответствует R=400). Момент введения катализатора отмечали как начало полимеризации. Полимеризацию проводили при температуре (0-6)°С до конверсии мономера в полимер 85%. Время полимеризации 10 часов, характеристическая вязкость полигексена из раствора - 21 дл/г.

Раствор полимеризата смешивали в потоке с 20 литрами раствора смеси антиоксидантов: дифенилфенилендиамин (ДФФД) и Агидол-2 (НГ-2246) в соотношении 1,0: 1,0 в нефрасе при общей дозировке антиоксидантов 0,5% масс на полигексен с добавкой катионоактивного поверхностно-активного вещества (ПАВ) полидиметилдиаллиламмоний хлорида (торговое название ВПК-402) в количестве 0,1% масс на полигексен.

ПАВ вводили для лучшего распределения антиоксидантов в вязкой среде полимеризата.

Полимеризат заправляли антиоксидантами через паровое инжекторное устройство, ПАВ насосами подавали на первую ступень водной дегазации, в которой при температуре 105°С за счет пара осуществляли отгонку растворителя нефраса и остатков гексена-1 с образованием водной пульпы полимера, содержащей антиагломератор - кальциевая соль алкилсульфонатов в количестве 2% масс на полимер. Водная пульпа полимера насосом подавалась на вторую ступень водной дегазации для окончательной отгонки остатков растворителя нефраса и гексена-1, которые через систему конденсации собирались в сборник и далее направлялись на очистку. Со второй ступени дегазации водную пульпу полимера подавали на вибросито, где отделяли воду, а крошку полимера подавали в емкость с мешалкой, содержащей 125 литров этилцелозольва, 125 литров бутанола, 2% масс SiO2 и 5% масс бисстеариламида. Получали «грубую» дисперсию полигексена и подавали на дробилку (мельницу), после чего дисперсию полигексена собирали в поластиковый куб объемом 1 м3.

В полученной дисперсии полигексена определяли, характеристическую вязкость полигексена, ММР полигексена, концентрацию полигексена в дисперсии. Результаты анализов приведены в таблице 1.

Пример 2. Получение полигексена проводили по примеру 1 с использованием в качестве растворителя - смесь нефраса и циклогесана в соотношении 70:30, а в качестве антиоксиданта использовалась смесь антиоксиданта Агидол-2 и параалкиламинодифенил амина (С-789) в количестве 0,5% масс. Конверсия мономеров в полимер 90%. Время полимеризации 6 часов.

Пример 3. Получение полигексена проводили по примеру 1 с использованием антиоксиданта - смесь антиоксидантов дифенилфенилендиамина (ДФФД) и Агидола-2 (НГ-2246) в количестве 0,5% масс на полимер.

Пример 4. Получение полигексена проводили по примеру 1 с использованием антиоксиданта антиоксиданта - смесь антиоксидантов дифенилфенилендиамина (ДФФД) и Агидола-2 (НГ-2246) в количестве 0,8% масс на полимер

Пример 5. По прототипу - с антиоксидантом Агидол-1.

Результаты анализов приведены в таблице 1.

Таким образом, примеры иллюстрируют, что дисперсия полигексена может быть получена в промышленных объемах по предлагаемому способу с исключением недостатков технологии по известному способу и высокой эффективности антитурбулентной присадки.

Способ производства антитурбулентной присадки к органическим средам, в том числе к нефти для снижения гидродинамического сопротивления при их перекачке по трубопроводам, заключающийся в каталитической полимеризации гексена в присутствии (70-88) объемных % растворителя, титаномагниевого катализатора и алюминийорганического сокатализатора до содержания полимера (5-10) мас.% с получением раствора полимера, и выделения полимера из раствора методом водной дегазации с подачей раствора через паровое инжекторное устройство, при этом в полимеризат предварительно вводится смесь фенольного и аминного антиоксиданта, стабилизированное катионоактивным ПАВ, выбранным из группы четвертичных аммониевых солей при общей дозировке антиоксиданта 0,5-1,0 мас.% на полимер и весовом соотношении ПАВ : антиоксидант, равным (0,05-0,1):1,0, с последующим отделением крошки полимера от воды на вибросите, смешением крошки полимера с дисперсионной средой и дроблением крошки до размера 0,5-1 мм.



 

Похожие патенты:

Изобретение относится к каталитической системе для получения полиолефинов. .

Изобретение относится к катализаторам (со)полимеризации этилена, содержащим триоксид хрома, нанесенный на твердый неорганический носитель оксидной природы, т.е. .

Изобретение относится к способу получения катализатора для полимеризации олефинов и процессу полимеризации олефинов. Способ получения катализатора для полимеризации олефинов осуществляют путем контактирования металлического магния с органическим галогенидом RX, в котором R является органической группой, содержащей от 5 до 20 атомов углерода, X является атомом галогена, с образованием растворимого продукта (I), с последующим добавлением к продукту (I) соединения кремния, содержащего алкоксигруппу или арилоксигруппу, с образованием твердого продукта (II), и последующей обработки продукта (II) четыреххлористым титаном и электронодонорным соединением, контактирование металлического магния с органическим галогенидом RX проводят в присутствии ароматического углеводорода, содержащего от 6 до 10 углеводородных атомов.

Описаны каталитические системы и способы их получения. Способ включает выбор каталитической смеси с помощью карты комбинированного коэффициента полидисперсности (bPDI).

Изобретение относится к этилен/альфа-олефиновому сополимеру, характеризующемуся превосходной перерабатываемостью. Этилен/альфа-олефиновый сополимер имеет плотность 0,930-0,950 г/см3, СТР5 0,1-5, соотношение скоростей течения расплава СТР21,6/СТР5 10-200.

Изобретение относится к способу полимеризации олефинов. Способ включает приведение в контакт этилена и по меньшей мере одного сомономера с каталитической системой с получением мультимодального полимера полиолефина.

Изобретение относится к этилен/альфа-олефиновым сополимерам. Полимер содержит этилен и по меньшей мере один альфа-олефин с 4-20 атомами углерода.

Изобретение относится к полимерам на основе олефинов. Предложен Полимер на основе олефинов, имеющий молекулярно-массовое распределение (Mw/Mn) от 5 до 30; отношение показателей текучести расплава (MFR21.6/MFR2.16) от 35 до 200, измеренное при 190°C согласно ASTM1238; наклон кривой зависимости комплексной вязкости (η*[Па·с]) от частоты (ω[рад/с]) составляет от -0,8 до -0,2 и индекс CI (индекс сомономерного включения) от 0,5 до 5, CI-индекс определяется по формуле CI-индекс=содержание SCB по высокомолекулярной стороне - содержание SCB по низкомолекулярной стороне/содержание SCB по низкомолекулярной стороне; где содержание SCB (содержание короткоцепного разветвления) представляет собой содержание ветвей боковых цепей с 2-7 атомами углерода на 1.000 углеродов (единиц разветвления/1.000C), и содержание SCB по низкомолекулярной стороне и содержание SCB по высокомолекулярной стороне представляют собой содержания SCB по левой границе и по правой границе соответственно центрированной 60%-площади, исключая по 20% левого и правого концов из общей площади кривой молекулярно-массового распределения, полученной нанесением log-значения (log M) молекулярной массы (M) полимера на основе олефинов по оси x и молекулярно-массового распределения (dwt/dlog M) относительно log-значения по оси y, где полимер на основе олефина получают полимеризацией этилена и сомономера на основе альфа-олефина в присутствии гибридного металлоценового катализатора на подложке.

Настоящее изобретение относится к многокомпонентной каталитической системе для 1,4-цис-стереоспецифической полимеризации изопрена на основе, по меньшей мере: изопрена, в качестве мономера для предварительного формирования; металлической соли редкоземельного элемента фосфорорганической кислоты; инертного насыщенного алифатического или алициклического углеводородного растворителя, содержащего 5 атомов углерода, температура кипения которого меньше 40°С при атмосферном давлении; алкилирующего агента, представляющего собой триалкилалюминий формулы AlR3, в которой R обозначает алкильный радикал, содержащий от 1 до 10 атомов углерода, выбранный среди триметилалюминия, триэтилалюминия, три-н-пропилалюминия, триизопропилалюминия, три-н-бутилалюминия, три-трет-бутилалюминия, три-н-пентилалюминия, три-н-гексилалюминия, три-н-октилалюминия, три-циклогексилалюминия, и донора галогена, представляющего собой галогенид алкилалюминия, алкильный радикал которого содержит, предпочтительно, от 1 до 8 атомов углерода.

Изобретение относится к способу получения алкилалюмоксанов посредством реакции алкилалюминия с замещенным аллильным спиртом формулы ,где каждая из групп R1 и R2 независимо представляет собой алифатическую или ароматическую углеводородную группу, и R3, R4 и R5 представляют собой атомы водорода, в присутствии инертного органического растворителя.

Изобретение относится к дилитиевому инициатору для анионной (со)полимеризации. Инициатор представляет собой соединение общей формулы: Li-Х-Li, где Х определяется одной из следующих формул: -В-С-B-, -D-, -A-D-A-, -А-В-С-B-A-, -B-A-D-A-B- или -B-A-B-C-B-A-B-, где «А» представляет собой блок, образованный разветвленным или неразветвленным С4-С20 диеновым мономером, «В» представляет собой блок, образованный разветвленным или неразветвленным С4-С20 диеновым мономером или алкилстиролом, содержащими в своем составе гетероатом, выбранный из кремния, азота, фосфора, олова; «С» представляет собой блок, образованный алкенилстиролом С10-С40; «D» представляет собой блок, образованный дивиниловыми мономерами, содержащими функциональную группу, где функциональная группа дивинилового мономера включает гетероатом, выбранный из азота и кремния.

Изобретение относится к способу получения синтетических высоковязких полиальфаолефиновых базовых масел. Способ включает проведение соолигомеризации мономеров в присутствии растворителя и катализатора, образование соолигомеризата и его промывку и характеризуется тем, что проводят соолигомеризацию пропилена и октена-1 при мольном соотношении пропилен:октен от 3:4 до 2:1, парциальном давлении пропилена от 0,29 до 0,56 МПа, катализатор представляет собой смесь модифицированного метилалюминоксана ММАО-12 в толуоле и бис(изопропилциклопентадиенил)цирконий дихлорида в толуоле, имеет мольное отношение Al/Zr=(500-1000), количество Zr - (36-9) мкмоль, промытый соолигомеризат подвергают ректификации для удаления несконденсировавшихся углеводородов, непрореагировавшего мономера и димеров и гидрированию выделенной масляной фракции на 5% Ре/γ-Аl2О3 катализаторе.

Группа изобретений относится к сепаратору, работающему под давлением от 10 МПа до 50 МПа для разделения состава, содержащего жидкие компоненты и газообразные компоненты, на жидкую фракцию и газовую фракцию, способу разделения при давлении от 10 МПа до 50 МПа указанного состава и способу получения гомополимеров этилена или сополимеров из этиленненасыщенных мономеров в присутствии катализаторов полимеризации со свободными радикалами при температурах от 100°С до 350°С и давлении в пределах от 110 МПа до 500 МПа в реакторе полимеризации.

Изобретение относится к способу получения эластомеров и к эластомеру, полученному таким способом. Способ получения эластомеров заключается в том, что осуществляют полимеризацию мономеров в реакционной среде в присутствии инициирующей системы.

Настоящее изобретение относится к способам получения реакционноспособных мономерных веществ. Способ, описанный в данном документе, может применяться в ряде способов получения реакционноспособных мономеров для оптимизации применения ингибирующих полимеризацию соединений, что может обеспечивать дополнительные преимущества, такие как расширение производства или устранение блока(ов) разделения в технологической установке.

Изобретение относится к нитрильному каучуку. Нитрильный каучук содержит повторяющиеся звенья по меньшей мере одного α,β-ненасыщенного нитрильного мономера и по меньшей мере одного конъюгированного диенового мономера.

Изобретение относится к применению водной многостадийной полимерной дисперсии, полученной путем радикально инициируемой водной эмульсионной полимеризации, содержащей мягкую и жесткую фазы с соотношением жесткой фазы к мягкой фазе 25-95 мас.% к 75-5 мас.%, причем температура стеклования (Tg) мягкой фазы, полученной на первой стадии, составляет от -30 до 0°C и жесткой фазы, полученной на второй стадии - от 20 до 60°C, и содержащей звенья по меньшей мере одного мономера общей формулы (I), в которой n означает число от 0 до 2, R1, R2, R3 независимо друг от друга означают водород или метильную группу, X означает кислород или NH, и Y означает водород, щелочной металл или NH4+, для нанесения покрытий на профилированные металлические кровельные элементы.
Наверх