Устройство для транспортировки человека

Изобретение относится к транспортным средствам и может использоваться в спортивных и развлекательных целях. Устройство транспортирует человека (5), оснащенного спортивным снарядом (6), с помощью искусственно создаваемого давления воздуха (2). Содержит по крайней мере один источник сжатого воздуха (1), подаваемого в трубовидный транспортный ствол (3). При этом трубовидный транспортный ствол (3) содержит выходы (4) для воздуха (2) в количестве не менее одного. Также в устройстве в качестве источника (1) сжатого воздуха (2) применен компрессор динамического типа (осевой или центробежный). Обеспечивается транспортировка человека, оснащенного спортивным снарядом, по разным типам поверхности, в том числе имеющим перепад высот, с помощью искусственно создаваемого давления воздуха, которое способно осуществлять работу в непрерывном режиме в течение необходимого времени. 2 н. и 8 з.п. ф-лы, 5 ил.

 

Предлагаемое изобретение относится к транспортным средствам и может использоваться в спортивных и развлекательных целях.

Известны устройства для транспортировки человека искусственно создаваемым давлением воздуха, такие как пневматические подъемные устройства (например, лифты) или пневмотранспортные поезда. В таких устройствах искусственно создаваемый поток воздуха (давление воздуха) прикладывается к конструкциям транспортного средства, в то время как человек изолирован от контакта с нагнетаемым воздухом. Это объясняется тем, что для перемещения массивных конструкций требуется большой перепад давления воздуха на входе и на выходе пневмотранспортной системы, что достигается, с одной стороны, нагнетанием мощного потока воздуха на входе пневмотранспортной системы, а с другой стороны, созданием сильного разрежения на выходе. Как правило, главным транспортирующим элементом в системах пневмотранспорта является атмосферный воздух. Однако, для снижения взрывоопасное™, так как в системе создается повышенное трение, могут применяться инертные газы, например, азот. Таким образом, контакт транспортируемого человека с искусственно создаваемым потоком воздуха в таких устройствах опасен для здоровья человека.

За прототип выбрано устройство для транспортировки человека, оснащенного спортивным снарядом, с помощью искусственно создаваемого давления воздуха, предложенное в заявке на изобретение JP 2001017604 (23.01.2001, МПК А63С 17/16; А63С 19/10; Е04Н 3/14), в котором предполагалось перемещение спортсмена на скользящем спортивном снаряде по кольцевой замкнутой трассе, проложенной внутри туннельного канала. В прототипе сжатый воздух подается по одному или нескольким трубовидным каналам, которые по касательной соединены с кольцевой трассой. Для входа и выхода пользователей на кольцевую трассу предложены специальные шлюзы, отдельные для входа и выхода. Оговорена также возможность переменного по диаметру туннельного канала для ускорения или замедления человека со спортивным снарядом в нужных участках трассы.

Недостатком прототипа является то, что в нем не проработан выход нагнетаемого воздуха из устройства. Отсутствие такого выхода приведет к быстрому увеличению давления в туннельных каналах, что, в свою очередь, приведет либо к разрушению туннельных каналов, либо к прекращению подачи следующих объемов воздуха, т.е. как минимум к остановке работы устройства.

Задачей, на решение которой направлено предлагаемое изобретение, является создание устройства для транспортировки человека, оснащенного спортивным снарядом, с помощью искусственно создаваемого давления воздуха, осуществляющего работу в непрерывном режиме в течение необходимого периода времени.

Технический эффект достигается тем, что устройство для транспортировки человека, оснащенного спортивным снарядом, с помощью искусственно создаваемого давления воздуха, содержит по крайней мере один источник сжатого воздуха, подаваемого в трубовидный транспортный ствол.

В реализации устройства по п. 1 новым является то, что трубовидный транспортный ствол содержит выходы для воздуха в количестве не менее одного.

В частном случае реализации устройства по п. 2 формулы новым является то, что стенки трубовидного транспортного ствола содержат надувные отсеки.

В частном случае реализации устройства по п. 3 формулы новым является то, что по крайней мере один их выходов для воздуха с линейным размером более 0,5 метра оборудован с возможностью выезда через него человека, оснащенного спортивным снарядом.

В частном случае реализации устройства по п. 4 формулы новым является то, что по крайней мере один из выходов для воздуха, оборудованных с возможностью выезда через него человека, оснащенного спортивным снарядом, имеет в направлении выезда расширение, линейный размер которого превосходит самое узкое сечение трубовидного транспортного ствола более, чем на 1 процент.

В частном случае реализации устройства по п. 5 формулы новым является то, что по крайней мере один из выходов для воздуха, оборудованных с возможностью выезда через него человека, оснащенного спортивным снарядом, не менее чем на 5 последних метрах имеет либо твердые стенки, либо твердые опоры для мягких стенок, либо растяжки для гибких стенок.

В частном случае реализации устройства по п. 6 формулы новым является то, что устройство дополнительно содержит тамбур предстартовой подготовки, который по крайней мере по одному линейному размеру превосходит самую узкую часть транспортного ствола более чем на 5 процентов.

В частном случае реализации устройства по п. 7 формулы новым является то, что тамбур предстартовой подготовки оборудован входным каналом, в котором размещен по крайней мере один шлюз.

В реализации устройства по п. 8 формулы новым является то, что по крайней мере один источник сжатого воздуха выполнен в виде компрессора динамического типа (осевого или центробежного).

В частном случае реализации устройства по п. 9 формулы новым является то, что источник сжатого воздуха выполнен в виде осевого компрессора, в котором ширина лопасти, измеренная на расстоянии R от центра вращения ротора, занимает более 20% от расстояния между лопастей, измеренного на том же расстоянии R от центра вращения ротора, при условии, что R более 40% от общего диаметра ротора.

В частном случае реализации устройства по п. 10 формулы новым является то, что источник сжатого воздуха выполнен в виде осевого компрессора, в котором количество лопастей на роторе более двух.

Изобретение поясняется следующими рисунками.

На фиг. 1 приведен пример одной из возможных реализаций устройства по п. 1 формулы.

На фиг. 2 приведен один из вариантов выполнения трубовидного транспортного ствола по п. 2 формулы.

На фиг. 3 приведен пример одной из возможных реализаций устройства по пункту 4 формулы.

На фиг. 4 проиллюстрированы возможности оформления выходов для воздуха, которые предназначены для выезда человека, оснащенного спортивным снарядом, по пункту 5 формулы.

На фиг. 5 приведен пример одной из возможных реализаций устройства по пункту 7 формулы.

На всех рисунках приведены примеры реализации предлагаемого устройства транспортировки человека, оснащенного спортивным снарядом, которые поясняют, но не ограничивают предлагаемое изобретение.

Устройство по п. 1 формулы состоит из по крайней мере одного источника сжатого воздуха 1, от которого сжатый воздух 2 подается в трубовидный транспортный ствол 3, содержащий выходы 4 для воздуха 2, размер, форма и расположение которых подбираются в соответствии с правилами аэродинамики применительно к конкретной реализации устройства.

Можно приблизительно оценить нижнюю границу суммарной площади выходов 4 для воздуха 2. Для достижения максимальной энергетической выгодности стенки транспортного ствола 3 надо максимально приближать к поверхности человека 5, оснащенного спортивным снарядом 6. В предельном случае человека 5, оснащенного спортивным снарядом 6, можно рассматривать как поршень в цилиндре. Повышение давления с одной стороны поршня вызывает перемещение в сторону низкого давления. Объем зоны низкого давления при этом уменьшается, давление в ней будет повышаться. Если воздух 2 из зоны низкого давления не выпускать, давления вокруг поршня выровняются, движение прекратится. Для поддержания движения необходимо стравливать лишний воздух 2. Чем меньше суммарная площадь выходов 4 для воздуха 2, тем больший перепад между давлением в трубовидном транспортном стволе 3 и атмосферным давлением снаружи придется создать, а значит, необходима большая мощность для поддержания движения поршня (человека 5, оснащенного спортивным снарядом 6). В любом случае, делать суммарную площадь выходов 4 для воздуха 2 меньше одной трети от площади поршня (человека 5, оснащенного спортивным снарядом 6) нерационально. В случае минимальной площади, занимаемой человеком 5, оснащенным спортивным снарядом 6, как, например, в случае использования в качестве спортивного снаряда 6 скользкого коврика и при перемещении человека 5 в лежачем положении, нижнюю границу суммарной площади выходов 4 для воздуха 2 можно оценить в 0,1 м2.

Возможно, предлагаемое устройство даст толчок развитию нового вида спорта, который, по задумке автора, будет носить название windway.

Устройство по п. 1 формулы осуществляет свою работу следующим образом (см фиг. 1):

Источник сжатого воздуха 1 подает воздух 2 под давлением внутрь трубовидного транспортного ствола 3. Через выходы 4 для воздуха 2 происходит стравливание воздуха 2 для поддержания заданного давления воздуха 2 на протяжении всего трубовидного транспортного ствола 3. Трубовидный транспортный ствол 3 не дает возникшему потоку воздуха 2 рассеиваться по сторонам. В результате давление потока воздуха 2 на человека 5, оснащенного спортивным снарядом 6, сохраняется на всем протяжении трубовидного транспортного ствола 3. Под спортивным снарядом 6 подразумеваются самые различные виды спортивного оснащения, например, лыжи, надувные «ватрушки», скейты, роликовые коньки, велосипеды, и т.д.

Для начала движения человек 5, оснащенный спортивным снарядом 6, должен занять место на стартовой позиции. При непрерывном режиме работы источника сжатого воздуха 1, человек 5 будет сразу подхвачен потоком воздуха 2, начнется разгон (подьем). При периодическом режиме работы источника сжатого воздуха 1 расчетная скорость потока установится только спустя 1-2 секунды после начала процедуры «Старт». Для получения максимального разгона человеку 5 выгодно оставаться неподвижным до завершения переходных процессов. Для этого человек 5 должен придержаться руками или просто присесть. (Если человек 5 присел, то его площадь сопротивления потоку воздуха 2 резко уменьшается, соответственно, уменьшается оказываемое на него давление).

Когда скорость потока воздуха 2 установилась, человеку 5 потребуется создать максимальную площадь сопротивления потоку воздуха 2. Для этого надо выпрямиться в полный рост, немного развести в стороны руки и ноги.

Если быстрое нарастание скорости начнет вызывать беспокойство у человека 5, например, у новичка, то он всегда сможет скомпоноваться и немного присесть, воздействие потока воздуха 2 ослабеет. В случае падения человека 5 оказываемое на него воздействие потока воздуха 2 исчезнет почти полностью.

Предлагаемое устройство для транспортировки человека 5, оснащенного спортивным снарядом 6, в отличие от прототипа, способно осуществлять работу в непрерывном режиме в течение необходимого периода времени за счет обеспечения оттока нагнетаемого воздуха 2 в соответствии с правилами аэродинамики применительно к конкретной реализации устройства.

Сечение трубовидного транспортного ствола 3 в общем случае может иметь разные формы, в зависимости от выполняемых задач и мощности источника сжатого воздуха 1. Например, при недостаточной мощности источника сжатого воздуха 1 для высокой скорости разгона целесообразно иметь трубовидный транспортный ствол 3, сечение которого максимально приближено к профилю человека 5, оснащенного спортивным снарядом 6, например, высокий узкий прямоугольник. Если запас мощности источника сжатого воздуха 1 позволяет, то для удобства человека 5 и простоты изготовления трубовидного транспортного ствола 3 достаточно изготовить его с сечением в форме круга. Если надо организовать движение людей в несколько рядов с возможностью обгона, то трубовидный транспортный ствол 3 выгодно иметь с сечением в форме широкого низкого прямоугольника.

Трубовидный транспортный ствол 3 может быть стационарным. В этом случае он может быть изготовлен из снега или из традиционных строительных материалов (дерева, фанеры, полиэтилена, дюраля, стали, ткани, висящей на твердом каркасе, и т.д.), или, например, для красоты обзора, иметь прозрачные стенки (из сотового или монолитного поликарбоната, стекла).

Трубовидный транспортный ствол 3 может быть мобильным. В этом случае трубовидный транспортный ствол 3 целесообразно выполнить с гибкими стенками, оборудованными надувными отсеками 7, как это показано на фиг. 2 для случая реализации устройства по п. 2 формулы. Однослойные гибкие стенки нецелесообразны, т.к. внутренние пульсации давления на турбулентных вихрях вызывают волнообразные деформации стенок трубовидного транспортного ствола 3, сопровождаемые неприятным грохотом и преждевременным разрушением швов. В случае выполнения трубовидного транспортного ствола 3 оборудованным надувными отсеками 7, целесообразно использовать дополнительные источники сжатого воздуха, чтобы обеспечить для каждого из отсеков 7 свое оптимальное давление.

Предлагаемое устройство по п. 1 формулы при относительно небольшой мощности источника сжатого воздуха 1 способно обеспечить транспортировку человека 5, оснащенного спортивным снарядом 6, по местности, имеющей перепады высот, и может уже в комплектации, описанной в п. 1 формулы, составить конкуренцию существующим в настоящее время типам горнолыжных подъемников. Надувной вариант трубовидного транспортного ствола 3 особенно интересен при таком применении, поскольку дает возможность привести устройство в рабочее состояние в максимально короткие сроки и не имеет привязки к конкретному месту. Использование предлагаемого устройства в качестве просто развлекательного аттракциона также не исключается.

Предлагаемое устройство дает возможность разогнать человека 5 со спортивным снарядом 6 до такой скорости, которая позволит ему продолжить движение за пределами устройства, в том числе с набором высоты. Для этого в частном случае реализации устройства по п. 3 по крайней мере один их выходов 4 для воздуха 2 с линейным размером более 0,5 метра оборудован с возможностью выезда через него человека 5, оснащенного спортивным снарядом 6. Линейный размер в общем случае определяется размерами человека 5 со спортивным снарядом 6 и возможностью осуществления их движения без опасного контакта со стенками.

В частном случае реализации устройства по п. 4 по крайней мере один из выходов 4 для воздуха 2, оборудованных с возможностью выезда через них человека 5, оснащенного спортивным снарядом 6, имеет в направлении выезда расширение 8, линейный размер которого превосходит самое узкое сечение трубовидного транспортного ствола 3 более чем на 1 процент.Простейший вариант такой реализации устройства приведен на фиг. 3. Здесь расширение 8 на конце трубовидного транспортного ствола 3 образует так называемый диффузор, что, в соответствии с правилами аэродинамики, может несколько облегчить прокачку воздуха и обеспечить более комфортный выезд человеку 5, оснащенному спортивным снарядом 6.

В частном случае реализации устройства по п. 5 по крайней мере один из выходов 4 для воздуха 2, оборудованных с возможностью выезда через них человека 5, оснащенного спортивным снарядом 6, не менее чем на 5 последних метрах имеет либо твердые стенки 9, либо твердые опоры для мягких стенок 10, либо растяжки для гибких стенок 11 (см. фиг. 4).

При движении воздуха по трубам внутреннее давление в разных точках трубы разное. Именно перепад давлений и вызывает движение. Очень часто внутреннее давление становится отрицательным (меньше, чем давление внешнего, неподвижного воздуха). Стенка трубы начинает втягиваться внутрь трубы. Если стенка слабая, то она будет либо сломана, либо погнута.

Внутри трубовидного транспортного ствола 3 также присутствуют зоны с разными по знаку давлениями. В зоне старта вблизи от источника сжатого воздуха 1 давление всегда положительное. Оно ускоряет движение воздуха 2 в сторону выходов 4, оно заставляет воздух 2 преодолевать силу трения. Эту зону трубовидного транспортного ствола 3 можно делать из гибких тканей, вся ткань будет равномерно натянута.

На выходах 4 трубовидного транспортного канала 3 внутреннее давление всегда отрицательное, так как трения почти не осталось, воздух 2 уже движется с большой скоростью и, в соответствии с законом Бернулли, имеет пониженное давление. Если эту зону делать из гибких тканей, они начинают непрерывно изгибаться. Возникает постоянное хлопанье, аналогичное хлопанью флага на сильном ветру.

Чтобы сделать выезд человека 5, оснащенного спортивным снарядом 6, максимально безопасным, каждый из выходов 4 для воздуха 2, который предназначен для выезда, не менее чем на 5 последних метрах должен иметь стенки, не подверженные значительной деформации (см. фиг. 4). В соответствии с реализацией изобретения по п. 5 формулы, если, например, просто твердые стенки 9 могут оказаться опасными для спортсмена, можно сделать их мягкими и гибкими, но необходимо предусмотреть элементы конструкции, препятствующие втягиванию и колебаниям стенок. Такими элементами могут быть твердые опоры 10 для мягких стенок, либо растяжки 11 для гибких стенок. Элементы конструкций могут быть выполнены из металла, дерева, пластика (полиэтилена, полипропилена, лавсана, поликарбоната, как монолитного, так и сотового). Растяжки могут являться стенками надувных отсеков.

Для повышения комфортности подхода к трубовидному транспортному стволу 3 и последующего начала процедуры подъема (разгона) человека 5, оснащенного спортивным снарядом 6, предложен частный случай реализации изобретения по п. 6 формулы, в котором предлагаемое устройство дополнительно содержит тамбур предстартовой подготовки 12, который по крайней мере по одному линейному размеру превосходит самую узкую часть транспортного ствола более чем на 5 процентов. Причем тамбур предстартовой подготовки 12 может быть выполнен или таким образом, чтобы через него непосредственно проходил поток воздуха 2, или таким образом, чтобы он через него не проходил. Тамбур предстартовой подготовки 12 может быть изготовлен из ткани, дерева, фанеры, металла, стекла, пластиков (полиэтилена, полипропилена, пвх, поликарбоната), как монолитных, так и ячеистых.

В частном случае реализации изобретения по п. 7 формулы тамбур предстартовой подготовки 12 оборудован входным каналом 13, в котором размещен по крайней мере один шлюз 14. Пример одной из возможных реализаций устройства по пункту 7 формулы приведен на фиг. 5.

Устройство по п. 7 формулы осуществляет свою работу следующим образом.

Человек 5, оснащенный спортивным снарядом 6, приближается к шлюзу 14 входного канала 13. Створки шлюза 14 могут открываться либо автоматически, либо под давлением руки или корпуса человека 5. Если источник сжатого воздуха 1 ослабляет давление в тамбуре предстартовой подготовки 12 при подготовке очередного старта, то достаточно одного шлюза 14. В случае непрерывной работы источник сжатого воздуха 1 в тамбуре предстартовой подготовки 12 постоянно присутствует высокое давление, и чтобы человека 5 оснащенного спортивным снарядом 6, не отбрасывало к началу входного канала 13, необходимы несколько шлюзов 14, открывающихся строго поочередно. Либо достаточно одного шлюза 14, если он выполнен в виде вращающейся двери. Такая дверь похожа на шестерню, зубья-створки которой поочередно (но непрерывно) блокируют сквозной поток воздуха. Человек 5 при этом движется в зону высокого давления вместе со створками (находясь между ними). При достижении человеком 5, оснащенным спортивным снарядом 6, стартовой позиции осуществляется работа устройства так, как она описана выше для случая реализации устройства по п. 1 формулы.

Могут быть созданы модификации предлагаемого устройства как для твердой, так и для водной поверхности. Предлагаемое устройство способно осуществлять свою работу на местности, имеющей перепады высот. Серьезным аспектом повышения эффективности работы предложенных вариантов устройств является специальная одежда, способная постоянно или временно увеличивать аэродинамическую площадь человека.

В случае реализации изобретения по п. 8 формулы устройство для транспортировки человека 5, оснащенного спортивным снарядом 6, с помощью искусственно создаваемого давления воздуха 2, содержит по крайней мере один, выполненный в виде компрессора динамического типа (осевого или центробежного), источник сжатого воздуха 1, от которого воздух 2 подается в трубовидный транспортный ствол 3.

В качестве источника сжатого воздуха 1 можно применять компрессоры самой разной природы: поршневые, перистальтические, шестеренчатые, центробежные, осевые. При выборе типа компрессора надо учитывать, что для перемещения в трубовидном транспортном стволе 3 необходимо сравнительно низкое давление и весьма большие объемы воздуха 2, перемещаемые за одну секунду. Этому условию наиболее соответствуют компрессоры динамического принципа действия, в которых газ сжимается в результате подвода механической энергии от вала и дальнейшего взаимодействия рабочего вещества с лопатками ротора. В зависимости от направления движения потока и типа рабочего колеса такие машины подразделяют на центробежные и осевые.

Если требуется изготовить установку с минимальным весом, то самым рациональным будет применение осевого компрессора. При этом возникает опасность возникновения так называемого помпажа, когда осевой компрессор теряет способность поддерживать давление при уменьшении количества прокачиваемого воздуха. Такие условия могут возникнуть при старте.

Роторы осевых компрессоров могут быть дополнены направляющими и спрямляющими решетками лопаток.

Наилучшее соотношение между давлением и расходом воздуха может быть получено при применении центробежных компрессороров, но при этом центробежные компрессоры существенно тяжелее и крупнее осевых.

В частном случае реализации устройства по п. 9 формулы источник сжатого воздуха 1 выполнен в виде осевого компрессора, в котором ширина лопасти, измеренная на расстоянии R от центра вращения ротора, занимает более 20% от расстояния между лопастей, измеренного на том же расстоянии R от центра вращения ротора, при условии, что R более 40% от общего диаметра ротора.

Эффективность применения нагнетателя с широкими лопатками, которые перегораживают максимальную площадь проточной части крыльчатки нагнетателя, экспериментально наблюдалась при испытаниях нагнетателей для судов на воздушной подушке.

В частном случае реализации устройства по п. 10 формулы источник сжатого воздуха выполнен в виде осевого компрессора, в котором количество лопастей на роторе более двух.

Крыльчатки компрессоров динамического типа могут быть выполнены из самых разных материалов: стали, дюраля, латуни, титана, полимерных материалов (полиэтилена, полипропилена, композиционных материалов). Крыльчатка вентилятора первой действующей установки, изготовленной автором, была выполнена из дюраля и полиамида, армированного стекловолокном.

Компрессоры установок для перемещения человека на спортивном снаряде могут приводиться в движение самыми различными двигателями: электрическими, поршневыми, роторными, дизельными и бензиновыми, турбинами. Вентилятор первой действующей установки, изготовленной автором, приводился в движение бензиновыми поршневыми двигателями с частотой вращения до 4 тысяч оборотов в секунду.

1. Устройство для транспортировки человека, оснащенного спортивным снарядом, с помощью искусственно создаваемого давления воздуха, содержащее по крайней мере один источник сжатого воздуха, подаваемого в трубовидный транспортный ствол, отличающееся тем, что трубовидный транспортный ствол содержит выходы для воздуха в количестве не менее одного.

2. Устройство по п. 1, отличающееся тем, что стенки трубовидного транспортного ствола содержат надувные отсеки.

3. Устройство по п. 1, отличающееся тем, что по крайней мере один из выходов для воздуха с линейным размером более 0,5 метра оборудован с возможностью выезда через него человека, оснащенного спортивным снарядом.

4. Устройство по п. 3, отличающееся тем, что по крайней мере один из выходов для воздуха, оборудованных с возможностью выезда через них человека, оснащенного спортивным снарядом, имеет в направлении выезда расширение, линейный размер которого превосходит самое узкое сечение трубовидного транспортного ствола более чем на 1%.

5. Устройство по п. 3, отличающееся тем, что по крайней мере один из выходов для воздуха, оборудованных с возможностью выезда через них человека, оснащенного спортивным снарядом, не менее чем на 5 последних метрах имеет либо твердые стенки, либо твердые опоры для мягких стенок, либо растяжки для гибких стенок.

6. Устройство по п. 1, отличающееся тем, что дополнительно содержит тамбур предстартовой подготовки, который по крайней мере по одному линейному размеру превосходит самую узкую часть транспортного ствола более чем на 5%.

7. Устройство по п. 6, отличающееся тем, что тамбур предстартовой подготовки оборудован входным каналом, в котором размещен по крайней мере один шлюз.

8. Устройство для транспортировки человека, оснащенного спортивным снарядом, с помощью искусственно создаваемого давления воздуха, содержащее по крайней мере один источник сжатого воздуха, подаваемого в трубовидный транспортный ствол, отличающееся тем, что по крайней мере один источник сжатого воздуха выполнен в виде компрессора динамического типа - осевого или центробежного.

9. Устройство по п. 8, отличающееся тем, что источник сжатого воздуха выполнен в виде осевого компрессора, в котором ширина лопасти, измеренная на расстоянии R от центра вращения ротора, занимает более 20% от расстояния между лопастей, измеренного на том же расстоянии R от центра вращения ротора, при условии, что R более 40% от общего диаметра ротора.

10. Устройство по п. 9, отличающееся тем, что источник сжатого воздуха выполнен в виде осевого компрессора, в котором количество лопастей на роторе более двух.



 

Похожие патенты:

Предложение относится к области экспериментальной аэрогазодинамики и может быть использовано для определения газодинамических нагрузок на модели летательных аппаратов с работающими двигателями при моделировании и экспериментальном исследовании струйного взаимодействия в процессах разделения высотных ступеней ракет-носителей, отделения космических аппаратов от разгонных блоков, причаливания, стыковки и расстыковки космических аппаратов на орбите, посадки космических аппаратов на поверхность планет с разреженной атмосферой и старта с них.

Изобретение относится к стендам для испытания элементов воздушных подушек. Стенд включает направляющий аппарат рычажного типа с противовесами, модуль воздушной подушки с двигателем внутреннего сгорания (ДВС), осевым вентилятором, обечайкой воздушной подушки с кронштейном крепления ДВС и сменным гибким ограждением воздушной подушки («юбкой»), буксируемую платформу для размещения различных рельефов и видов подстилающей поверхности; буксировочное устройство с тензодатчиком; систему управления и питания ДВС и электрическую схему запуска ДВС, измерительный комплекс с системой датчиков для измерения и фиксации параметров.

Изобретение относится к экспериментальной аэродинамике летательных аппаратов, в частности к изучению картины пространственного обтекания моделей летательных аппаратов в аэродинамической трубе, и может быть использовано при статических и динамических испытаниях моделей летательных аппаратов в аэродинамических трубах малых дозвуковых скоростей.

Изобретение относится к области экспериментальной аэродинамики, в частности, к автоматическим системам управления положением модели в аэродинамических трубах. Модель размещают таким образом, что ее ось вращения находится на равном расстоянии от узлов крепления державки, положение узлов крепления державки изменяют автоматически по трем параметрам управления: углу атаки, вертикальному и горизонтальному перемещениям в соответствии с заданной программой, вырабатывающей на каждом такте управления сигнал управления силовыми механизмами - линейными приводами.

Изобретение относится к области промышленной аэродинамики и может быть использовано для проведения газодинамических испытаний авиационной и ракетной техники. Устройство содержит испытательную камеру с аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, систему регулирования подачи сжатого воздуха с регулируемыми клапанами, датчиками давления, датчиком температуры и регулятором расхода воздуха, установленным в магистрали высокого давления, газовый генератор со смесительным ресивером, топливными форсунками и системой зажигания, подключенный входом к магистрали высокого давления, а выходом - к входу аэродинамического сопла испытательной камеры, систему подачи топлива, подключенную к топливным форсункам и имеющую регулятор расхода топлива, и систему подачи кислорода, подключенную к смесительному ресиверу и имеющую регулятор расхода кислорода.

Изобретение относится к авиационной технике и предназначено для измерения аэродинамических сил и моментов, действующих на купол планирующего парашюта (ПП) в потоке аэродинамической трубы (АДТ) при различных углах атаки и скольжения.

Группа изобретений относится к испытательной технике и может быть использована для испытаний парашютных систем. Способ испытаний парашютных систем включает разгон парашютной системы, размещенной в контейнере, закрепленном на раме ракетной тележки с ракетным двигателем на твердом топливе (РДТТ), по рельсовым направляющим ракетного трека до заданной скорости, отстрел крышки контейнера, присоединенной к чехлу парашюта, и одновременное перекрытие сопла РДТТ.
Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно в аэродинамических трубах больших дозвуковых скоростей для более детального изучения картины обтекания моделей крыльевых профилей.

Изобретение относится к технологиям автоматической идентификации базовой линии на изображении поверхностной сетке аэродинамического профиля для использования в моделировании.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях.

Предлагаемое изобретение относится к лыжному спорту и может быть использовано как составной элемент лыжероллера. Брызговик лыжероллера, выполненный в виде дугообразной пластины за одно целое с основанием, снабженным ограничителями бокового перемещения и отверстием для крепления брызговика к платформе лыжероллера посредством крепежного элемента.

Изобретение относится к производству лыжероллеров для тренировки лыжников в несезонное время года, а также для тренировки и развлечения других категорий любителей этого вида спорта.

Изобретение относится к области спортивно-туристического инвентаря, а именно к роликовым конькам. Индивидуальный гусеничный движитель содержит пару гусеничных роликовых коньков с электроприводом.

Изобретение относится к малогабаритному гусеничному вездеходу. Малогабаритный гусеничный вездеход содержит силовую установку с двигателем внутреннего сгорания, трансмиссию, пару гусеничных движителей, систему рулевого управления и платформу для стоящего водителя.

Изобретение относится к спорту, в частности к устройствам для катания на горнолыжных трассах при отсутствии снежного покрова. .

Изобретение относится к области спортивной техники и может быть использовано для занятия спортом, а также в бытовой и профессиональной деятельности человека. .

Изобретение относится к спортивной технике и может быть использовано для передвижения по заболоченной местности летом и по снежному покрову зимой. .

Изобретение относится к производству лыжероллеров и позволяет повысить эффективность в пользовании. .
Наверх