Способ получения mn-fe-содержащего спин-стекольного магнитного материала



Способ получения mn-fe-содержащего спин-стекольного магнитного материала
Способ получения mn-fe-содержащего спин-стекольного магнитного материала
Способ получения mn-fe-содержащего спин-стекольного магнитного материала
Способ получения mn-fe-содержащего спин-стекольного магнитного материала
Y10S117/917 -
Y10S117/917 -
C01P2002/60 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2676047:

Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) (RU)

Изобретение относится к области технологических процессов, связанных с получением нового магнитного материала с магнитным состоянием типа спинового стекла, и может найти применение при разработке моделей новых типов устройств современной электроники. Способ получения Mn-Fe-содержащего спин-стекольного материала включает высушивание соединений, составляющих шихту, при температуре 105°С в течение 6 часов, сплавление их в печи, приготовление растворов-расплавов в платиновом 100 см3 тигле при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последними порциями добавляют порошок Na2CO3, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас - 10)°С и далее понижают медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы в виде черных призм отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты. Техническим результатом изобретения является получение Mn-Fe-содержащего магнитного материала с состоянием спинового стекла, обладающего фазовой и химической однородностью. 1 ил., 2 табл., 1 пр.

 

Изобретение относится к области технологических процессов, связанных с получением нового магнитного материала с магнитным состоянием типа спинового стекла и может найти применение при разработке моделей новых типов устройств современной электроники.

Известен способ получения спин-стекольного материала HoFeTi2O7 методом твердотельной реакции [патент RU 2555719 С1, МПК С04В 35/40, опубл. 10.07.2015]. Недостатком материала, полученного данным способом является его поликристалличность.

Наиболее близким аналогом, принятым за прототип, является многокомпонентный спин-стекольный магнитный материал TbFeTi2O7 [патент RU 2526086 С1, МПК С04В 35/40, С04В 35/462, опубл. 20.08.14], который включает железо, титан, кислород и тербий в соотношениях мас. %: Tb-37,61; Fe - 13,22; Ti - 22,66; О - 26,51.

Способ получения этого спин-стекольного магнитного материала представляет собой твердофазный синтез в несколько этапов. В качестве исходных компонентов используются оксиды Fe2O3, TiO2 и Tb2O3. Из приготовленной шихты с помощью пресс формы формируются таблетки под давлением около 10 кбар диаметром 10 мм и толщиной 1,5-2,0 мм. Таблетки помещают в алундовый тигель и отжигают в печи. Максимальная температура отжига составляет 1250°С. После завершения каждого этапа синтеза таблетки вновь перетираются, прессуются и снова помещаются в печь для последующего отжига. Химический и фазовый состав полученных образцов контролируется методом рентгеноструктурного анализа, а также с помощью оптического микроскопа после каждого этапа синтеза. Недостатком данного способа получения спин-стекольных материалов является невозможность получать качественные монокристаллы, что негативно сказывается на области их применения в устройствах твердотельной микроэлектроники.

Задачей, на решение которой направлено изобретение, является разработка способа получения Mn-Fe-содержащего спин-стекольного магнитного материала, качество которого допускает проведение ориентационных физических исследований.

Техническим результатом изобретения является способ получения Mn-Fe-содержащего магнитного материала с состоянием спинового стекла, обладающего фазовой и химической однородностью.

Технический результат достигается тем, что способ получения Mn-Fe-содержащего спин-стекольного материала включает высушивание соединений, составляющих шихту при температуре 105°С в течение 6 часов, сплавление их в печи, новым является то, что растворы-расплавы готовят при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последним добавляют порошок N2CO3, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас - 10)°С, и далее, медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты.

Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемое изобретение отличается от известного тем, что растворы-расплавы готовят при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последним добавляют порошок Na2CO3, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас - 10)°С, и далее, медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты.

Признаки, отличающие заявляемое решение от прототипа, обеспечивают заявляемому техническому решению соответствие критерию «новизна».

Признаки, отличающие заявляемое решение от прототипа не выявлены при изучении других известных технических решений в данной области техники и, следовательно, обеспечивают ему соответствие критерию «изобретательский уровень».

Изобретение поясняется фигурой. На ней представлена температурная зависимость магнитного момента полученного материала в магнитном поле (FC) 500 Э и без поля (ZFC).

Сущность изобретения заключается в том, что спин-стекольный материал Mn2-xFexOBO3 (0<х<1) образуется в результате спонтанной кристаллизации из растворов-расплавов с соотношением компонентов:

где n - кристаллообразующая концентрация оксида, соответствующая стехиометрии Mn2-xFexOBO3 (для примера х=0; 0.3, 0.5, 0.7); р и q - отношения кристаллообразующего оксида к матрице.

Пример осуществления

1. Порошки Bi2Mo3O12, В2О3, Mn2O3 и Fe2O3 высушиваются при температуре 105°С в

течение 6 часов.

2. Растворы-расплавы приготовлены в платиновом 100 см3 тигле при Т=1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последним порциями добавлялся порошок Na2CO3. Общая масса реактивов составляла 83÷90 г. В таких растворах-расплавах высокотемпературной кристаллизующейся фазой, в достаточно широком температурном интервале (не менее 40°С), является варвикит Mn2-xFexOBO3 (0<х<1). Температуры насыщения растворов-расплавов представлены в таблице 1. После выдержки раствора-расплава в течение 3 часов при Т=1100°С, температура в печи быстро понижалась до (Тнас - 10)°С, и далее, медленно, со скоростью 3-4°С/сут. Через 3-ое суток тигель извлекался из печи и раствор-расплав сливался. Выросшие монокристаллы в виде черных призм длиной до 8 мм и поперечным размером до 0,4 мм отделялись от остатков раствор-расплава травлением в 20% растворе азотной кислоты.

Химический и фазовый состав материалов контролировался методами рентгеноструктурного анализа, а также с помощью оптического микроскопа после каждого этапа синтеза.

В таблице 2 приведены содержание элементов, симметрия кристаллической решетки и параметры элементарной ячейки. Согласно результатам рентгеноструктурного анализа полученный Fe-Mn-содержащий спин-стекольный магнитный материал имеет ромбическую кристаллическую структуру (пространственная группа ). Соотношения Mn/Fe контролировались по экспериментальным скачкам спектров рентгеновского поглощения. Были получены следующие стехиометрические коэффициенты: х=0.34, 0.53 и 0.72. Эти составы согласуются с предсказанными технологическими значениями с уточненными химическими формулами MN1.7Fe0.3ОВО3, Mn1.5Fe0.5OBO3 и Mn1.3Fe0.7OBO3.

Полученный материал Mn2-xFexOBO3 (0<х<1) обладает магнитным состоянием спинового стекла. Состояние спинового стекла в Mn2-xFexOBO3 (0<х<1) с температурами TSG=11, 14 и 18 K подтверждают измерения температурной зависимости магнитного момента (фиг.), где показано, что намагниченность образца зависит от термической предыстории (охлаждение образца в магнитном поле (FC) 500 Э и без поля (ZFC), вставка к фиг. с температурной зависимостью переменной магнитной восприимчивости).

Способ получения Mn-Fe-содержащего спин-стекольного магнитного материала, включающий высушивание соединений, составляющих шихту, при температуре 105°С в течение 6 часов, сплавление их в печи, отличающийся тем, что растворы-расплавы готовят при Т=1100°С последовательным сплавлением смесей порошков Bi2Мо3О12 и В2О3, затем в расплав вносят Мn2О3 и Fе2О3, последним добавляют порошок Na2CO3, после выдержки раствора-расплава в течение 3 часов при Т=1100°С температуру в печи быстро понижают до (Тнас-10)°С, и далее, медленно, со скоростью 3-4°С/сут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы отделяют от остатков раствор-расплава травлением в 20% растворе азотной кислоты.



 

Похожие патенты:

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.

Изобретение относится к разработке новых материалов с магнитным состоянием спинового стекла - системы с вырожденным основным магнитным состоянием, которые могут быть полезны для химической, атомной промышленностей и развития магнитных информационных технологий.

Изобретение относится к области магнитных микро- и наноэлементов и может быть использовано в датчиках магнитного поля и тока, запоминающих и логических элементах, гальванических развязках на основе многослойных наноструктур с магниторезистивным (МР) эффектом.

Изобретение относится к текстурированной листовой электротехнической стали с нанесенным изолирующим покрытием и способу ее изготовления. Текстурированная листовая электротехническая сталь с изолирующим покрытием содержит расположенное на поверхности текстурированной листовой электротехнической стали изолирующее покрытие, которое содержит по меньшей мере один химический элемент, выбранный из группы, состоящей из Mg, Ca, Ba, Sr, Zn, Al и Mn, а также Si, P и O.

Группа изобретений относится к изготовлению постоянного магнита из легированного бором антимонида марганца (Mn2Sb). Смешивают порошок марганца, порошок сурьмы и порошок бора, а затем измельчают в высокоэнергетической планетарной шаровой мельнице со стеариновой кислотой в инертной атмосфере газообразного аргона с получением гомогенной смеси порошков Mn, Sb и B.

Изобретение относится к области металлургии. Для снижения потерь в железе при изготовлении листа текстурированной электротехнической стали из Si-содержащего стального сляба горячей прокаткой, холодной прокаткой, первичным рекристаллизационным отжигом, окончательным отжигом и формированием покрытия, создающего растяжение, лист подвергают выдержке при температуре Т в интервале 250-600°С в течение 1-10 с в процессе нагрева первичного рекристаллизационного отжига и затем нагревают до температуры Т до 700°С со скоростью не менее 80°С/с и от 700°С до температуры выдержки при скорости не более 15°С/с, при которой кислородный потенциал от 700°С до температуры выдержки составляет 0,2-0,4 и кислородный потенциал в процессе выдержки составляет 0,3-0,5, и доля площади зерна вторичной рекристаллизации составляет не менее 90%, когда угол отклонения α от идеальной ориентации {110}<001> составляет менее 6,5°, и доля площади составляет не менее 75%, когда угол отклонения β составляет менее 2,5°, и средняя длина [L] в направлении прокатки составляет не более 20 мм, и среднее значение [β] угла β(°) составляет 15,63×[β]+[L]<44,06.

Изобретение относится к области металлургии. При изготовлении листа из нетекстурированной электротехнической стали горячей прокаткой стального сляба, содержащего в мас.%: C не более 0,005, Si не более 8,0, Mn 0,03-3,0, P не более 0,2, S не более 0,005, Al не более 3,0, N не более 0,005, Ni не более 3, Cr не более 5, Ti не более 0,005 , Nb не более 0,003, As не более 0,005 и O не более 0,005, с однократной холодной прокаткой или двукратной или многократной холодной прокаткой, с промежуточным отжигом между ними после отжига в зоне горячих состояний или без отжига в зоне горячих состояний, и проведением окончательного отжига, средняя скорость нагрева от 600°С до 700°С в ходе процесса нагрева при окончательном отжиге устанавливается равной не менее 50°С/с, в результате чего достигается высокая плотность магнитного потока за счет изменения и улучшения структуры в стальном листе.

Изобретение относится к области металлургии. Для уменьшения потерь в железе получение листа из нетекстурированной электротехнический стали осуществляют горячей прокаткой сляба, содержащего в мас.%: C не более 0,005, Si 1,5-6,0, Mn 0,05-2,0 и P 0,03-0,15, при необходимости отжигом горячекатаного листа в зоне горячих состояний, при необходимости холодной прокаткой, окончательным отжигом и формированием изоляционного покрытия, при этом охлаждение от 700 до 500°С при окончательном отжиге проводят в окислительной атмосфере с кислородным потенциалом PH2O/PH2 не менее 0,001 в течение 1-300 с, в результате чего P сегрегируется на поверхности стального листа после окончательного отжига с обеспечением увеличения кристаллического зерна и снятия напряжений.

Изобретение относится к составам и способам изготовления магнитов, которые будут прилипать к поверхности, к которой притягивается магнит. Способ изготовления магнита включает получение намагничиваемого состава, содержащего термопластичный полимерный материал и намагничиваемые частицы, нагрев намагничиваемого состава до температуры, при которой намагничиваемый состав находится в жидкотекучем состоянии, подачу намагничиваемого состава в полость вращающегося цилиндра через неподвижное плоское сопло, вращающийся цилиндр содержит множество отверстий, введение вращающегося цилиндра в контакт с подложкой, при этом плоское сопло проталкивает намагничиваемый состав через отверстия во вращающийся цилиндр и намагничиваемый состав прилипает к подложке.
Изобретение относится к области металлургии. Для обеспечения хороших магнитных характеристик в стальной полосе способ включает выплавку стали, непрерывную разливку расплава в тонкие слябы, нагрев тонких слябов, гомогенизационный отжиг при температуре 1250°C, нагрев до температуры от 1350 до 1380°C, непрерывную горячую прокатку тонких слябов для получения горячекатаной полосы, охлаждение и намотку горячекатаной полосы в рулон, отжиг горячекатаной полосы, холодную прокатку полосы до номинальной толщины, отжиг для обезуглероживания и первичной рекристаллизации, восстановительный отжиг и азотирующий отжиг с получением в полосе первичных рекристаллизационных зерен, имеющих средний размер эквивалентной окружности от 22 до 25 мкм, нанесение сепаратора отжига на поверхность холоднокатаной полосы, отжиг для вторичной рекристаллизации стальной полосы с формированием текстуры Госса и снятия внутренних напряжений, при этом восстановительный отжиг осуществляют при температуре в диапазоне от 820 до 890°C в течение максимального периода времени 40 с в сухой газообразной атмосфере, содержащей азот N2 и водород H2 при отношении парциальных давлений водяной пар/водород pH2O/pH2 меньше 0,10.

Изобретение относится к редкоземельному магниту R-Fe-B (R - это редкоземельный элемент) и способу его производства. В частности, изобретение относится к редкоземельному магниту (Ce,La)-Fe-B и способу его производства.

Изобретение относится к разработке новых материалов, которые могут быть полезны для химической промышленности, материаловедения, спинтроники. Оксидный керамический магнитный материал содержит кислород, железо и ванадий и дополнительно натрий и никель при следующем соотношении компонентов, ат.

Изобретение относится к области металлургии. Техническим результатом изобретения является получение текстурированного листа из электротехнической стали, который включает в себя основное покрытие с высокой долей TiN, благоприятное для сообщения напряжения стальному листу, и обладает превосходными магнитными свойствами.

Изобретение относится к технологии получения новых магнитных материалов - оксиборатов Cu2Mn3+1-xGaxBO5 (0≤x<1), включающих ионы переходных металлов, которые могут найти применение в химической промышленности, развитии магнитных информационных технологий, создании магнитных датчиков.

Изобретение относится к технологии получения кристаллического материала, являющегося твердым раствором общей формулы Ва4-xSr3+x(ВО3)4-yF2+3y, где 0≤x≤1 и 0≤y≤0,5, пригодного для регистрации рентгеновского излучения.

Изобретение относится к области получения монокристаллических пленок на подложках для магнитных, оптических, магнитооптических и резонансных исследований. Шихту наплавляют в платиновый тигель, компоненты берут в соотношении, мас.%: Fe2O3 - 5,37, В2О3 - 51,23, PbO - 29,31, PbF2 - 13,73.

Изобретение относится к материалам для поляризационных оптических устройств, которые могут быть использованы для получения линейно-поляризованного света в оптико-электронных приборах: поляриметрах, эллипсометрах, дихрометрах, фотоэлектрических автоколлиматорах, модуляторах световых потоков, устройств индикации, отображения и хранения информации, элементов памяти.

Изобретение относится к технологии выращивания монокристаллов метафторидобората бария-натрия Ba2Na3(В3О6)2F для использования в терагерцовой области спектра в диапазоне от 0,3 ТГц до 1 ТГц в качестве волновых пластин, поляризаторов, а также в воздушной терагерцовой фотонике.

Изобретение относится к области технологических процессов, связанных с получением нового магнитного материала с магнитным состоянием типа спинового стекла, и может найти применение при разработке моделей новых типов устройств современной электроники. Способ получения Mn-Fe-содержащего спин-стекольного материала включает высушивание соединений, составляющих шихту, при температуре 105°С в течение 6 часов, сплавление их в печи, приготовление растворов-расплавов в платиновом 100 см3 тигле при Т1100°С последовательным сплавлением смесей порошков Bi2Mo3O12 и В2О3, затем в расплав вносят Mn2O3 и Fe2O3, последними порциями добавляют порошок Na2CO3, после выдержки раствора-расплава в течение 3 часов при Т1100°С температуру в печи быстро понижают до °С и далее понижают медленно, со скоростью 3-4°Ссут, через 3-ое суток тигель извлекают из печи и раствор-расплав сливают, выросшие монокристаллы в виде черных призм отделяют от остатков раствор-расплава травлением в 20 растворе азотной кислоты. Техническим результатом изобретения является получение Mn-Fe-содержащего магнитного материала с состоянием спинового стекла, обладающего фазовой и химической однородностью. 1 ил., 2 табл., 1 пр.

Наверх