Компенсационный акселерометр

Изобретение относится к измерительной технике и предназначено для использования в системах стабилизации и навигации. Сущность изобретения заключается в том, что компенсационный акселерометр дополнительно содержит последовательно соединенные первый и второй фильтры с выхода фазового детектора отрицательной обратной связи на вход интегрирующего усилителя и звено запаздывания с выхода интегрирующего усилителя на его вход, один из выходов двоичного реверсивного счетчика является цифровым выходом компенсационного акселерометра. Технический результат – повышение точности и расширение полосы пропускания компенсационного акселерометра. 4 ил.

 

Изобретение относится к измерительной технике и предназначено для использования в системах стабилизации и навигации. Оно может найти применение в приборах для измерения механических величин (например, угловых скоростей) компенсационного типа.

Известно устройство для измерения ускорений (А.С. №742801 опубл. в бюл. изобретений №23, 1980), содержащее чувствительный элемент, датчик угла, интегрирующий усилитель обратной связи, датчик момента, дополнительный интегрирующий усилитель, электронный ключ, пороговый элемент, причем первый выход датчика угла подключен через интегрирующий усилитель обратной связи к датчику момента, а второй выход датчика угла через пороговый элемент и дополнительный интегрирующий усилитель, подключенный к управляющему входу электронного ключа.

Недостатком подобного устройства является низкая точность измерения, обусловленная точностью работы интегрирующих аналоговых усилителей и порогового элемента. Кроме того, точность измерения зависит от параметров схемы электронного ключа, осуществляющего выборку информации. Основная погрешность устройства связана с конечностью времени заряда конденсатора интегрирующего усилителя и эта погрешность приводит к апертурной ошибке, свойственной подобной схеме выборки и обработки информации.

Наиболее близким по техническому решению является компенсационный акселерометр (патент РФ №2478211 С1, Кл. G01P 15/13, опубл. 27.03.2013 Бюл. №9), содержащий чувствительный элемент, угловое положение которого фиксируется датчиком угла, отрицательную обратную связь, реализованную с выхода датчика угла на вход первого сумматора через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор отрицательной обратной связи, преобразователь напряжение-ток, отрицательную интегрирующую обратную связь, включающую в себя последовательно соединенные по информационным входам, с выхода дополнительного интегрирующего усилителя на вход первого сумматора, компаратор, преобразователь уровня, пару ждущих синхронных генераторов, реверсивный двоичный счетчик, схему сравнения, пороговый элемент, электронный ключ, вход которого соединен с выходом генератора тока, второй вход схемы сравнения соединен с выходом суммирующего двоичного счетчика, дополнительные входы компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика и суммирующего двоичного счетчика соединены с генератором вспомогательной частоты, другие входы датчика угла, фазового детектора отрицательной обратной связи соединены с выходом генератора опорного напряжения, и выход первого сумматора соединен с входом датчика момента, введены, в отрицательную интегрирующую обратную связь, второй сумматор и широкополосный фильтр с передаточной функцией (где: T1, T2 - постоянные времени фильтра, ξ1, ξ2 - относительные коэффициенты демпфирования, ξ12, преобразователь Лапласа) и второй сумматор, причем вход широкополосного фильтра соединен с одним из выходов фазового детектора отрицательной обратной связи, а выход, с входом второго сумматора, выход второго сумматора соединен с входом дополнительного интегрирующего усилителя, а также сглаживающий фильтр, с передаточной функцией (где: k, T - соответственно коэффициент передачи и постоянная времени фильтра), включенный в местную отрицательную обратную связь, с выхода компаратора на один из входов второго сумматора, и выход двоичного реверсивного счетчика является цифровым выходом устройства.

Недостатком компенсационного акселерометра является малая полоса пропускания.

Технической задачей настоящего изобретения является расширение полосы пропускания компенсационного акселерометра и повышение точности измерения.

Это достигается за счет того, что в компенсационный акселерометр, содержащий чувствительный элемент, угловое положение которого фиксируется датчиком угла, выход которого соединен с входом фазового детектора отрицательной обратной связи через усилитель, и генератор опорного напряжения соединен с входами датчика угла и фазового детектора отрицательной обратной связи, интегрирующую отрицательную обратную связь с выхода интегрирующего усилителя на вход датчика момента через последовательно соединенные по информационным входам, компаратор, преобразователь уровня, пару ждущих синхронных генераторов, реверсивный двоичный счетчик, схему сравнения, пороговый элемент, электронный ключ, вход которого соединен с выходом генератора тока, второй вход схемы сравнения соединен с выходом суммирующего двоичного счетчика, дополнительные входы компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика и суммирующего двоичного счетчика соединены с генератором вспомогательной частоты, введены последовательно соединенные первый и второй фильтры с выхода фазового детектора отрицательной обратной связи на вход интегрирующего усилителя, а также звено запаздывания с выхода интегрирующего усилителя на его вход и выход двоичного реверсивного счетчика является цифровым выходом компенсационного акселерометра, один из выходов реверсивного двоичного счетчика является дискретным выходом устройства.

Введение в интегрирующую отрицательную обратную связь пары фильтров и звена запаздывания позволяет создать компенсационный акселерометр с астатизмом по отклонению, а реализация автоколебательного режима в интегрирующей отрицательной обратной связи позволяет расширить полосу пропускания и повысить точность измерения. Изменяя постоянные времени пары фильтров, и звена запаздывания, можно менять частоту автоколебаний, а следовательно изменять динамические характеристики компенсационного акселерометра.

На фиг. 1 изображена функциональная схема компенсационного акселерометра; на фиг. 2 сигнал с выхода реверсивного двоичного счетчика при введении последовательно включенных двух фильтров и звена запаздывания; на фиг. 3 сигнал с выхода реверсивного двоичного счетчика при введении фильтра и звена запаздывания; на фиг. 4 сигнал с выхода реверсивного двоичного счетчика при введении только звена запаздывания.

Компенсационный акселерометр содержит чувствительный элемент 1, угловое отклонение которого фиксирует датчик угла 2. Выход датчика угла 2 соединен с входом усилителя 3. Выход усилителя 3 соединен с входом фазового детектора отрицательной обратной связи 4 (ФДООС), а выход ФДООС-4 соединен с входом первого фильтра 5, выход фильтра 5 соединен с входом второго фильтра 6. (фильтры 5 и 6 имеют передаточную функцию , где: T1, T2 - постоянные времени фильтра, T1>T2, и постоянные времени фильтра 5 равны постоянным времени фильтра 6). Дополнительные входы датчика угла 2 и ФДООС 4 соединены с выходом генератора опорного напряжения 7. Выход фильтра 6 соединен с входом интегрирующего усилителя 8, выход которого соединен с входом компаратора 9. Выход интегрирующего усилителя 8 соединен с входом интегрирующего усилителя 8 через звено запаздывания 10, с передаточной функцией (где: k, T3 - соответственно коэффициент передачи и постоянная времени звена запаздывания). Выход компаратора 9 соединен с входом преобразователя уровня 11, выходы которого соединены с входами пары ждущих синхронных генераторов (ЖСГ) 12 и 13. Выходы ЖСГ 12 и 13 соединены с входами реверсивного двоичного счетчика 14. Выход реверсивного двоичного счетчика 14 соединен с входом схемы сравнения 15. Другой вход схемы сравнения 15 соединен с выходом суммирующего двоичного счетчика 16. Выход схемы сравнения 15 соединен с входом порогового элемента 17. Выход порогового элемента 17 соединен с входом электронного ключа 18, другой вход электронного ключа 18 соединен с выходом генератора тока 19. Выход электронного ключа 18 соединен с входом датчика момента 20. Дополнительные входы компаратора 9, ЖСГ 12 и 13, реверсивного двоичного счетчика 14, суммирующего двоичного счетчика 16 соединены с выходом генератора вспомогательной частоты 21. Один из выходов реверсивного двоичного счетчика 14 является цифровым выходом компенсационного акселерометра.

Внутреннее содержание ФДООС, компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика, схемы сравнения, порогового элемента, суммирующего двоичного счетчика, преобразователя уровня, сумматора, усилителей, фильтров приведены в книге: П. Хоровиц, У. Хилл. Искусство схемотехники. М.: Мир, т 1-3, 1993.

Компенсационный акселерометр работает следующим образом.

При действии ускорения W на чувствительный элемент 1, выполненный в виде маятника, действует инерционный момент m⋅l⋅W (l, m - длинна и масса маятника). Под действием этого момента происходит отклонение чувствительного элемента 1, которое фиксируется датчиком угла 2, обмотки, возбуждения которого соединены с выходом ГОН 7. Один из выходов ГОН 7 соединен с входом ФДООС 4. Сигнал с датчика угла 2, после усиления усилителем 3, поступает на вход ФДООС 4. С помощью ФДООС 4 и ГОН 7 выделяется фаза отклонения чувствительного элемента 1, и на выходе ФДООС 4 сигнал всегда будет в противофазе отклонения чувствительного элемента 1. Сигнал с выхода ФДООС 4, в виде напряжения, поступает на вход первого фильтра 5, выход которого соединен с входом второго фильтра 6. Введение фильтров 5 и 6, с передаточной функцией , позволяет повысить коэффициент передачи по разомкнутому контуру и обеспечить астатизм по отклонению. Сигнал с выхода второго фильтра 6, в виде напряжения, поступает на вход компаратора 9 через интегрирующий усилитель 8, в обратную связь которого введено звено запаздывания 10. Введение звена запаздывания 10, с передаточной функцией , позволяет уменьшить динамическую ошибку и увеличить коэффициент передачи. В компараторе 9 происходит сравнение сигнала с выхода интегрирующего усилителя 8 с сигналом, выделенного стабильного по частоте и амплитуде сигнала с выхода генератора вспомогательной частоты 21. Если сигнал с выхода интегрирующего усилителя 8 будет больше треугольного напряжения с выхода генератора вспомогательной частоты 21, то на выходе компаратора 9 будет высокий логический уровень, если меньше, то на выходе компаратора 9 - низкий логический уровень. Уровень сигнала с выхода компаратора 9 зависит от фазы отклонения чувствительного элемента 1. Сигнал с выхода компаратора 9, в виде уровня, поступает на вход преобразователя уровня 11, а затем на входы ждущих синхронных генераторов 12 и 13, которые, с помощью генератора вспомогательной частоты 21, выдают сигналы в виде импульса на каждое воздействие входного сигнала (с выхода преобразователя уровня 11) равного "1". Сигналы с выходов ЖСГ 12 и 13 поступают на входы реверсивного двоичного счетчика 14. Реверсивный двоичный счетчик 14, по сигналу с генератора вспомогательной частоты 21, производит подсчет единичных импульсов поступающих с выхода ждущего синхронного генератора 12 и вычитание импульсов, поступающих с выхода ждущего синхронного генератора 13. Реверсивный двоичный счетчик 14 положительную информацию представляет в прямом коде, а отрицательную в дополнительном коде, и преобразование дополнительного кода осуществляется схемой сравнения 15 и суммирующим двоичным счетчиком 16, дополнительный вход которого соединен с выходом генератора вспомогательной частоты 21. После логического сравнения сигналов в схеме сравнения 15, сигнал с выхода 15 поступает на вход порогового элемента 17, а затем, в виде уровня, на вход электронного ключа 18. Стабилизацию параметров электронного ключа 18 осуществляет генератор тока 19. На выходе электронного ключа 18 будут импульсы, число которых пропорционально двоичному коду, поступающему на вход схемы сравнения 15. На вход датчика момента 20 поступает сигнал с выхода электронного ключа 18, со знаком знакового разряда реверсивного двоичного счетчика 14. Выход реверсивного двоичного счетчика 14, является выходом цифрового кода компенсационного акселерометра.

Введение в интегрирующую отрицательную обратную связь пары фильтров, с передаточными функциями , и звена запаздывания, с передаточной функцией , позволяет создать компенсационный акселерометр с астатизмом по отклонению, а реализация автоколебательного режима в интегрирующей отрицательной обратной связи позволяет расширить полосу пропускания и повысить точность измерения.

Технический результат был проверен путем моделирования компенсационного акселерометра в среде Matlab (Simulink), при отсутствии входного воздействия (W/g=0). Результаты моделирования приведены на фиг. 2-4. Из анализа моделирования (фиг. 2) следует, что компенсационный акселерометр, реализованный по схеме фиг. 1, по сравнению с результатами фиг. 3 и фиг. 4, имеет значительную частоту автоколебаний и расширенную полосу пропускания, автоколебаний. Работа предложенного компенсационного акселерометра устойчива при значительном коэффициенте передачи по разомкнутому контуру.

Компенсационный акселерометр, содержащий чувствительный элемент, угловое положение которого фиксируется датчиком угла, выход которого соединен с входом фазового детектора отрицательной обратной связи через усилитель, и генератор опорного напряжения соединен с входами датчика угла и фазового детектора отрицательной обратной связи, интегрирующую отрицательную обратную связь с выхода интегрирующего усилителя на вход датчика момента через последовательно соединенные по информационным входам компаратор, преобразователь уровня, пару ждущих синхронных генераторов, реверсивный двоичный счетчик, схему сравнения, пороговый элемент, электронный ключ, вход которого соединен с выходом генератора тока, второй вход схемы сравнения соединен с выходом суммирующего двоичного счетчика, дополнительные входы компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика и суммирующего двоичного счетчика соединены с генератором вспомогательной частоты, отличающийся тем, что в него введены последовательно соединенные первый и второй фильтры с выхода фазового детектора отрицательной обратной связи на вход интегрирующего усилителя и звено запаздывания с выхода интегрирующего усилителя на его вход, один из выходов двоичного реверсивного счетчика является цифровым выходом компенсационного акселерометра.



 

Похожие патенты:

Акселерометр предназначен для применения в системах стабилизации и навигации. Сущность заявленного технического решения заключается в том, что в акселерометр, содержащий чувствительный элемент, генератор опорного напряжения, датчик угла, схему ИСКЛЮЧАЮЩЕЕ ИЛИ, пару логических элементов, датчик момента, отрицательную цифровую обратную связь, ждущие синхронные генераторы, RS-триггер, две пары схем совпадения, схему синхронизации, малоразрядный реверсивный двоичный счетчик, малоразрядный итоговый регистр, преобразователь цифровой информации в прямой код, двоичный умножитель, генератор пилообразного напряжения, введена единичная отрицательная обратная связь, с выхода схемы ИСКЛЮЧАЮЩЕЕ ИЛИ на вход датчика момента через второй сумматор, причем выход датчика угла через пропорциональное звено соединен с одним из входов первого сумматора, второй вход которого соединен с выходом интегрирующего усилителя переменного тока со стабильным коэффициентом усиления, выход которого соединен с входом схемы ИСКЛЮЧАЮЩЕЕ ИЛИ, через первый логический элемент, кроме того, с выхода схемы ИСКЛЮЧАЮЩЕЕ ИЛИ на вход первого прецизионного релейного элемента введены последовательно по информационным входам интегратор и третий сумматор, один вход которого соединен с выходом генератора пилообразного напряжения, а выход соединен с входом первого прецизионного релейного элемента.

Изобретение относится к измерительной технике и может быть использовано в качестве элемента в системах стабилизации и навигации. Компенсационный акселерометр содержит чувствительный элемент, датчик угла, усилитель, датчик момента, отрицательную обратную связь, фазовый детектор отрицательной обратной связи, интегрирующий усилитель, пару ждущих синхронных генераторов, управляемый релейный элемент, преобразователь уровня, двоичный умножитель, реверсивный двоичный счетчик, преобразователь дополнительного кода в прямой, схему собирания, введены в дополнительную отрицательную обратную связь с выхода фазового детектора отрицательной обратной связи на один из входов сумматора через последовательно соединенные по информационным входам сглаживающий фильтр, блок управления динамической ошибкой, преобразователь напряжение-ток, и в отрицательную обратную связь с выхода фазового детектора на вход интегрирующего усилителя последовательно низкочастотный фильтр и звено запаздывания.

Группа изобретений относится к датчику с электростатическим маятниковым акселерометром и к способу управления таким датчиком. Акселерометрический датчик содержит по меньшей мере один электростатический маятниковый акселерометр, имеющий первый и второй неподвижные электроды, закрепленные на корпусе и соединенные со схемой возбуждения, и третий электрод, установленный на маятнике, соединенном с корпусом, с возможностью перемещения и связанный с детекторной схемой.

Группа изобретений относится к датчику с электростатическим маятниковым акселерометром и к способу управления таким датчиком. Акселерометрический датчик содержит по меньшей мере один электростатический маятниковый акселерометр, имеющий первый и второй неподвижные электроды, закрепленные на корпусе и соединенные со схемой возбуждения, и третий электрод, установленный на маятнике, соединенном с корпусом, с возможностью перемещения и связанный с детекторной схемой.

Изобретение, компенсационный акселерометр, предназначено для применения в системах стабилизации и навигации. Компенсационный акселерометр дополнительно содержит интегрирующую отрицательную обратную связь, в которую введены низкочастотный фильтр, с выхода схемы ИСКЛЮЧАЮЩЕЕ ИЛИ на вход интегратора, и пороговый элемент с зоной неоднозначности, с выхода интегратора на один из входов магнитоэлектрического силового преобразователя через второй преобразователь напряжение-ток, кроме того, выход сглаживающего фильтра является аналоговым выходом, а выход с порогового элемента с зоной неоднозначности - дискретным выходом компенсационного акселерометра.

Способ обеспечения линейности масштабного коэффициента маятникового широкодиапазонного акселерометра компенсационного типа относится к измерительной технике и может быть использован в области производства приборов для измерения линейного ускорения.

Способ обеспечения линейности масштабного коэффициента маятникового акселерометра компенсационного типа относится к измерительной технике. Способ основан на использовании цифровой обратной связи, реализуемой микроконтроллером, в котором программным способом реализован ШИМ; ШИМ формирует последовательность рабочих импульсов, длительность которых равна τраб(n⋅T0), а таймер микроконтроллера формирует два равных по величине вспомогательных импульса длительностью τвсп и две равные по величине паузы длительностью τпауз.

Изобретение относится к области приборостроения и может найти применение в приборах измерения механических величин компенсационного типа. Заявлен компенсационный акселерометр, содержащий чувствительный элемент, датчик угла, выход которого соединен с входом усилителя, датчик момента, отрицательную обратную связь, фазовый детектор отрицательной интегрирующей обратной связи, вход которой соединен с выходом усилителя.

Изобретение относится к области приборостроения, а именно - к инерционным датчикам порогового действия, осуществляющим регистрацию и запоминание в автономном режиме (без источника электропитания) информации о достижении ускорением заданных предельных уровней.

Изобретение относится к средствам измерения линейных ускорений. Сущность: акселерометр содержит корпус (1), в котором размещены маятниковый пластинчатый чувствительный элемент (МЧЭ) (2), упругий подвес, посредством которого МЧЭ связан с корпусом (1); магнитоэлектрический датчик (3) момента, фотоэлектрический датчик (6) угла перемещения, компенсационный усилитель (10).

Изобретение, компенсационный акселерометр, предназначено для применения в качестве элемента в системах стабилизации и навигации. Изобретение может найти применение в приборах измерения механических величин компенсационного типа. Сущность заявленного решения заключается в том, что в компенсационный акселерометр, содержащий чувствительный элемент, датчик положения, выход которого соединен с одним из входов схемы исключающее "или" через усилитель и первый логический элемент, магнитоэлектрический силовой преобразователь, включенный в отрицательную обратную связь, генератор опорного напряжения, выходы которого соединены как с датчиком положения, так и с одним из входов схемы исключающее "или" через второй логический элемент, преобразователь уровня, соединенный с входом реверсивного двоичного счетчика через пару ждущих синхронных генераторов, схему синхронизации, интегратор, введены релейный элемент с зоной неоднозначности с выхода схемы исключающее "или" на вход преобразователя уровня и интегратор с одного из входов усилителя на его выход, кроме того, один из выходов релейного элемента с зоной неоднозначности соединен с входом магнитоэлектрического силового преобразователя, дополнительные входы релейного элемента с зоной неоднозначности и ждущих синхронных генераторов соединены с выходом схемы синхронизации, а отрицательная обратная связь реализована с выхода усилителя на вход датчика момента через последовательно соединенные по информационным входам первый логический элемент, схему исключающее "или", релейный элемент с зоной неоднозначности, и выход реверсивного двоичного счетчика является цифровым выходом устройства. Введение в компенсационный акселерометр релейного элемента с зоной неоднозначности в отрицательную обратную связь и интегратора в прямую связь усилителя позволило реализовать режим автоколебаний, увеличить коэффициент усиления по разомкнутому контуру без потери устойчивости. Кроме того, введение интегратора с выхода датчика положения на выход усилителя позволило реализовать астатизм второго порядка, расширить полосу пропускания и повысить точность измерения. 2 ил.

Изобретение относится к измерительной технике и предназначено для использования в системах стабилизации и навигации. Сущность изобретения заключается в том, что компенсационный акселерометр дополнительно содержит последовательно соединенные первый и второй фильтры с выхода фазового детектора отрицательной обратной связи на вход интегрирующего усилителя и звено запаздывания с выхода интегрирующего усилителя на его вход, один из выходов двоичного реверсивного счетчика является цифровым выходом компенсационного акселерометра. Технический результат – повышение точности и расширение полосы пропускания компенсационного акселерометра. 4 ил.

Наверх