Упорный подшипник скольжения

Изобретение относится к области машиностроения, а именно к упорным подшипникам скольжения. Упорный подшипник скольжения содержит пяту, кольцевой подпятник (2) с неподвижными подушками (3), имеющими клиновидный профиль, образующими с пятой клиновые зазоры (7), корпус (4), сужающиеся радиальные каналы (5) для подвода смазочной жидкости к неподвижным подушкам (3) и гидростатические карманы (6). Кольцевой подпятник (2) выполнен с внутренним кольцевым каналом (8), сообщенным отводящими отверстиями (9) с клиновыми зазорами (7) и подводящими отверстиями (10) с гидростатическими карманами (6). Отводящие отверстия (9) выполнены с большим диаметром, чем диаметр подводящих отверстий (10). Технический результат: увеличение несущей способности упорного подшипника скольжения. 4 з.п. ф-лы, 11 ил.

 

Изобретение относится к области машиностроения, а именно к упорным подшипникам скольжения.

Известен классический гидродинамический (за счет вращения пяты) упорный подшипник скольжения, содержащий пяту, кольцевой подпятник с неподвижными подушками, имеющими клиновидный профиль, образующими с пятой клиновые зазоры, сужающиеся радиальные каналы для подвода смазочной жидкости к неподвижным подушкам. Подпятник упирается на поверхность корпуса. [Двухроторные винтовые и прямозубые компрессоры. Теория, расчет и проектирование И.Г. Хисамеев, В.А. Максимов. Издательство «ФЭН», Казань», 2000. - С. 468-473].

Недостатком известного упорного подшипника является его низкая несущая способность.

Известен гибридный упорный подшипник скольжения, содержащий пяту, кольцевой подпятник с неподвижными подушками, имеющими клиновидный профиль, образующими с пятой клиновые зазоры, между которыми выполнены гидростатические карманы, сообщенные с внешним источником давления жидкости. Подпятник упирается на поверхность корпуса. [Основы триботехники и герметологии: учебник, В.А. Максимов, Г.С. Баткис. Издательство «Титул-Казань», 2007. - С.220-222, С. 234-236].

Гибридный подшипник имеет наибольшую несущую способность в результате гидродинамического (за счет вращения пяты) и гидростатического (за счет внешнего источника давления) эффектов.

Недостатком известного технического решения является необходимость наличия внешнего источника давления жидкости, что не всегда возможно реализовать.

Задачей, на решение которой направлено заявленное изобретение, является увеличение несущей способности упорного подшипника скольжения.

Технический результат достигается тем, что в упорном подшипнике скольжения, содержащем пяту, кольцевой подпятник с неподвижными подушками, имеющими клиновидный профиль, образующими с пятой клиновые зазоры, корпус, сужающиеся радиальные каналы для подвода смазочной жидкости к неподвижным подушкам и гидростатическими карманами, согласно изобретению кольцевой подпятник выполнен с кольцевым каналом, сообщенным с клиновыми зазорами отводящими отверстиями и с гидростатическими карманами подводящими отверстиями, при этом отводящие отверстия выполнены с большим диаметром, чем диаметр подводящих отверстий.

Кроме того, гидростатические карманы могут быть расположены на кольцевом подпятнике со стороны пяты, между неподвижными подушками, или могут располагаться на кольцевом подпятнике со стороны корпуса подшипника, при этом гидростатические карманы могут быть снабжены уплотнительными элементами.

Кольцевой подпятник может быть сопряжен с корпусом по сферической поверхности.

Сущность изобретения поясняется графически, где:

на фиг. 1 представлено продольное сечение подшипника скольжения с гидростатическими карманами, расположенными со стороны пяты между неподвижными подушками, по неподвижным подушкам и гидростатическим карманам;

на фиг. 2 - поперечное сечение А-А фиг. 1;

на фиг. 3 - продольное сечение подшипника В-В фиг. 2;

на фиг. 4 - развернутое сечение Г-Г фиг. 2;

на фиг. 5 - выносной элемент I фиг. 1;

на фиг. 6 представлено продольное сечение подшипника с гидростатическими карманами, расположенными со стороны корпуса;

на фиг. 7 - поперечное сечение Д-Д фиг. 6;

на фиг. 8 -; поперечное сечение Ж-Ж фиг. 6;

на фиг. 9 - выносной элемент II фиг. 6;

на фиг. 10 - представлено продольное сечение упорного подшипника с гидростатическими карманами, расположенными со стороны пяты, с сопряжением кольцевого подпятника и корпуса по сферической поверхности;

на фиг. 11 представлено продольное сечение упорного подшипника с гидростатическими карманами, расположенными со стороны корпуса, с сопряжением кольцевого подпятника и корпуса по сферической поверхности.

Упорный подшипник скольжения содержит пяту 1, кольцевой подпятник 2 с неподвижными подушками 3, корпус 4, сужающиеся радиальные каналы 5 для подвода смазочной жидкости к неподвижным подушкам 3 и гидростатические карманы 6. Неподвижные подушки 3 имеют клиновидный профиль и образуют с пятой клиновые зазоры 7 (фиг. 4). Кольцевой подпятник 2 выполнен с внутренним кольцевым каналом 8, сообщенным отводящими отверстиями 9 с клиновым зазором 7 и подводящими отверстиям 10 к гидростатическим карманам 6. Отводящие отверстия 9 выполнены с большим диаметром, чем подводящие отверстия 10. Пята 1 на роторе фиксируется гайкой 11 и шпонкой 12, кольцевой подпятник 2 фиксируется относительно корпуса 4 штифтом 13. Кольцевой канал 8 выполнен расточкой кольцевого подпятника с последующей установкой втулки 14 по герметичной посадке. С целью быстрого набора давления в гидростатических карманах 6 объем кольцевого канала 8 должен быть небольшим, по этой же причине отводящие отверстия 9 выполнены большего диаметра в сравнении с подводящими отверстиями 10. Несущая способность гидростатических карманов 6 (Rc) обеспечивается их площадью (F) и статическим давлением в карманах (рс), которое определяется диаметром подводящих отверстий 10. Подвод смазочной жидкости к неподвижным подушкам 3 и клиновым зазорам 7 осуществляется по радиальным каналам 5 (фиг. 3), которые сужаются от центра к периферии для обеспечения снижения расхода смазочной жидкости.

Гидростатические карманы 6 упорного подшипника скольжения могут быть расположены на кольцевом подпятнике 2 со стороны пяты 1, между неподвижными подушками 3 (фиг. 1-5), либо на кольцевом подпятнике 2, со стороны корпуса 4 (фиг. 6-10) При последнем расположении упорный подшипник имеет более высокую несущую способность, т.к. можно расположить гидростатические карманы 7 большей площади (F) (фиг. 8).

Гидростатические карманы 7 снабжены уплотнительными элементами 15 (фиг. 5, 9), работающими на трение, например различные графитовые композиции, что позволят снизить расход смазочной жидкости до минимального.

Кольцевой подпятник 2 в сопряжении с корпусом 4 может быть выполнен по сферической поверхности 16 (фиг. 10, 11). Такая конструкция применяется при больших перекосах пяты 1, установленной на роторе, относительно корпуса 4.

Упорный подшипник скольжения работает следующим образом.

По каналам 5 подается смазочная жидкость (на фиг. 3, стрелками показаны направления движения смазочной жидкости), далее запускается в работу сам механизм. При вращении ротора механизма возникает осевая сила Р (фиг. 1), в то же время при вращении пяты 1, установленной на роторе, смазочная жидкость из канала 5 увлекается в клиновые зазоры 7, (на фиг. 4 стрелкой показано направление движения смазочной жидкости). В результате в зазорах 7 повышается давление (может достигать 10МПа и более) и за счет возникновения гидродинамического эффекта появляется несущая способность подшипника. Далее через отводящие отверстия 9, соединяющие клиновые зазоры 7 и кольцевой канал 8, смазочная жидкость, под давлением поступает в гидростатические карманы 6 через отверстия 10, при этом возникает дополнительная несущая способность подшипника за счет гидростатического эффекта, описываемая уравнением: Rc=n × F × рс, где n - количество гидростатических карманов, F - площадь гидростатических карманов, рс - давление в гидростатических карманах. В результате создается несущая способность подшипника R (фиг. 1), как за счет возникновения гидродинамического эффекта, так и за счет возникновения гидростатического эффекта.

Таким образом, предлагаемое техническое решение, за счет усовершенствования конструкции упорного подшипника, позволяет повысить несущую способность упорного подшипника скольжения без применения внешних источников давления смазочной жидкости.

1. Упорный подшипник скольжения, содержащий пяту, кольцевой подпятник с неподвижными подушками, имеющими клиновидный профиль, образующими с пятой клиновые зазоры, корпус, сужающиеся радиальные каналы для подвода смазочной жидкости к неподвижным подушкам, и гидростатические карманы, отличающийся тем, что кольцевой подпятник выполнен с кольцевым каналом, сообщенным с клиновыми зазорами отводящими отверстиями и с гидростатическими карманами подводящими отверстиями, при этом отводящие отверстия выполнены с большим диаметром, чем диаметр подводящих отверстий.

2. Упорный подшипник скольжения по п. 1, отличающийся тем, что гидростатические карманы расположены на кольцевом подпятнике со стороны пяты, между неподвижными подушками.

3. Упорный подшипник скольжения по п. 1, отличающийся тем, что гидростатические карманы расположены на кольцевом подпятнике со стороны корпуса подшипника.

4. Упорный подшипник скольжения по п. 1, отличающийся тем, что гидростатические карманы снабжены уплотнительными элементами.

5. Упорный подшипник скольжения по п. 1, отличающийся тем, что кольцевой подпятник сопряжен с корпусом по сферической поверхности.



 

Похожие патенты:

Упорный подшипник из комбинированного материала с водяной смазкой для главного циркуляционного насоса содержит основание (1) из профилированного листа нержавеющей стали и слой (2) конструкционного пластика.

Изобретение относится к области машиностроения и может быть использовано в энергетике, металлургии, строительстве для обеспечения надежной работы роторных машин, имеющих в своем составе упорный подшипник жидкостного трения (турбины, компрессоры, насосы, центрифуги и т.д.).

Изобретение относится к упорному подшипнику скольжения, в частности к упорному подшипнику скольжения, предназначенному для использования в качестве подшипника скольжения для подвески стоечного типа (подвески МакФерсона) в четырехколесном транспортном средстве, и к комбинированному устройству из упорного подшипника скольжения и поршневого штока.

Изобретение относится к подшипникам. В частности, к подшипникам качения.

Изобретение относится к упорному подшипнику скольжения из синтетической смолы. Упорный подшипник (1) скольжения имеет верхний корпус (12) из синтетической смолы, нижний корпус (22) из синтетической смолы, узел (33) упорного подшипника из синтетической смолы, помещающийся между верхним корпусом (12) и нижним корпусом (22), наружный упругий уплотняющий элемент (47), имеющий внутреннюю упруго деформируемую кромку (43) и наружную упруго деформируемую кромку (46), и внутренний упругий уплотняющий элемент (54), имеющий наружную упруго деформируемую кромку (50) и внутреннюю упруго деформируемую кромку (53).

Изобретение относится к упорному подшипнику скольжения, более точно к подшипнику скольжения из синтетической смолы, применимому в качестве упорного подшипника скольжения в подвеске стоечного типа (подвеске Макферсона) четырехколесного транспортного средства.

Изобретение относится к упорному подшипнику скольжения, более точно к упорному подшипнику скольжения, применимому в подвеске стоечного типа (подвеске Макферсона) четырехколесного транспортного средства, а также к комбинированному устройству из упорного подшипника скольжения и поршневого штока.

Изобретение относится к упорному подшипнику скольжения из синтетической смолы, более точно к упорному подшипнику скольжения, применимому в подвеске стоечного типа (подвеске Макферсона) четырехколесного транспортного средства, а также к монтажной конструкции подвески стоечного типа с использованием упорного подшипника скольжения.

Изобретение относится к упорному подшипнику скольжения, более точно к подшипнику скольжения из синтетической смолы, применимому в качестве упорного подшипника скольжения в подвеске стоечного типа (подвеске Макферсона) четырехколесного транспортного средства.

Изобретение относится к области машиностроения и может быть использовано в энергетике, судостроении, металлургии, для обеспечения долговечной, надежной работы оборудования (турбины, компрессоры, двигательные установки, центрифуги и т.д.).
Наверх