Способ оценки адгезионной прочности изоляционного покрытия электродвигателей и устройство для его реализации

Изобретение относится к испытательной технике и может быть использовано при проведении комплексной оценки состояния изоляционного покрытия обмоток электродвигателей локомотивов. Сущность: образец изоляционного покрытия нагревают и прикладывают усилие, необходимое для его разрушения. Воздействуют на исследуемый образец изоляционного покрытия вибрационными колебаниями, звуковым давлением и температурой, затем увеличивают интенсивность воздействий до появления дефектов на образце, результаты фиксируют и сравнивают их с эталонными значениями разрушения износостойкого покрытия, после чего дают оценку адгезионной прочности изоляционного покрытия. Устройство содержит высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования звукового давления. Динамик и нагревательный элемент закреплены на штативах сверху относительно исследуемого образца изоляционного покрытия, на основании установлен вибратор с захватами для образца изоляционного покрытия, видеокамера осуществляет фиксацию полученных результатов и имеет возможность перемещения. Технический результат: возможность моделировать режимы интенсивной эксплуатации тягового двигателя. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к испытательной технике и может быть использовано при проведении комплексной оценки состояния изоляционного покрытия обмоток электродвигателей локомотивов.

Большинство технических объектов в процессе эксплуатации испытывают значительные динамические нагрузки, что негативно влияет на основные узлы и агрегаты подвижного состава железнодорожного транспорта. Одним из основных устройств, на которые влияет усиление динамических нагрузок, является тяговый электродвигатель локомотива. На его тяговые свойства в основном воздействуют электрические и механические факторы.

Одним из основных условий устойчивой работы электродвигателя является качество изоляционного покрытия его обмоток, поэтому значениям их сопротивления уделяется основное внимание при испытаниях. Механические испытания заключаются в проверке прочности крепления обмоток в пазах и осуществляются путем приложения к электродвигателю длительного вибрационного воздействия.

Однако влияние вибрационного нагружения и звуковых колебаний на изоляционные свойства обмоток не исследуются. Также не рассматривается влияние на адгезионную прочность изоляционного покрытия температурных факторов, возникающих при работе тягового двигателя.

В процессе патентного поиска выявлен ряд изобретений-аналогов, относящихся к исследованиям обмоток электродвигателя.

Известен способ [Горбунов Р.В., Суворов И.Ф., Палкин Г.А., Сережин К.С., «Способ диагностики изоляции обмоток статора асинхронного электродвигателя», патент RU 2615021 С1, МПК G01R 31/00, опубл. 03.04.2017], сущность которого заключается в определении и отслеживании изменения во времени соотношений полных сопротивлений обмоток статора асинхронного электродвигателя, а также определении и отслеживании изменения во времени сопротивления изоляции обмоток статора относительно корпуса путем измерения тока утечки на корпус асинхронного электродвигателя при подаче на обмотку статора напряжения после отключения электродвигателя от питающей сети. Определение полных сопротивлений обмоток статора производится косвенным путем при помощи измеренных значений токов и напряжений на обмотках статора электродвигателя. Технический результат заключается в возможности диагностирования снижения сопротивления изоляции обмоток статора асинхронного электродвигателя относительно корпуса электродвигателя и межвитковых замыканий на ранней стадии развития.

Основным недостатком данного изобретения является отсутствие испытания адгезионной прочности изоляционного покрытия.

Известен способ [Гареев P.P., Цирельман Н.М., Галиев В.Э. «Способ неразрушающего контроля прочности сцепления покрытий», патент RU 2330264 С1, МПК G01N 19/04, опубл. 27.07.2008], сущность которого заключается в том, что поверхность покрытия нагревают и определяют параметр, по которому судят о прочности сцепления покрытия с подложкой. Причем в качестве параметра, по которому судят о прочности сцепления покрытия с подложкой, выбирают температуру покрываемой поверхности подложки, полученную путем решения граничной обратной задачи нестационарной теплопроводности с использованием измерений температуры подложки на противоположной непокрытой ее стороне.

К недостаткам данного изобретения можно отнести отсутствие проверки адгезионной прочности покрытия на стойкость вибрационным воздействиям.

К известным изобретениям также относится способ [Протасов В.Н., Макаренко А.В. «Способ определения стойкости изоляционных полимерных покрытий к катодному отслаиванию и образец для его осуществления», патент RU 2284504 С1, МПК G01N 19/04, опубл. 27.09.2006], который включает изготовление двух идентичных образцов из электропроводящей подложки с изоляционным полимерным покрытием. В полимерном покрытии выполняют сквозной дефект путем выделения участка покрытия, вокруг которого прорезают канавку на всю глубину полимерного слоя до оголения подложки. На выделенном участке покрытия каждого образца устанавливают электролитическую ячейку с условием перекрытия анодным электродом, входящим в состав ячейки, канавки по всей ее ширине и осуществляют катодную поляризацию образцов в течение заданного времени соответственно одного образца - τ1 и второго - τ2, при заданной температуре. Определяют удельное усилие отрыва покрытия на выделенном участке от подложки соответственно σ(τ1) и σ(τ2), причем величины τ1 и τ2 задают только при установившемся адгезионном характере разрушения покрытия при отрыве (отслаивание от металла), после чего вычисляют время снижения прочности сцепления покрытия с подложкой до минимально допустимой величины или до полного его отслаивания в соответствии с расчетной формулой, а затем делают вывод о целесообразности применения данного покрытия. Технический результат изобретения заключается в возможности прогнозирования срока службы металлических изделий с изоляционным полимерным покрытием в условиях воздействия катодной поляризации.

К недостаткам данного изобретения можно отнести отсутствие внимания к стойкости покрытия к вибрационным возмущениям.

За прототип взят способ [Бычков Н.Г., Першин А.В., Хамидуллин А.Ш., Ножницкий Ю.А. «Способ определения адгезионной прочности теплозащитного покрытия на сдвиг и устройство для его осуществления», патент RU 2548378, С1, МПК, G01N 19/04, опубл. 20.04.2015], заключающийся в том, что на подложку, выполненную в виде наружных поверхностей двух соосно установленных с поджатием по стыку цилиндров, наносят покрытие в форме кольца, перекрывающего их стык, и после отверждения покрытия прикладывают к цилиндрам усилие в противоположных направлениях до разрушения покрытия, отличающийся тем, что покрытие выполняют в виде металлического подслоя в составе теплозащитного покрытия, подслой наносят несимметрично по длине относительно стыка цилиндров, причем после поперечного разрушения подслоя цилиндры повторно устанавливают с поджатием по стыку и на разрушенный подслой дополнительно наносят плазменным способом керамический слой теплозащитного покрытия в форме кольца, а после отверждения керамического покрытия нагревают цилиндры в диапазоне температур горячей части газового тракта силовой установки, повторно прикладывают осевое усилие в противоположных направлениях до сдвига керамического слоя с подслоя одного из цилиндров и устанавливают фактическое усилие сдвига.

Данный способ не предусматривает проверку адгезионной прочности покрытия к вибрационному воздействию и фиксацию результатов испытаний.

Задачей предлагаемого способа является оценка адгезионной прочности изоляционного покрытия обмоток электродвигателя при воздействии звуковых колебаний и температурного воздействия.

Способ оценки адгезионной прочности изоляционного покрытия электродвигателей, заключающийся в том, что образец изоляционного покрытия нагревают и прикладывают усилие, необходимое для его разрушения, отличающийся тем, что воздействуют на исследуемый образец изоляционного покрытия вибрационными колебаниями, звуковым давлением и температурой, затем увеличивают интенсивность воздействий до появления дефектов на образце, результаты фиксируют и сравнивают их с эталонными значениями разрушения износостойкого покрытия, после чего дают оценку адгезионной прочности изоляционного покрытия.

Способ оценки адгезионной прочности изоляционного покрытия электродвигателей, отличающийся тем, что вибрационные колебания включают в себя вибрации от звукового давления и от колебаний вибратора.

Устройство для оценки адгезионной прочности изоляционного покрытия обмоток электродвигателей, отличается тем, что устанавливается высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования звукового давления, динамик и нагревательный элемент закреплены на штативах сверху относительно исследуемого образца изоляционного покрытия, на основании установлен вибратор с захватами для образца изоляционного покрытия, видеокамера осуществляет фиксацию полученных результатов и имеет возможность перемещения.

Суть предлагаемого изобретения поясняется чертежами.

На фиг. 1 изображена горизонтальная проекция испытательной установки. Высокочастотный динамик 1 и нагревательное устройство 3 закреплены над исследуемым образцом 5 на штативах 2 и 4 соответственно. Образец закреплен при помощи зажимов 13 на вибраторе 6 и представляющим собой часть изоляционного покрытия. Динамик 1 присоединен к генератору частот 8, соединенному с усилителем звука 7, на котором установлен блок управления 9. Также предусмотрена видеокамера 10, закрепленная на манипуляторе 11 с возможностью движения по нескольким степеням свободы. Вибратор 6 с исследуемым образцом 5 жестко закреплен на основании 14 при помощи скоб 12. На фиг 2 показана вертикальная проекция испытательной установки, где отмечены фигуры Хладни 14.

Сущность предлагаемого способа заключается в следующем.

При помощи блока управления 9 генератору частот 8 задается требуемый режим воздействия, после чего происходит включение динамика 1. При необходимости увеличения звукового воздействия используется усилитель звука 7. Также блок управления 9 позволяет соединять и накладывать («микшировать») друг на друга различные звуковые воздействия для получения требуемых возмущений различной природы. Динамик 1 располагается сверху относительно исследуемого образца и закреплен на штативе 2 с возможностью перемещения динамика после завершения испытаний. Звуковое воздействие, передаваемое на исследуемый образец 5, возбуждает его колебания, что позволяет оценить адгезионную прочность изоляционного покрытия образца, жестко зафиксированного устройствами крепления 12 на вибраторе 6, который, в свою очередь, генерирует вибрационные колебания и также подключен к блоку управления. При помощи нагревательного устройства 3 образцу 5 сообщается требуемая температура. Видеокамера 10, закрепленная на манипуляторе 11, производит контроль за ходом испытаний, осуществляющийся после окончания испытаний с возможностью записи визуальных результатов изменения структуры покрытия. Для исключения влияния на процесс неудерживающих связей исследуемый образец 5 на вибраторе 6 жестко присоединены к основанию 14 скобами 12.

Таким образом, исследуемый образец подвергается влиянию трех типов воздействий: температуры, звукового давления и вибрационных колебаний. Это позволяет моделировать режимы интенсивной эксплуатации тягового двигателя. Приложенные воздействия могут быть заданы различными режимами, которые могут представлять собой как моделирование рабочих частот тягового электродвигателя, так и транслирование звуковых записей его работы, а изменение температуры позволяет оценить адгезионную прочность покрытия на границе нагретой и обладающей нормальной температурой частей покрытия. Испытания при достаточной длительности воздействия приведут к появлению трещин, отрывов и других дефектов изоляционного покрытия, с возможностью формирования структуры, похожей на фигуры Хладни 14. Анализ результатов испытаний позволит оценить остаточный ресурс и показать опасные места на изоляционном покрытии.

1. Способ оценки адгезионной прочности изоляционного покрытия электродвигателей, заключающийся в том, что образец изоляционного покрытия нагревают и прикладывают усилие, необходимое для его разрушения, отличающийся тем, что воздействуют на исследуемый образец изоляционного покрытия вибрационными колебаниями, звуковым давлением и температурой, затем увеличивают интенсивность воздействий до появления дефектов на образце, результаты фиксируют и сравнивают их с эталонными значениями разрушения износостойкого покрытия, после чего дают оценку адгезионной прочности изоляционного покрытия.

2. Способ оценки адгезионной прочности изоляционного покрытия электродвигателей, отличающийся тем, что вибрационные колебания включают в себя вибрации от звукового давления и от колебаний вибратора.

3. Устройство для оценки адгезионной прочности изоляционного покрытия обмоток электродвигателей, отличающееся тем, что устанавливается высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования звукового давления, динамик и нагревательный элемент закреплены на штативах сверху относительно исследуемого образца изоляционного покрытия, на основании установлен вибратор с захватами для образца изоляционного покрытия, видеокамера осуществляет фиксацию полученных результатов и имеет возможность перемещения.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при проведении испытаний адгезионной прочности изоляционного покрытия обмоток электродвигателей локомотивов.

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определения по полученным величинам пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определение, по полученным величинам, пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способу определения стойкости к истиранию по меньшей мере одного слоя износа, расположенного на несущей пластине. Сущность: осуществляют этапы: записи по меньшей мере одного БИК-спектра слоя износа, расположенного по меньшей мере на одной несущей пластине, a) перед затвердеванием по меньшей мере одного слоя износа, b) после затвердевания по меньшей мере одного слоя износа или c) перед затвердеванием по меньшей мере одного слоя износа с несущей пластиной и после него с применением по меньшей мере одного БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм; определения стойкости к истиранию по меньшей мере одного слоя износа путем сравнения БИК-спектра, записанного для определения стойкости к истиранию по меньшей мере одного слоя износа, по меньшей мере с одним БИК-спектром, записанным по меньшей мере для одного эталонного образца по меньшей мере одного слоя износа с известной стойкостью к истиранию, с помощью многопараметрового анализа данных (МАД), при этом по меньшей мере один БИК-спектр, записанный по меньшей мере для одного эталонного образца с известной стойкостью к истиранию по меньшей мере одного слоя износа, определили заранее a) после затвердевания по меньшей мере одного слоя износа или b) перед затвердеванием и после него с использованием того же БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм.

Изобретение относится к технике для проведения испытаний, а именно для исследования устойчивости к воздействию резких температурных колебаний, и может быть использовано при испытаниях на термоудар приборов космического назначения.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, а именно к способам определения теплостойкости Т.

Изобретение относится к метрологии, в частности к способам определения термостойкости углей при их циклическом замораживании и оттаивании. Сущность: осуществляют циклическое замораживание и оттаивание однотипных образцов углей при числе М циклов, равном порядковому номеру соответствующего образца в серии.

Изобретение относится к области строительства и предназначено для испытаний плоских многоэтажных рамно-стержневых конструктивных систем на живучесть, в частности экспериментального определения динамических догружений в элементах конструктивной системы при внезапном выключении из работы одного из несущих элементов.

Изобретение относится к области теплоэнергетики и может быть использовано для определения жаростойкости аустенитных сталей, используемых в теплонапряженных элементах энергетического оборудования.

Использование: для визуализации внутреннего строения объектов с помощью ультразвуковых волн. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n пьезопреобразователями, каждый из которых соединен с выходом соответствующего генератора импульсов и входом соответствующего усилителя, n аналого-цифровых преобразователей соединены с соответствующими входами блока памяти реализации, количество выходов которого N определено формулой N=n⋅(n+1)/2, а выходы блока памяти реализации соединены с соответствующими входами вычислительного блока, связанного с индикатором через блок памяти изображений.

Использование: для непрерывного дистанционного контроля деформаций в трубопроводе. Сущность изобретения заключается в том, что способ и система предусматривают использование направляемых волн для дистанционного контроля напряжений в трубопроводе, а также в протяженных секциях, имеющих длину, равную сотням метров, с использованием относительно малого количества датчиков, установленных на наружной поверхности трубопровода.

Изобретение относится к машиностроению и может быть использовано при проведении испытаний адгезионной прочности изоляционного покрытия обмоток электродвигателей локомотивов.

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия.

Использование: для неразрушающего контроля поврежденности металлов. Сущность изобретения заключается в том, что определяют временные задержки распространения упругой волны, при этом определение временных задержек производят для одного типа объемной упругой волны при разных температурах и определяют поврежденность материала, используя заданную математическую формулу.
Устройство относится к метрологии, в частности к средствам для дистанционного контроля высоковольтного оборудования. Устройство контроля высоковольтного оборудования под напряжением, включающее приемник сигналов от частичных разрядов, оптический визир, блок лазерной наводки, жидкокристаллический индикатор, блок автоматической регулировки чувствительности сигналов от частичных разрядов, блок обработки сигналов.

Использование: для ультразвукового (УЗ) неразрушающего контроля изделий, в частности железнодорожных рельсов. Сущность изобретения заключается в том, что в зоне досягаемости диаграммы направленности вертикального зондирующего электроакустического преобразователя (ЭАП), направленного через головку, шейку к подошве рельса, устанавливают дополнительные приемные ЭАП.
Изобретение относится к технологии изготовления стволов артиллерийских орудий. Способ поверхностной закалки внутренней поверхности ствола артиллерийского орудия заключается в том, что на контрольный участок внутренней поверхности ствола воздействуют импульсами лазерного излучателя для нагрева и перевода поверхностного слоя металла в мартенсит с последующим контролем качества закалки.

Использование: для комплексного автоматизированного неразрушающего контроля качества многослойных изделий. Сущность изобретения заключается в том, что устройство включает два ультразвуковых преобразователя теневого контроля, ультразвуковой дефектоскоп теневого контроля, пороговое устройство ультразвукового дефектоскопа теневого контроля, датчик позиционирования, электронный блок датчика позиционирования, регистрирующее устройство, преобразователь акустического дефектоскопа для осуществления метода свободных колебаний, акустический дефектоскоп для осуществления метода свободных колебаний, пороговое устройство акустического дефектоскопа для осуществления метода свободных колебаний, электронный ключ, блок задержки.

Использование: для неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта датчиками физических полей, измеряют величины сигналов с каждой точки поверхности контролируемого объекта, разбивают диапазон величин сигналов по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

Приспособление для проведения испытаний по определению прочности при отслаивании гибких материалов, например фольги, бумаги, поливинилхлорида, полиэтилена, фторопласта, от основы.
Наверх