Устройство для определения температуры газовой среды в газотурбинных двигателях



Устройство для определения температуры газовой среды в газотурбинных двигателях
Устройство для определения температуры газовой среды в газотурбинных двигателях
Устройство для определения температуры газовой среды в газотурбинных двигателях
G01K2013/024 - Измерение температуры; измерение количества тепла; термочувствительные элементы, не отнесенные к другим классам ( измерение температурных колебаний с целью компенсации их влияния на измерение других переменных величин или для компенсации ошибок в показаниях приборов для измерения температуры, см. G01D или подклассы, к которым отнесены эти переменные величины; радиационная пирометрия G01J; определение физических или химических свойств материалов с использованием тепловых средств G01N 25/00; составные термочувствительные элементы, например биметаллические G12B 1/02)

Владельцы патента RU 2676237:

Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" (RU)

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в полостях высокотемпературных элементов газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний. Устройство для определения температуры газовой среды в газотурбинных двигателях содержит размещенную в корпусе державку с приводом, установленные в державке основную и дополнительную термопары, подключенные через блоки регистрации термоЭДС к электронному сумматору, калибратор для термопар и источник теплового излучения для нагревания термопар, выполненный с возможностью размещения его в полости корпуса устройства, причем державка установлена в корпусе с возможностью вертикального перемещения, термоспаи основной и дополнительной термопар теплоизолированы между собой, а поверхностные слои термоспаев выполнены из материалов с разными коэффициентами поглощения. Устройство снабжено оптическим измерителем теплового излучения, имеющим объектив и поворотный привод и размещенным с противоположной стороны от источника теплового излучения относительно державки с термопарами, и теплоизолирующим экраном, установленным между измерителем теплового излучения и державкой с термопарами и имеющим измерительное отверстие, выполненное и расположенное таким образом, чтобы его площадь полностью затенялась термоспаями термопар, а калибратор для термопар выполнен в виде модели абсолютно черного тела с подогревателем и калиброванным отверстием, направленным в сторону объектива оптического измерителя теплового излучения. Технический результат – повышение точности получаемых результатов за счет исключения погрешности показаний термопар, связанных с опосредованным определением характеристик их термоспаев при определении температуры высокотемпературной газовой среды методом линейной экстраполяции. 3 ил.

 

Изобретение относится к области контактных измерений параметров высокотемпературных газов, в частности к средствам измерения температуры газа и распределения ее значений в высокотемпературных элементах газотурбинных двигателей, и может быть применено для экспериментальных исследований рабочего процесса силовых установок при проведении аэродинамических испытаний.

Источником погрешностей при измерении термопарами температуры прозрачных для теплового излучения сред является теплообмен излучением между спаем термопары и окружающей средой, содержащей газ, стенки и некоторые другие элементы конструкции, если температура газа в месте измерений отличается от температуры этих элементов.

В частности, при измерении термопарами температуры газа на выходе из камеры сгорания газотурбинного двигателя температура спая термопары может отличаться от действительной температуры газа в месте измерения из-за лучистого теплообмена спая с более горячими элементами камеры сгорания, например, с деталями фронтового устройства или с более холодными элементами, например, с охлаждаемыми стенками камеры сгорания, т.е. температура термоспая измерительной термопары при наличии мощных тепловых излучателей выше реальной температуры окружающей термопару газовой среды.

Поэтому для повышения точности определения температуры необходимо учитывать степень поглощающей способности поверхности спаев термопар, используемых для проведения измерений.

Известно устройство для определения температуры газа в полых высокотемпературных элементах, содержащее размещенные в высокотемпературном элементе термоприемник, подключенный через блоки регистрации к электронному сумматору (US 4919542, 1990). В известном устройстве в качестве термоприемника используется полупроводниковая пластина, выполненная предпочтительно из кремния. Устройство снабжено дополнительным источником излучения, прерывистый сигнал от которого отражается от полупроводниковой пластины и подается через блок регистрации к электронному сумматору.

Такое выполнение устройства позволяет точно определять температуру полупроводниковой пластины по величине ее излучения за счет того, что при измерении температуры учитывается степень отражающей способности поверхности полупроводниковой пластины и излучение от стенок камеры высокотемпературного элемента.

Однако использовать подобное устройство для определения температуры газа в высокотемпературных элементах газотурбинного двигателя, например, в камере сгорания или проточном тракте, практически невозможно в связи с его сложностью (наличие в устройстве герметичной камеры, наполненной инертным газом).

Известно устройство для определения температуры газовой среды в газотурбинных двигателях, содержащее размещенную в корпусе державку с приводом, установленные в державке основную и дополнительную термопары, подключенные через блоки регистрации термоЭДС к электронному сумматору, и калибратор для термопар, причем термоспаи основной и дополнительной термопар теплоизолированы между собой, а поверхностные слои термоспаев выполнены из материалов с разными коэффициентами поглощения (SU 800693, 1981).

В известном устройстве все термопары выполнены одинаковыми по размерам, а точность измерения температуры повышается за счет исключения искажения в показаниях термопар от термической инерции и потерь энергии на излучение термоспаями термопар. Поэтому применение этого устройства ограничивается теми объектами, в которых отсутствует мощный источник излучения. При наличии такого источника излучения, например, в камерах сгорания и в проточных трактах газотурбинных двигателей, потери энергии от излучения термопарами будут существенно ниже притока энергии от излучения элементов камеры сгорания и стенок проточного тракта двигателя, т.е. показания термопар будут значительно отличаться от реальной температуры газа.

Наиболее близким аналогом изобретения является устройство для определения температуры газовой среды в газотурбинных двигателях, содержащее размещенную в корпусе державку с приводом, установленные в державке основную и дополнительную термопары, подключенные через блоки регистрации термоЭДС к электронному сумматору, калибратор для термопар, и источник теплового излучения для нагревания термопар, выполненный с возможностью размещения его в полости корпуса устройства, причем державка установлена в корпусе с возможностью вертикального перемещения, термоспаи основной и дополнительной термопар теплоизолированы между собой, а поверхностные слои термоспаев выполнены из материалов с разными коэффициентами поглощения (RU 2610115, 2017).

В известном устройстве калибратор для термопар представляет собой эталонную термопару с известным коэффициентом поглощения спая, а предварительную калибровку проводят путем сравнения свойств, проявляемых поверхностными слоями измерительной и эталонной термопар с учетом того, что отношение коэффициентов поглощения пропорционально отношению лучистых потоков, попадающих на термоспаи, находящиеся при одинаковой температуре и в одинаковом положении относительно объекта измерений.

Однако, результаты измерения температуры газа, полученные с помощью известного устройства, имеют достаточно высокую степень погрешности, величина которой зависит от следующих факторов:

- погрешности, связанные с выбором эталонной термопары, т.к. состав материала, из которого изготовлен термоспай эталонной термопары, качество изготовления термоспая и условия хранения и работы эталонной термопары, существенно влияют на реальное значение коэффициента поглощения эталонной термопары;

- погрешности, связанные с опосредованным определением коэффициента поглощения термоспаев измерительных термопар, т.е. с использованием для этих вычислений промежуточных физических величин, непосредственно не влияющих на величину коэффициента поглощения, в частности, расстояние от источника постоянного излучения до измерительной термопары и поправки, учитывающие влияние на величину излучения окружающей среды.

Техническая проблема, решение которой обеспечивается изобретением, заключается в необходимости повышения точности измерения температуры газовой среды в газотурбинных двигателях.

Технический результат изобретения заключается в обеспечении прямого определения коэффициента поглощения термоспая термопары.

Технический результат изобретения достигается тем, что устройство для определения температуры газовой среды в газотурбинных двигателях содержит размещенную в корпусе державку с приводом, установленные в державке основную и дополнительную термопары, подключенные через блоки регистрации термоЭДС к электронному сумматору, калибратор для термопар, и источник теплового излучения для нагревания термопар, выполненный с возможностью размещения его в полости корпуса устройства, причем державка установлена в корпусе с возможностью вертикального перемещения, термоспаи основной и дополнительной термопар теплоизолированы между собой, а поверхностные слои термоспаев выполнены из материалов с разными коэффициентами поглощения. Устройство снабжено оптическим измерителем теплового излучения, имеющим объектив и поворотный привод и размещенным с противоположной стороны от источника теплового излучения относительно державки с термопарами, и теплоизолирующим экраном, установленным между измерителем теплового излучения и державкой с термопарами и имеющим измерительное отверстие, выполненное и расположенное таким образом, чтобы его площадь полностью затенялась термоспаями термопар, а калибратор для термопар выполнен в виде модели абсолютно черного тела с подогревателем и калиброванным отверстием, направленным в сторону объектива оптического измерителя теплового излучения.

Существенность отличительных признаков устройства для определения температуры газовой среды в газотурбинных двигателях подтверждается тем, что только совокупность всех существенных конструктивных признаков, описывающая изобретение, позволяет решить проблему повышения точности измерения температуры газовой среды в газотурбинных двигателей с достижением технического результата - обеспечение прямого определения коэффициента поглощения термоспая термопары.

Пример реализации устройства для определения температуры газовой среды в газотурбинных двигателях поясняется чертежами, где:

на фиг. 1 показана общая функциональная схема устройства для определения температуры газовой среды в газотурбинных двигателях с двумя термопарами;

на фиг. 2 показан график зависимости температуры, соответствующей значениям термоЭДС, измеренных с помощью термопар, от коэффициента поглощения термоспаев этих термопар;

на фиг. 3 показаны графики показаний температуры газовой среды, определенных устройством согласно изобретению и известным устройством.

Устройство для определения температуры газовой среды в газотурбинных двигателях содержит размещенную в корпусе 1 державку 2 с приводом 3 вертикального перемещения и установленные в державке 2 основную 4 и дополнительную 5 термопары, подключенные через блоки регистрации 6 термоЭДС к электронному сумматору 7. Основная термопара 4 расположена по вертикали выше дополнительной термопары 5, ее термоспаи теплоизолированы от термоспаев дополнительной термопары 5 теплоизоляционным материалом 8, а поверхностные слои термоспаев основной 4 и дополнительной 5 термопар выполнены из материалов с разными коэффициентами поглощения.

Устройство имеет источник теплового излучения 9 для нагревания основной и дополнительной термопар 4 и 5, выполненный с возможностью размещения его в полости корпуса 1, и калибратор 10 для термопар, выполненный в виде модели 11 абсолютно черного тела с подогревателем 12 и калиброванным отверстием 13.

Устройство снабжено оптическим измерителем 14 теплового излучения, имеющим объектив 15 и поворотный привод 16. Измеритель 14 теплового излучения размещен с противоположной стороны от источника теплового излучения 9 относительно державки 2 с термопарами 4 и 5. В качестве оптических измерителей теплового излучения могут применяться спектрометры с получением спектральных коэффициентов поглощения в выбранных спектральных диапазонах или радиометры и болометры разных типов с получением интегральных характеристик в разных диапазонах спектра.

Между оптическим измерителем 14 теплового излучения и державкой 2 с термопарами 4 и 5 установлен теплоизолирующий экран 17, который имеет измерительное отверстие 18, выполненное и расположенное таким образом, чтобы его площадь полностью затенялась термоспаями основной и дополнительной термопар 4 и 5 от тепла, излучаемого источником теплового излучения 9.

Теплоизолирующий экран 17 и источник теплового излучения 9 имеют привод 19 для их размещения в полости корпуса 1 и извлечения из корпуса 1 после окончания калибровки основной и дополнительной термопар 4 и 5. Калиброванное отверстие 13 модели 11 абсолютно черного тела направлено в сторону объектива 15 оптического измерителя 14 теплового излучения.

Перед проведением измерения температуры газовой среды производится калибровка поверхностных слоев термоспаев основной и дополнительной термопар 4 и 5 для определения точного значения их коэффициентов поглощения. Необходимость калибровки объясняется тем, что теоретические значения коэффициентов поглощения материалов, из которого сделаны термоспаи термопар, известны, однако реальные значения этих коэффициентов существенно отличаются от теоретических, т.к. спаи содержат небольшие количества примесей других металлов, технологические особенности их изготовления влияют на качество поверхностного слоя, которое зависит также от условия, в которых хранятся используются термопары.

Калибровку проводят путем сравнения свойств поглощения, проявляемых поверхностными слоями термопар с излучением модели абсолютно черного тела с известным коэффициентом излучения, при этом принимается во внимание, что отношение коэффициентов поглощения пропорционально отношению лучистых потоков, попадающих на термоспаи, находящиеся при одинаковой температуре и в одинаковом положении относительно объекта измерений.

Для соблюдения этих условий необходимо установить модель 11 абсолютно черного тела и термопары 4 и 5 на одинаковом расстоянии от оптического измерителя 14 теплового излучения, и нагревать модель 11 абсолютно черного тела до таких же температур, как у термоспаев основной и дополнительной термопар 4 и 5. При этом площади излучающих поверхностей модели 11 абсолютно черного тела и термопар 4 и 5 будут одинаковыми, если размеры калиброванного отверстия 13 в модели 11 абсолютно черного тела будут равны размерам измерительного отверстия 18 теплоизолированного экрана 17.

Непосредственно перед измерением температуры газовой среды теплоизолирующий экран 17 и источник теплового излучения 9 с помощью привода 19 размещают в полости корпуса 1, устанавливают державку 2 так, чтобы термоспай основной термопары 4 располагался напротив измерительного отверстия 18 теплоизолированного экрана 17.

Основную термопару 4 нагревают источником теплового излучения 9 до определенной температуры и оптическим измерителем 14 теплового излучения записывают сигналы от нее. Приводом 3 устанавливают напротив измерительного отверстия 18 термоспай дополнительной термопары 5, нагревают ее до той же температуры и оптическим измерителем 14 теплового излучения записывают сигналы от дополнительной термопары 5.

После записи сигналов от термопар 4 и 5 поворотным приводом 16 оптический измеритель 14 теплового излучения поворачивается к калиброванному отверстию 13 модели 11 абсолютно черного тела, нагретой до температуры, при которой записывались сигналы с термопар 4 и 5, и на оптический измеритель 14 теплового излучения записывают сигнал от модели 11 абсолютно черного тела.

Коэффициент поглощения ε термоспая термопары определяется по формуле:

ε=εAЧT*mV/mVAЧT, где

εAЧT - коэффициент излучения модели абсолютно черного тела;

mV - записанный оптическим измерителем теплового излучения сигнал от термопары;

mVAЧT - записанный оптическим измерителем теплового излучения сигнал от модели абсолютно черного тела.

Калибровка каждой термопары может осуществляться при нескольких значениях температуры нагрева термопары и модели 11 абсолютно черного тела, а результаты калибровки каждой термопары представляются в виде функциональной зависимости коэффициента поглощения ε термопары от температуры.

После окончания калибровки отключают источник теплового излучения 9, с помощью привода 19 извлекают из полости корпуса 1 теплоизолирующий экран 17 и источник теплового излучения 9, включают штатную аппаратуру газотурбинного двигателя или стенда для его испытания и при установившемся ламинарном режиме течения газа определяют температуру газовой среды в точке, где установлен термоспай основной термопары 4, путем фиксации электрического сигнала от нее блоком регистрации 6 термоЭДС. Приводом 3 перемещают вертикально державку 2 так, чтобы дополнительная термопара 5 заняла место основной термопары 4, и также фиксируют электрический сигнал от нее блоком регистрации 6 термоЭДС.

При этом результаты этих измерений отличаются между собой на величину, зависящую от разницы значений коэффициентов поглощения ε основной и дополнительной термопар 4 и 5, влияющих на их лучистый теплообмен с окружающим пространством. Конкретное значение температуры газа по значению термоЭДС определяется из кодификационных таблиц, заложенных в программу измерения.

По результатам измерений определяют зависимость значения термоЭДС от значений коэффициента поглощения ε термоспая основной термопары 4 и дополнительной термопары 5, которые на графике фиг. 2 обозначены точками a и b. По указанным точкам проводят линейную экстраполяцию сигналов термопар, результаты которой показаны на фиг. 2 в виде линии тренда.

На пересечении линии тренда с осью ординат находится значение термоЭДС, соответствующее сигналу условной термопары с нулевым коэффициентом поглощения, на которую не влияет лучистый теплообмен, и обозначенное на графике фиг. 2 точкой d. Это значение термоЭДС соответствует реальной температуре газа в точке нахождения термопар 4 и 5 в полости корпуса 1.

Перемещая державку 2 устройства по сечению полости корпуса 1 можно определить картину распределения значений температуры газовой среды в высокотемпературных элементах газотурбинных двигателей, исключив погрешности показаний термопар, связанные с опосредованным определением характеристик их термоспаев.

Результаты проведенных экспериментальных исследований показали, что с ростом теплового излучения до температуры порядка 900°С погрешность показаний термопар, связанная с опосредованным определением характеристик их термоспаев возрастает и составляет при 800°С около 50°С. На фиг. 3 представлен график (толстая сплошная линия) показаний температуры, определенных устройством согласно изобретению методом линейной экстраполяции с помощью термопары платина-родий (ПНР) и предварительно окисленной термопары хромель-алюмель (ХА) с использованием в качестве калибратора модели абсолютно черного тела.

Для сравнения на фиг. 3 приведен график (тонкая прерывистая линия с треугольниками) показаний температуры, определенных с помощью тех же термопар известным из уровня техники методом с использованием в качестве калибратора эталонной термопары.

Приведенные графики свидетельствуют о том, что с ростом температуры теплового излучателя возрастают погрешности в определении температуры, связанные с опосредованным определением коэффициента поглощения термоспаев измерительных термопар, а использование в качестве калибратора модели абсолютно черного тела позволяет устранить эти погрешности.

Устройство для определения температуры газовой среды в газотурбинных двигателях, содержащее размещенную в корпусе державку с приводом, установленные в державке основную и дополнительную термопары, подключенные через блоки регистрации термоЭДС к электронному сумматору, калибратор для термопар и источник теплового излучения для нагревания термопар, выполненный с возможностью размещения его в полости корпуса устройства, причем державка установлена в корпусе с возможностью вертикального перемещения, термоспаи основной и дополнительной термопар теплоизолированы между собой, а поверхностные слои термоспаев выполнены из материалов с разными коэффициентами поглощения, отличающееся тем, что устройство снабжено оптическим измерителем теплового излучения, имеющим объектив и поворотный привод и размещенным с противоположной стороны от источника теплового излучения относительно державки с термопарами, и теплоизолирующим экраном, установленным между измерителем теплового излучения и державкой с термопарами и имеющим измерительное отверстие, выполненное и расположенное таким образом, чтобы его площадь полностью затенялась термоспаями термопар, а калибратор для термопар выполнен в виде модели абсолютно черного тела с подогревателем и калиброванным отверстием, направленным в сторону объектива оптического измерителя теплового излучения.



 

Похожие патенты:

Изобретение относится к области экспериментальной аэродинамики и предназначено для определения аэродинамических характеристик модели самолетов, ракет и др. в трансзвуковых аэродинамических трубах.

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения компонентов векторов аэродинамической силы и момента, действующих на модели воздушных винтов самолетов, несущих винтов вертолетов и гребных винтов судов, испытываемых в аэродинамических трубах, бассейнах и в гидроканалах.

Изобретение относится к испытательной технике и может быть использовано при проверке прочности оболочек антенных обтекателей из хрупких материалов, преимущественно керамических, при статических испытаниях.

Изобретение относится к устройствам для проведения аэродинамических испытаний. В аквааэродинамической трубе испытания проводятся путем погружения испытуемого объекта в водную среду.

Изобретение относится к устройствам, предназначенным для аэродинамических испытаний, и может быть использовано в авиастроении. Стенд включает динамометрическую платформу, предназначенную для закрепления объекта, установленную посредством по меньшей мере четырех пластин переменной жесткости на неподвижную опорную платформу с возможностью перемещения динамометрической платформы по трем ортогональным осям, причем каждая пластина выполнена с гибким участком, сопряженным с жесткими участками, и снабжена элементом измерения нагрузки, и отличается тем, что содержит датчик, регистрирующий продольные перемещения динамометрической платформы и предназначенный для измерения продольной нагрузки, а элемент измерения нагрузки выполнен в виде двух пар одинаковых тензорезисторных датчиков, предназначенных для измерения вертикальных и поперечных нагрузок, установленных на хотя бы одном гибком участке каждой пластины на одном уровне относительно неподвижной опорной платформы, датчики каждой пары установлены на противоположных широких сторонах пластины, причем вертикальные оси симметрии чувствительных элементов датчиков одной пары ориентированы вдоль вертикальной оси симметрии широкой стороны пластины, а вертикальные оси симметрии чувствительных элементов датчиков другой пары параллельны ей, датчики подключены в одно плечо отдельных измерительных мостов, причем датчики каждой пары подключены последовательно.

Изобретение относится к способу управления приемниками воздушных давлений (ПВД). Для управления ПВД выявляют неисправный ПВД путем измерения полного и статического давлений основного и резервного ПВД, определяют модули разности полного и статического давлений соответственно для основного и резервного ПВД, сравнивают их с заданными пороговыми значениями и выдают сигнал оповещения летчику об отказе при превышении пороговых значений.

Изобретение относится к области стендовой доработки летательных аппаратов. Способ испытания высокоскоростного летательного аппарата на силоизмерительной платформе под заданным углом атаки в испытательной камере, где создают разряжение, продувают испытательную камеру рабочей средой с протоком через отключенный двигатель летательного аппарата.

Изобретение относится к экспериментальной аэродинамике. Устройство содержит модель объекта, установленную на хвостовой державке, закрепленной в стойке аэродинамической трубы, и измерительное весовое устройство, соединяющее державку с испытываемой моделью.

Изобретение относится к технике исследования свойств и состава рабочего газа в высокоэнтальпийных установках кратковременного действия. Устройство для отбора пробы газа в высокоэнтальпийных установках кратковременного действия содержит герметично соединенные собственно пробоотборник с заостренной передней кромкой и расширяющимся внутренним каналом.

Изобретение относится к области экспериментальной аэродинамики, в частности к устройствам, предназначенным для исследования аэродинамических характеристик летательных аппаратов (ЛА).

Изобретение относится к термометрии и может быть использовано для измерения температуры высокотемпературных процессов в газодинамике в условиях воздействия высоких давлений и газодинамического напора.

Изобретение относится к термометрии и может быть использовано для измерения температуры высокотемпературных процессов в газодинамике в условиях воздействия высоких давлений и газодинамического напора.

Изобретение относится к области измерения температуры с использованием термопар, а именно к способам крепления термопар к объектам, подверженным деформациям вследствие линейных расширений при высоких температурах и вибрационным воздействиям, например к корпусам летательных аппаратов.

Изобретение относится к устройствам для изготовления микротермопар с рабочим спаем, образованным сваркой встык, и может быть использовано для оперативного изготовления в лабораторных условиях единичных или мелкосерийных партий микротермопар различного типа из проволоки с диаметрами от 200 мк и менее при подготовке и проведении теплофизических и тепловых испытаний в условиях быстропротекающих процессов теплообмена при значительных градиентах температуры, характерных для конструкций аэрокосмической техники, ядерной энергетики и металлургии.

Изобретение относится к устройствам для изготовления микротермопар с рабочим спаем, образованным сваркой встык, и может быть использовано для оперативного изготовления в лабораторных условиях единичных или мелкосерийных партий микротермопар различного типа из проволоки с диаметрами от 200 мк и менее при подготовке и проведении теплофизических и тепловых испытаний в условиях быстропротекающих процессов теплообмена при значительных градиентах температуры, характерных для конструкций аэрокосмической техники, ядерной энергетики и металлургии.

Изобретение относится к области термометрии и может быть использовано для измерения температуры технологической среды. Предложен термочувствительный элемент (10), содержащий зависимый от температуры измерительный элемент (МЕ), который может контактировать через по меньшей мере одну первую соединительную линию (1) и по меньшей мере одну вторую соединительную линию (2), причем первая соединительная линия (1) содержит первый и второй участки (Т1, Т2), состоящие из различных материалов.

Изобретение относится к области термометрии и направлено на исследование различных теплозащитных и эрозионно стойких материалов, обеспечивающих защиту трубопроводов высокого давления, работающих на продуктах сгорания, имеющих высокую температуру от 1000°С.

Изобретение относится к области измерительной техники и может быть использовано для одновременной регистрации температуры и взаимного предельного перемещения составных частей изделия в условиях высокой температуры.

Изобретение относится к области измерительной техники и может быть использовано для одновременной регистрации температуры и взаимного предельного перемещения составных частей изделия в условиях высокой температуры.

Изобретение относится к области газовой динамики и может быть использовано для измерения поля температуры газового потока, движущегося с большой скоростью, в частности, в газотурбинных установках и в стендовых системах.

Изобретение относится к термометрии и может быть использовано для измерения температуры высокотемпературных процессов в газодинамике в условиях воздействия высоких давлений и газодинамического напора.
Наверх