Ленточный термоэлектрогенератор



Ленточный термоэлектрогенератор
Ленточный термоэлектрогенератор
Ленточный термоэлектрогенератор
Ленточный термоэлектрогенератор
H01L35/00 - Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; холодильное оборудование, в котором используются электрические или магнитные эффекты, F25B 21/00; измерение температуры с использованием термоэлектрических и термомагнитных элементов G01K 7/00; получение энергии от радиоактивных источников G21H)

Владельцы патента RU 2676803:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет "(ЮЗГУ) (RU)

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, при отсутствии источников электроснабжения. Технический результат заключается в повышении эффективности ленточного термоэлектрогенератора. Ленточный термоэлектрогенератор содержит сборный корпус, состоящий из крышки и днища, торцевых отбортованных крышек, выполненных из материала–диэлектрика с высокой и низкой теплопроводностью, снабженный на противоположных концах полюсными коллекторами, внутри корпуса в верхние и нижние гнезда боковых бортов через овальные пазы параллельно его торцам горизонтально вставлены шпильки, в зазорах между ними и поверхностью овальных пазов пропущена лента, выполненная из гибкого материала–диэлектрика, поочередно покрытая с обеих сторон равными отрезками полос фольги разных металлов М1 и М2 с напуском друг на друга таким образом, чтобы верхние и нижние концы каждого отрезка фольги были прижаты шпильками к поверхности верхнего и нижнего лотка овальных пазов крышки и днища, соответственно, образуя вертикально расположенные термоэмиссионные преобразователи и термоэлектрическую секцию, причем плотный контакт элементов устройства осуществляется прижатием до упора боковых бортов и торцевых отбортованных крышек. 8 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую при отсутствии источников электроснабжения.

Известен термоэлектрический преобразователь термоэмиссионной системы электроснабжения здания, состоящий из прямоугольного полого корпуса, выполненного из материала–диэлектрика с высокой теплопроводностью, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, отрезки со спаянными концами согнуты под углом 90° и располагаются в слоях материала–диэлектрика крышки и днища, их средние части расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, соединенных с электрическим аккумулятором [Патент РФ №2499107, МКП E04C 2/26, 2013].

Основными недостатками известного термоэлектрического преобразователя термоэмиссионной системы электроснабжения здания являются зигзагообразная компоновка термоэмиссионных элементов с изгибом их спаев под углом 90°, обусловленное этим малое количество термоэмиссионных элементов на единице его площади и низкая удельная производительность по выработке термоэлектричества, что снижает его эффективность.

Более близким по технической сущности к предлагаемому изобретению является универсальный термоэлектрический преобразователь, содержащий корпус, выполненный из материала–диэлектрика с высокой теплопроводностью, оребренный с противоположных сторон параллельными ребрами, образующими между собой пазы, изнутри армированный контурной арматурой, которая состоит из термоэмиссионных элементов, представляющих собой парные параллельные проволочные отрезки, выполненные из разных металлов М1 и М2, изолированные друг от друга по длине тонким слоем материала–диэлектрика, спаянные на концах между собой, образующие ряды, устроенные таким образом, что части спаянных концов проволочных отрезков располагаются в слоях материала–диэлектрика параллельных ребер, параллельно их боковой поверхности, не касаясь ее, а средние части проволочных отрезков расположены в массиве материала–диэлектрика корпуса, ряды соединены между собой перемычками, крайние проволочные отрезки крайних рядов соединены с однополюсными коллекторами электрических зарядов [Патент РФ №2575769, МКП Н01 L35/02, 2016].

Основными недостатками известного универсального термоэлектрического преобразователя являются высокий расход металлов М1 и М2 для изготовления термоэмиссионных элементов, определяющий значительный вес устройства, сложность их изготовления, обусловленная необходимостью заготовкой проволочных отрезков, сплющиванием и спайкой их концов, что повышает стоимость и, таким образом, снижает его эффективность.

Техническим результатом предлагаемого изобретения является повышение эффективности ленточного термоэлектрогенератора.

Технический результат достигается ленточным термоэлектрогенератором, содержащем сборный корпус, состоящий из верхней крышки и днища, которые с внутренней стороны выполнены с горизонтальными овальными пазами, боковых бортов, снабженных с внутренних сторон круглыми гнездами, расположенными напротив каждого овального паза, торцевых отбортованных крышек, при этом верхняя крышка и днище выполнены из материала–диэлектрика с высокой теплопроводностью, боковые борта выполнены из материала–диэлектрика с низкой теплопроводностью, крышка снабжена на противоположных концах полюсными коллекторами, внутри корпуса в верхние и нижние гнезда боковых бортов через овальные пазы параллельно его торцам горизонтально вставлены шпильки, в зазорах между ними и поверхностью овальных пазов пропущена лента, выполненная из гибкого материала–диэлектрика, обе поверхности которой, за исключением начального и последнего участков ленты, поочередно покрыты равными отрезками полос фольги разных металлов М1 и М2 с напуском друг на друга таким образом, чтобы верхние и нижние концы каждого отрезка фольги были прижаты шпильками к поверхности лотков овальных пазов верхней крышки и днища, соответственно, образуя отдельный, вертикально расположенный, термоэмиссионный преобразователь, соединенный аналогично с предыдущим и последующим термоэмиссионными преобразователями во всем корпусе, образуя термоэлектрическую секцию, начальный и последний участки ленты покрыты равными отрезками полос фольги разных металлов М1 и М2 только с внутренней стороны, их верхние концы плотно соединены с полюсными коллекторами, причем плотный контакт нижних концов полюсных коллекторов с верхними концами крайних отрезков полос фольги термоэлектрической секции, а также верхних и нижних отрезков полос фольги металлов М1 и М2 всех термоэмиссионных преобразователей осуществляется сжатием до упора боковых бортов, а также прижатием к ним торцевых отбортованных крышек.

На фиг. 1–8 представлен предлагаемый ленточный термоэлектрогенератор (ЛТЭГ): на фиг. 1, 2 – общий вид и разрез ЛТЭГ, на фиг. 3 – узел компоновки термоэмиссионных преобразователей (ТЭП), на фиг.4–6 – узлы устройства термоэмиссионного преобразователя, на фиг. 7, 8 – узлы стыковки термоэмиссионных преобразователей.

Предлагаемый ЛТЭГ содержит сборный корпус 1, состоящий из верхней крышки 2 и днища 3, которые с внутренней стороны выполнены с горизонтальными овальными пазами 4, боковых бортов 5 и 6, снабженных с внутренних сторон круглыми гнездами 7, расположенными напротив каждого овального паза 4, торцевых отбортованных крышек 8 и 9, при этом крышка 2 и днище 3 выполнены из материала–диэлектрика с высокой теплопроводностью, боковые борта 5 и 6 выполнены из материала–диэлектрика с низкой теплопроводностью, верхняя крышка 2 снабжена на противоположных концах полюсными коллекторами 10, 11, внутри корпуса 1 в верхние и нижние гнезда 7 через овальные пазы 4 параллельно его торцам горизонтально вставлены шпильки 12, в зазорах между ними и поверхностью овальных пазов 4 пропущена лента 13, выполненная из гибкого материала–диэлектрика, обе поверхности которой (за исключением начального и последнего участков ленты 13) поочередно покрыты равными отрезками полос фольги 14, 15 разных металлов М1 и М2 с напуском друг на друга таким образом, чтобы верхние и нижние концы каждого отрезка фольги 14 и 15 были прижаты шпильками 12 к поверхности лотков овальных пазов 4 крышки 2 и днища 3, соответственно, образуя отдельный, вертикально расположенный, термоэмиссионный преобразователь (ТЭП) 16, соединенный аналогично с предыдущим и последующим ТЭП 16 во всем корпусе 1, образуя термоэлектрическую секцию (ТЭС) 17, начальный и последний участки ленты 13 покрыты равными отрезками полос фольги 14 и 15 разных металлов М1 и М2 только с внутренней стороны, их верхние концы плотно соединены с полюсными коллекторами 14 и 15, причем плотный контакт нижних концов полюсных коллекторов 10 и 11 с верхними концами крайних отрезков полос фольги 14 и 15 ТЭС 17, а также верхних и нижних отрезков полос фольги 14 и 15 металлов М1 и М2 всех ТЭП 16 осуществляется сжатием до упора боковых бортов 5 и 6, а также прижатием к ним торцевых отбортованных крышек 8 и 9.

В основу работы предлагаемого ЛТЭГ положено следующее. Так как ТЭС 17 состоят из отдельных термоэмиссионных преобразователей (ТЭП) 16, выполненных из пар равных отрезков полос фольги 14 и 15 разных металлов М1 и М2, с торцами, плотно соединенными между собой, то при нагреве (охлаждении) одних концов ТЭП 16 с одной стороны и охлаждении (нагреве) противоположных им концов на них устанавливаются разные температуры и в зоне контакта металлов М1 и М2 происходит термическая эмиссия электронов, в результате чего в ТЭП 16 и ТЭС 17 появляется термоэлектричество [С.Г. Калашников. Электричество. – М.: «Наука», 1970, с. 502–506].

Сборку ЛТЭГ осуществляют следующим образом. Вначале отрезают кусок гибкой ленты 13, выполненной из гибкого материала–диэлектрика, соответствующей длины и ширины, а затем обклеивают ее с обеих сторон поочередно равными отрезками полос фольги 14, 15 разных металлов М1 и М2 с напуском друг на друга. После сборки ленты 13 во все гнезда 7 одного из боковых бортов (например, борт 5) вставляют шпильки 12 и пропускают ее через них таким образом, чтобы лента 13 была натянута, концы каждого отрезка полос фольги 14 и 15 могли быть в дальнейшем прижаты друг к другу шпильками 12 к поверхности лотков овальных пазов 4 верхней крышки 2 и днища 3, соответственно, а крайние концы ленты 13 с соответствующими отрезками полос фольги 14 и 15 жестко прикрепляют к крайним верхним шпилькам 12 (узел крепления на фиг. 1–8 не показан), после чего в гнезда 7 другого бокового борта (например, борт 6) вставляют до упора противоположные торцы шпилек 12. Далее устанавливают снизу и сверху крышку 2 и днище 3, прижимая их до упора к верхним и нижним шпилькам 12, а затем открытые торцы корпуса 1 закрывают торцевыми отбортованными крышками 8 и 9, которые крепятся к боковым бортам 5 и 6 (узлы крепления на фиг. 1–8 не показаны). При этом собранный ЛТЭГ должен, в первую очередь, обеспечивать плотную и надежную стыковку концов каждого отрезка полос фольги 14 и 15 друг с другом и поверхностью лотков овальных пазов 4 крышки 2 и днища 3, что достигается исполнением всех деталей корпуса 1 с прецезионной точностью.

ЛТЭГ работает следующим образом. При соприкосновении днища 3 корпуса 1 с горячей средой, а верхней крышки 2 противоположной стороны с холодной средой торцы ТЭП 16 с одной стороны охлаждаются, а с противоположной стороны нагреваются, на них устанавливаются разные температуры, происходит процесс передачи тепла от горячей среды к холодной через стенки днища 3, по фольге металлов М1 и М2 и стенки крышки 2. Одновременно с процессом теплопередачи в результате разности температур охлажденных и нагретых торцов ТЭП 16 в ряду ТЭС 17 появляется термоэлектричество, которое через однополюсные коллекторы электрических зарядов 10 и 11 поступает в преобразователь и аккумулятор (на фиг. 1–8 не показаны) и откуда подается потребителю.

При этом малая толщина ленты 13 и небольшой воздушный зазор между ветвями ТЭП 16 обеспечивают передачу большей части тепла по фольге металлов М1 и М2 и позволяют разместить большее количество ТЭП 16 по длине корпуса 1, что повышает выработку термоэлектричества каждым ТЭП 16 и, в целом, ТЭС 17. Кроме того, вертикальное сжатие торцевых концов отрезков полос фольги 14 и 15 металлов М1 и М2 создает более плотный контакт этих полос, что также повышает выработку термоэлектричества каждым ТЭП 16 и, соответственно, всей ЛТЭГ.

Величина разности электрического потенциала на коллекторах 10, 11 и сила электрического тока зависит от характеристик пар металлов М1 и М2, из которых изготовлена их фольга, ее ширины и толщины, числа ТЭП 16 в ряду ТЭС 17 и их числа в ЛТЭГ, разности температур на противоположных концах ТЭП 16. Полученный электрический ток из одиночного ЛТЭГ, можно использовать для подзарядки гаджетов – мобильных телефонов, айфонов, плейеров и тому подобных устройств в условиях отсутствия электроснабжения (например, при кипячении воды на костре, поместив его на дно емкости с подогреваемой водой или положив его на освещаемый солнцем участок льда или снега). При компоновке множества ЛТЭГ полученный электрический ток можно использовать для самых различных целей (освещения зданий, горячего водоснабжения, зарядки автомобильных аккумуляторов, электроснабжения космических и подводных аппаратов и пр.), при условии наличия сред или поверхностей с различными температурами.

Таким образом, предлагаемое изобретение, в результате использования термоэмиссионных преобразователей 16, изготовленных из ленты 13, выполненной из гибкого материала–диэлектрика, обе поверхности которой (за исключением начального и последнего участков ленты 13) поочередно покрыты равными отрезками полос 14 и 15 фольги разных металлов М1 и М2, соединенными между собой вертикальным сжатием их торцов, обеспечивает значительное снижение расхода металлов М1, М2, снижение веса и упрощение конструкции устройства, увеличение выработки термоэлектричества, что увеличивает эффективность ленточного термоэлектрогенератора.

Ленточный термоэлектрогенератор, содержащий корпус, внутри которого помещен ряд соединенных между собой термоэмиссионных преобразователей, крайние из которых соединены с однополюсными коллекторами электрических зарядов, отличающийся тем, что сборный корпус состоит из верхней крышки и днища, которые с внутренней стороны снабжены горизонтальными овальными пазами, боковых бортов, снабженных с внутренних сторон круглыми гнездами, расположенными напротив каждого овального паза, торцевых отбортованных крышек, при этом верхняя крышка и днище выполнены из материала–диэлектрика с высокой теплопроводностью, боковые борта выполнены из материала–диэлектрика с низкой теплопроводностью, крышка снабжена на противоположных концах полюсными коллекторами, внутри корпуса в верхние и нижние гнезда боковых бортов через овальные пазы параллельно его торцам горизонтально вставлены шпильки, в зазорах между ними и поверхностью овальных пазов пропущена лента, выполненная из гибкого материала–диэлектрика, обе поверхности которой, за исключением начального и последнего участков ленты, поочередно покрыты равными отрезками полос фольги разных металлов М1 и М2 с напуском друг на друга таким образом, чтобы верхние и нижние концы каждого отрезка фольги были прижаты шпильками к поверхности лотков овальных пазов крышки и днища, образуя отдельный, вертикально расположенный, термоэмиссионный преобразователь, соединенный аналогично с предыдущим и последующим термоэмиссионными преобразователями во всем корпусе, образуя термоэлектрическую секцию, начальный и последний участки ленты покрыты равными отрезками полос фольги разных металлов М1 и М2 только с внутренней стороны, их верхние концы плотно соединены с полюсными коллекторами, причем плотный контакт нижних концов полюсных коллекторов с верхними концами крайних отрезков полос фольги термоэлектрической секции, а также верхних и нижних отрезков полос фольги металлов М1 и М2 всех термоэмиссионных преобразователей осуществляется сжатием до упора боковых бортов и прижатием к ним торцевых отбортованных крышек.



 

Похожие патенты:

Изобретение относится к теплоэлектроэнергетике и может быть использовано для получения электрической энергии в процессе транспортирования в трубах различных теплоносителей, в частности для защиты трубопровода от электрохимической коррозии или электропривода задвижек.

Изобретение относится к обнаружению неисправности в термоэлектрическом генераторе, который содержит модуль (14) термоэлектрических преобразователей, включающий в качестве множества термоэлектрических преобразователей (12) множество полупроводниковых монокристаллов, в которых ширина запрещенной зоны в части собственного полупроводника (12с) меньше ширины запрещенной зоны в части (12а) полупроводника n-типа и части (12b) полупроводника р-типа.

Изобретение относится к измерительной технике и может быть использовано для частотной погрешности бесконтактных термоэлектрических преобразователей, применяемых для измерения высокочастотного тока, наведенного в цепях электрического задействования пиротехнических и взрывных устройств объекта при испытаниях его на воздействие высокочастотного электромагнитного поля.

Изобретение относится к вакуумной изоляции. Тело вакуумной изоляции содержит оболочку, включающую в себя высокобарьерную пленку или являющуюся высокобарьерной пленкой, определяющую область вакуума.

Предлагаемое устройство для соединения полупроводниковых термоэлементов в батарею может быть использовано для построения термоэлектрических батарей, которые применяются в энергетике как источники тока.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях.

Изобретение относится к теплоэлектроэнергетике и может быть использовано для прямой трансформации тепловой энергии в электрическую. Теплотрубная гелиотермоэлектростанция включает поддон с отверстием в днище, закрытый сверху крышкой, покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом заглушенной снизу вертикальной трубы, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная также пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых заполнено пористым материалом, внутри каждого гофра вертикальной трубы размещены вертикальные пазы длиной L, в которые вставлены вертикальные термоэлектрические преобразователи, в массиве которых помещена контурная арматура, состоящая из термоэмиссионных элементов.

Использование: для получения электрической энергии. Сущность изобретения заключается в том, что электрогенерирующая теплозащитная оболочка содержит гибкий лист, состоящий из гибкого теплоизоляционного материала–диэлектрика, покрытого с обеих сторон пленкой, выполненной из влагозащитного и герметизирующего материала–диэлектрика, причем в массе теплоизоляционного материала–диэлектрика помещены термоэлектрические секции, представляющие собой П–образные ряды, выполненные из стекловолокнистых полос, поверхности парных перпендикулярных отрезков которых поочередно покрыты напылением порошком разных металлов М1 и М2, концы вышеупомянутых отрезков согнуты под углом 90°, соединены между собой и также покрыты напылением эквимолярной смесью порошков металлов М1 и М2, образуя отдельные термоэмиссионные преобразователи, и располагаются на противоположных поверхностях слоя теплоизоляционного материала–диэлектрика параллельно им, крайние перпендикулярные отрезки каждого П–образного ряда соединены между собой перемычками, а крайние перпендикулярные отрезки крайних П–образных рядов каждой термоэлектрической секции соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с токовыводами.

Изобретение относится к устройствам вакуумной СВЧ-электроники и может быть использовано в устройствах коммутации тока, в смесителях и в других приборах и устройствах силового сектора СВЧ-электроники.

Изобретение относится к системам теплообмена. Технический результат - повышение эффективности термоэлектрического теплового насоса за счет уменьшения выделения паразитного тепла Джоуля в полупроводниковых ветвях и создание условий для возникновения дополнительного термоэффекта между горячими и холодными спаями, изготовленными из разных металлов.
Наверх