Оптический смеситель излучения с применением призм из оптически активных материалов

Изобретение предназначено для получения сигналов вращения четырехчастотного лазерного гироскопа. Оптический смеситель лучей, распространяющихся во встречных направлениях в резонаторе четырехчастотного лазерного гироскопа, предназначен для одновременного детектирования интерференционных картин, независимо полученных для излучения левой и правой круговых поляризаций. Смеситель включает сводящий встречные лучи элемент, два направляющих глухих зеркала и один или два анизотропных элемента, состоящих из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, обеспечивающих разведение по углу и координате лучей различных круговых поляризаций. Смеситель может содержать один анизотропный элемент, при этом в качестве сводящего встречные лучи элемента может быть использована треугольная призма, а на отражающие поверхности глухих зеркал нанесены полуволновые фазовые пластины. Смеситель может содержать два анизотропных элемента, а в качестве сводящего встречные лучи элемента может быть использовано полупрозрачное делительное зеркало. Технический результат - повышение точности за счет компенсации влияния магнитных полей. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к оптическим элементам, являющимся неотъемлемой частью лазерных гироскопов, применяемых в навигационной технике, и предназначено для получения сигналов вращения четырехчастотного лазерного гироскопа, планируемого к размещению в высокоточных инерциальных и интегрированных навигационных системах.

Перспективным для современных лазерных гироскопов является переход к четырехчастотному режиму работы, который позволит существенно повысить точность за счет компенсации магнитной составляющей ошибки измерений. Четырехчастотный лазерный гироскоп требует специальной системы детектирования и обработки сигнала, в частности необходима разработка нового оптического смесителя, позволяющего одновременно получать сигналы интерференции двух пар выходных лучей различной поляризации.

Известен оптический смеситель для лазерного гироскопа [1], решающий задачу получения интерференционной картины лучей, распространяющихся в резонаторе лазерного гироскопа во встречных направлениях. Применение данного оптического смесителя для четырехчастотного режима работы лазерного гироскопа невозможно, так как конструкция оптического смесителя не подразумевает разведения по углу и координате пар лучей различных круговых поляризаций для дальнейшего независимого детектирования их интерференционных картин.

Известны оптические смесители для четырехчастотного лазерного гироскопа [2], [3], решающие задачу одновременного получения разведенных интерференционных картин пар лучей различных круговых поляризаций. Использование данных оптических смесителей приводит к следующей проблеме.

Максимизация чувствительности четырехчастотного лазерного гироскопа с непланарным резонатором достигается выбором угла излома резонатора, обеспечивающего максимум соотношения эффективной площади резонатора к периметру. Данная конфигурация резонатора лазерного гироскопа ведет к существенному различию пропускания р- и s-компонент излучения выходным интерференционным зеркалом, что нарушает круговую поляризацию выводимого излучения, и, как следствие, приводит к неортогональности линейных поляризаций, получаемых пропусканием различных круговых поляризаций через четвертьволновую фазовую пластину. Данный эффект имеет следствием частичную потерю полезного сигнала при отсечении поляризатором одной из линейных поляризаций перед фотоприемным устройством, регистрирующим другую линейную поляризацию. Соотношение сигнал/шум уменьшается, что негативно сказывается на точностных характеристиках лазерного гироскопа.

Задачей настоящего изобретения является создание лишенного указанных недостатков оптического смесителя излучения с применением призм из оптически активного материала, имеющего различные показатели преломления для излучения с левой и правой круговыми поляризациями, обеспечивающего одновременное получение интерференционной картины встречных лучей левой круговой поляризации (ЛКП) и интерференционной картины встречных лучей правой круговой поляризации (ПКП), причем под встречными подразумеваются лучи, распространявшиеся во встречных направлениях (CW - по часовой стрелке, CCW - против часовой стрелки) в резонаторе четырехчастотного лазерного гироскопа.

Технический результат достигается тем, что оптический смеситель лучей, распространяющихся во встречных направлениях в резонаторе четырехчастотного лазерного гироскопа, предназначенный для одновременного детектирования интерференционных картин, независимо полученных для ЛКП и ПКП излучения, включает сводящий встречные лучи элемент, два направляющих глухих зеркала и один либо два анизотропных элемента, состоящих из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, обеспечивающих разведение по углу и координате ЛКП и ПКП лучей, что достаточно для получения разнесенных в пространстве интерференционных картин для ЛКП и ПКП излучения.

В предпочтительном варианте исполнения оптический смеситель лучей содержит один анизотропный элемент, состоящий из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, при этом в качестве сводящего встречные лучи элемента использована треугольная призма, а на отражающие поверхности глухих зеркал нанесены полуволновые фазовые пластины.

В другом варианте оптический смеситель лучей содержит два анизотропных элемента, состоящих из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, а в качестве сводящего встречные лучи элемента использовано полупрозрачное делительное зеркало.

Предлагаемый оптический смеситель излучения с применением призм из оптически активных материалов (ОСИППОАМ) работает следующим образом.

Исходными сигналами для формирования выходных сигналов ОСИППОАМ являются лучи выходного излучения четырехчастотного лазерного гироскопа. Через выходное интерференционное зеркало четырехчастотного лазерного гироскопа в ОСИППОАМ поступают две пары лучей: ЛКП CW луч и ПКП CW луч; ЛКП CCW луч и ПКП CCW луч.

Используемые в составе ОСИППОАМ кристаллы из оптически активных материалов при пропускании излучения вдоль оптической оси имеют разные показатели преломления для ЛКП и ПКП излучения. В левом кристалле показатель преломления для ЛКП излучения меньше показателя преломления для ПКП излучения. В правом кристалле показатель преломления для ПКП излучения меньше показателя преломления для ЛКП излучения. На границе раздела левого и правого кристаллов излучение с ЛКП и ПКП имеют различный относительный показатель преломления, что приводит к разделению дальнейших оптических путей ЛКП и ПКП излучения.

Считывание сигналов от ЛКП и ПКП четырехчастотного лазерного гироскопа происходит на разных фотоприемных устройствах независимо и одновременно. Последующая математическая обработка сигналов позволяет обнулить магнитную составляющую ошибки четырехчастотного лазерного гироскопа.

Таким образом, применение ОСИППОАМ в составе четырехчастотного лазерного гироскопа позволит без потерь в соотношении сигнал/шум одновременно получать сигнал вращения от излучения различных круговых поляризаций, что позволит повысить точность лазерного гироскопа, а также создаваемых на его основе инерциальных навигационных систем нового поколения, благодаря компенсации влияния магнитных полей.

Изобретение поясняется чертежами, где на фиг. 1 и фиг. 2 приведены схемы предлагаемого оптического смесителя излучения соответственно с одним и двумя анизотропными элементами, состоящими из двух призм из левого и одной призмы из правого кристаллов оптически активного материала.

В соответствии с фиг. 1 оптический смеситель содержит один анизотропный элемент, состоящий из двух призм 1 из левого и призмы 2 из правого оптически активных кристаллов, приводящих к разделению оптических путей лучей разных круговых поляризаций; сводящий встречные лучи элемент 3, в качестве которого использована треугольная призма, и два направляющих глухих зеркала 4, обеспечивающих многократных проход излучения через призмы 1, 2, при этом на отражающие поверхности глухих зеркал 4 нанесены полуволновые фазовые пластины 5, компенсирующие изменение направления вращения вектора напряженности электрического поля в излучении с круговой поляризацией при отражении от глухих зеркал 4. Интенсивность излучения интерференционной картины регистрируют при помощи фотоприемных устройств 6, каждое из которых снабжено двумя фотодиодами.

На фиг. 2 изображена схема оптического смесителя, содержащего два анизотропных элемента, состоящих из двух призм 1 из левого и призмы 2 из правого оптически активных кристаллов, приводящих к разделению оптических путей лучей разных круговых поляризаций; сводящий встречные лучи элемент 3, в качестве которого использовано полупрозрачное делительное зеркало, пропускающее около 50% излучения одной поляризации и отражающее в том же направлении около 50% излучения другой поляризации; два направляющих глухих зеркала 4 с коэффициентами отражения, близкими к 100%.

Из анизотропного элемента, состоящего из двух призм 1 из левого и призмы 2 из правого оптически активных кристаллов, выходят разведенные по углу и координате ЛКП и ПКП лучи.

В схеме предлагаемого оптического смесителя излучения с одним анизотропным элементом, состоящим из двух призм 1 из левого и призмы 2 из правого оптически активных кристаллов, в соответствии с фиг. 1 сведение CW и CCW лучей обеспечивает сводящий встречные лучи элемент 3, в качестве которого использована треугольная призма. Разведение ЛКП и ПКП лучей усиливается многократным проходом через анизотропный элемент, при этом при повторных проходах излучение сохраняет направление вращения вектора напряженности электрического поля (ПКП остается ПКП, ЛКП остается ЛКП), так как на направляющие глухие зеркала 4 нанесены компенсирующие полуволновые фазовые пластины 5.

После многократного прохождения анизотропного элемента излучение поступает на фотоприемные устройства 6, где происходит детектирование смещений интерференционных картин.

Расчет угла разведения ЛКП и ПКП лучей анизотропным элементом из кристалла кварца дает значение 1°0'46'' для конфигурации: длина основания призмы 2-8 мм, высота призмы 2 - 1 мм, угол при вершине призмы 2 - 152°, число проходов через анизотропный элемент - 17.

В схеме предлагаемого оптического смесителя излучения с двумя анизотропными элементами, состоящими из двух призм 1 из левого и призмы 2 из правого оптически активных кристаллов, в соответствии с фиг. 2 излучение направляется с разных сторон на сводящий встречные лучи элемент 3, в качестве которого использовано полупрозрачное делительное зеркало, причем ЛКП и ПКП лучи сводятся на делительном зеркале в разных точках, так как были разведены по углу и координате анизотропным элементом. Делительное зеркало обеспечивает пропускание и отражение излучения приблизительно в равной степени, таким образом, в обоих направлениях от делительного зеркала распространяются пара ЛГП лучей и пара ПКП лучей. В составе каждой пары один CW луч и один CCW луч.

Слева от делительного зеркала ЛКП излучение поступает на фотоприемное устройство 6, регистрирующее смещение интерференционной картины. Справа от делительного зеркала ПКП излучение поступает на фотоприемное устройство 6, регистрирующее смещение интерференционной картины.

Расчет угла разведения ЛКП и ПКП лучей анизотропным элементом из кристалла сульфида ртути (киноварь, HgS) дает значение 1°0'40'' для конфигурации: длина основания призмы 2-8 мм, высота призмы 2-1 мм, угол при вершине призмы 2 - 152°.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент РФ №2617130, «Оптический интерференционный смеситель лазерного гироскопа».

2. Unites States Patent 4,141,651, Laser gyroscope output optics structure, 27.02.1979.

3. Unites States Patent 5,420,683, Multiosciilator ring laser gyro beam combining optics, 30.05.1995.

1. Оптический смеситель лучей, распространяющихся во встречных направлениях в резонаторе четырехчастотного лазерного гироскопа, предназначенный для одновременного детектирования интерференционных картин, независимо полученных для излучения левой и правой круговых поляризаций, включающий сводящий встречные лучи элемент, два направляющих глухих зеркала и один либо два анизотропных элемента, состоящих из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, обеспечивающих разведение по углу и координате лучей различных круговых поляризаций.

2. Оптический смеситель лучей по п. 1, который содержит один анизотропный элемент, состоящий из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, при этом в качестве сводящего встречные лучи элемента использована треугольная призма, а на отражающие поверхности глухих зеркал нанесены полуволновые фазовые пластины.

3. Оптический смеситель лучей по п. 1, который содержит два анизотропных элемента, состоящих из двух призм из левого и одной призмы из правого кристаллов оптически активного материала, а в качестве сводящего встречные лучи элемента использовано полупрозрачное делительное зеркало.



 

Похожие патенты:

Изобретение относится к устройствам оптической поляризации для просмотра стереоизображений. Устройство содержит оптический поляризующий элемент (304), выполненный с возможностью разложения падающего светового пучка (22), излучаемого проектором стереоскопических изображений, на проходящий световой пучок (306), имеющий первое состояние оптической поляризации, а также первый (308) и второй (310) отраженные световые пучки, имеющие второе состояние оптической поляризации, отличное от первого состояния оптической поляризации.

Изобретение относится к технической области финансов, более конкретно к устройствам и системам для получения изображения банкноты. Система для получения изображения банкноты содержит волоконный лазер (1), волоконный разделитель (2) луча, волоконный коллиматор (3), расширитель (4) лазерного луча, матрицу (5) модулятора интенсивности на ниобате лития, генератор (6) сигнала, усилитель (7) сигнала, поляризационный разделитель (8) луча, четвертьволновую пластинку (9), группу (11) линз, формирующих изображения, линию светочувствительных микросхем (12), модуль (13) обработки информации изображения и модуль (14) совмещения изображения.

Изобретение относится к технической области финансов, более конкретно к устройствам и системам для получения изображения банкноты. Система для получения изображения банкноты содержит волоконный лазер (1), волоконный разделитель (2) луча, волоконный коллиматор (3), расширитель (4) лазерного луча, матрицу (5) модулятора интенсивности на ниобате лития, генератор (6) сигнала, усилитель (7) сигнала, поляризационный разделитель (8) луча, четвертьволновую пластинку (9), группу (11) линз, формирующих изображения, линию светочувствительных микросхем (12), модуль (13) обработки информации изображения и модуль (14) совмещения изображения.

Изобретение относится к оптической технике. Оптический модулятор, каждый пиксель которого содержит перекрывающие площадь пикселя неподвижный плоский поляризатор и параллельный ему подвижный плоский поляризатор.

Лазерное устройство (1) включает первый и второй лазерные блоки (2, 3), испускающие лучи (5, 6), распространяющиеся в первом и во втором направлениях, и поляризационное соединительное средство, выполненное как поляризационная соединительная призма (8) и расположенное так, что лазерные лучи первого и второго лазерных блоков, поляризованные в первом и втором направлениях, складываются.

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком.

Изобретение относится к оптике. Кристаллическое тело, образованное из монокристалла типа граната, имеет пару пропускающих свет поверхностей, которые противостоят друг другу и пропускают свет, и по меньшей мере одну боковую поверхность, которая соединяет пару пропускающих свет поверхностей, при этом отношение В/А плотности А (количества на 1 см2) дислокаций в пропускающих свет поверхностях и плотности В (количества на 1 см2) дислокаций в боковой поверхности удовлетворяет следующей общей формуле: 1≤(В/А)≤3600.

Настоящее изобретения относится к оптико-электронной промышленности. Технический результат заключается в повышении надежности устройства.

Зеркало содержит оптическое волокно, двулучепреломляющий элемент, линзу, магнит, фарадеевский вращатель, зеркало. Световой луч после оптического волокна разделяется двулучепреломляющим элементом на два перпендикулярно линейно поляризованных световых луча, которые сводятся линзой, проходят через фарадеевский вращатель, вследствие чего их плоскости поляризации поворачиваются на 45 градусов, и отражаются в одной точке на поверхности зеркала, повторно проходят через фарадеевский вращатель, вследствие чего плоскости их поляризации дополнительно поворачиваются на 45 градусов, снова падают на двулучепреломляющий элемент, объединяются в один световой луч, который падает на оптическое волокно.

Изобретение относится к области обработки информации, в частности к конструкции оптических модуляторов. Техническими результатами являются уменьшение мерцания изображения и экономия энергии.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения линейной скорости на поверхности или внутри движущихся макрообъектов.

Изобретение относится к измерительной лазерной технике и может найти применение в при измерении угловой скорости лазерного гироскопа со знакопеременной частотной подставкой.

Оптический интерференционный смеситель состоит из полупрозрачного плоского зеркала, в котором на первой поверхности с полупрозрачным светоотражающим покрытием или пленкой выполнена путем углубления полусферическая поверхность радиуса R1.

Предложенное изобретение относится к устройствам для цифровой обработки информации, поступающей от гиролазера (лазерного гироскопа). Предложенный гиролазер с оптическим резонатором содержит множество зеркал, по меньшей мере один фотодатчик (101), выдающий два оптических сигнала (102, 103) со сдвигом фазы на 90°, при этом упомянутые сигналы (102, 103) являются оцифрованными (401, 402), средства (128) управления положением одного из упомянутых зеркал путем преобразования электрического сигнала в механическое усилие, средства (135) активации упомянутого гиролазера в колебательном движении путем преобразования электрического сигнала колебания (306) в механическое усилие и средства (118) измерения угловой скорости (120) упомянутого гиролазера, отличающийся тем, что дополнительно содержит: средства (405) извлечения фазы α и модуля ρ или квадрата модуля ρ упомянутых оптических сигналов (102, 103), средства (409) автоматического регулирования длины оптического резонатора, средства (411) дифференцирования упомянутой фазы α на заданный период времени, чтобы выдать сигнал (408), содержащий общую информацию движения упомянутого гиролазера, средства (410) автоматического регулирования активации упомянутого гиролазера по упомянутому колебательному движению, принимающие упомянутый сигнал (408), из которого извлекают оценку (300) колебательного движения, сообщаемого упомянутому гиролазеру упомянутыми средствами (135) активации, и производящие упомянутый сигнал колебания (306), амплитуду которого регулируют по заданному значению амплитуды (129).

Изобретение относится к области измерительной техники и касается способа измерения угловой скорости. Для определения угловой скорости формируют два пучка когерентного оптического излучения.

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно или при измерении угловых перемещений по амплитуде сигнала вращения, или по величине частотной подставки, или по величине сигнала расстройки периметра, или по напряжению на пьезоголовке определяют промежутки времени во время переключений поляризации для мод с ортогональными поляризациями, в которых будут использованы результаты измерений угловых перемещений с учетом ошибок, обусловленных изменением частоты подставки из-за расстройки периметра кольцевого лазера, вызванной переключением поляризации, предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины сигнала расстройки периметра резонатора кольцевого лазера, при каждом очередном переключении во время измерений угловых перемещений в выбранных промежутках времени этого переключения в каждой соответствующей моде с ортогональной поляризацией измеряют зависимость сигнала расстройки периметра кольцевого лазера от времени, для каждого выбранного промежутка времени при каждом данном переключении при измерении угловых перемещений рассчитывают и учитывают ошибки, обусловленные изменением величины частоты подставки из-за расстройки периметра резонатора кольцевого лазера при переключении поляризации, используя предварительно измеренную и/или вычисленную зависимость частоты подставки от величины сигнала расстройки периметра резонатора кольцевого лазера для соответствующей моды и измеренную для этой же моды при данном переключении зависимость сигнала расстройки периметра от времени в этом же выбранном промежутке времени данного переключения.

Предложенное изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание знакопеременной частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины расстройки периметра резонатора кольцевого лазера.
Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно измеряют изменение напряжения на пьезоголовке кольцевого лазера, соответствующее переходу от моды одного знака поляризации к ближайшей моде с ортогональной поляризацией, при измерении угловых перемещений непосредственно перед началом каждого переключения отключают систему регулировки периметра от пьезоголовки датчика, после этого, пока на пьезоголовке не изменилось напряжение от работы на прежней моде, подают на пьезоголовку дополнительное измеренное ранее напряжение, соответствующее переходу от моды одного знака поляризации к ближайшей моде с ортогональной поляризацией, при этом знак подаваемого дополнительного напряжения определяют так, чтобы суммарное напряжение находилось в области регулирования системы регулировки периметра, переключают фазу системы регулировки периметра на настройку и работу на моде с ортогональной поляризацией, подключают систему регулировки периметра к пьезоголовке датчика в выбранное предварительно или во время данного переключения время, после чего система регулировки периметра в автоматическом режиме завершает подстройку частоты кольцевого лазера лазерного гироскопа на моду с ортогональной поляризацией.

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью магнитного поля, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов. Способ предназначен для расширения диапазона измерения угловых скоростей волоконно-оптического гироскопа с открытым контуром, содержащего волоконный кольцевой интерферометр и электронный блок обработки информации, который содержит синхронный детектор для выделения амплитуды сигнала вращения и электронное устройство деления накопленной информации на выходе синхронного детектора на постоянную составляющую сигнала на входе синхронного детектора, а также контур обратной связи по обнулению сигнала рассогласования и содержащего генератор напряжения вспомогательной фазовой модуляции.

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля.
Наверх