Способ формирования термостойкого влагозащитного покрытия

Изобретение относится к технологии формирования термостойкого влагозащитного покрытия на поверхности теплонапряженных металлоконструкций и может быть использовано при изготовлении выхлопных труб газотурбинных установок топливно-энергетических комплексов: газоперекачивающих агрегатов, газотурбинных электростанций. Термостойкое влагозащитное покрытие формируют путем нанесения четырех слоев лакокрасочного покрытия с добавкой в каждый слой ультрадисперсного цинка на 100 мас. ч. лакокрасочного покрытия по следующей схеме: 1 слой - лакокрасочное покрытие + 0,5 мас. ч. ультрадисперсного цинка; 2 слой - лакокрасочное покрытие + мас. ч. ультрадисперсного цинка; 3 слой - лакокрасочное покрытие + 3,5 мас. ч. ультрадисперсного цинка; 4 слой - лакокрасочное покрытие + 5 мас. ч. ультрадисперсного цинка. При нанесении производят сушку каждого слоя до неполной полимеризации лакокрасочного покрытия, а после нанесения четвертого слоя лакокрасочного покрытия производят окончательную сушку слоев термостойкого влагозащитного покрытия до полной полимеризации. Изобретение позволяет исключить трещинообразование за счет повышения надежности и долговечности термостойкого влагозащитного покрытия. 2 з.п. ф-лы, 1 ил., 5 табл.

 

Изобретение относится к области машиностроения, а именно, к технологии формирования термостойкого влагозащитного покрытия на поверхности теплонапряженных металлоконструкций, и может быть использовано при изготовлении выхлопных труб газотурбинных установок (ГТУ) топливно-энергетических комплексов: газоперекачивающих агрегатов, газотурбинных электростанций.

Результаты эксплуатации топливно-энергетических комплексов выявили ряд технических проблем, непосредственно связанных с интенсивностью при эксплуатации процессов коррозии стальных конструкций. Особенно это касается выхлопных систем, которые испытывают как воздействие агрессивных химических сред в зависимости от регионально-климатических факторов, так и от термоциклических перепадов в диапазоне от минус 40 до плюс 400°С.

Система наиболее уязвима на этапе инерционного охлаждения при выключении агрегатов. Вследствие возникновения напряжений сжатия в поверхностных и напряжений растяжения во внутренних слоях полимерных матриц - зарождаются микротрещины, приводящие к нарушениям покрытия (растрескивание и отшелушивание). Восстановление таких покрытий на действующих агрегатах исключительно проблематично для технического исполнения и требует дополнительных экономических затрат.

Под воздействием агрессивных сред происходит изменение структуры и свойств материала, приводящее к снижению его прочности и преждевременному разрушению оборудования из этого материала по причине коррозии [«Технология машиностроения», 2006 г., №11, стр. 50-51; «Промышленная окраска», 2006 г., №2, стр. 41-42; 2007 г., №5, стр. 42-43].

Известен способ формирования влагозащитного покрытия по патенту РФ №2525820 от 20.08.2014 (прототип), включающий механическую обработку и обезжиривание поверхности, последовательное нанесение на нее 2-х слоев эмали на основе хлорсульфированного полиэтилена с добавкой ультрадисперсного цинка (УДЦ) в количестве 30 мас. ч. на 100 мас. ч., нанесение 1-2 слоя эмали на основе хлорсульфированного полиэтилена с токопроводящим наполнителем.

Покрытия на основе хлорсульфированного полиэтилена хорошо себя зарекомендовали по антистатическим свойствам и эластичности, но не термостойкости, так как хлорсульфированный полиэтилен при температуре выше 300°С подвержен сублимации с образованием пористого («шубного») слоя, трещинообразованию, после чего влагозащитные свойства уже не обеспечиваются.

Технической проблемой является устранение указанных недостатков, то есть повышение надежности и долговечности работы термостойкого влагозащитного покрытия.

Технический результат заключается в том, что изготовленное согласно способу термостойкое влагозащитное покрытие позволяет повысить надежность и долговечность работы покрытия за счет послойного нанесения на поверхность трубы лакокрасочного покрытия (ЛКП) с добавлением ультрадисперсного цинка, что позволяет обеспечить перераспределение напряжений в поверхностных слоях покрытия. Также установлено влияние дисперсности форм частиц и удельной поверхности УДЦ на чувствительные параметры покрытия. Наиболее оптимальным установлено соотношение пластинчатой и сферической формы цинка 1:1.

Технический результат достигается тем, что в способе формирования термостойкого влагозащитного покрытия выхлопной трубы газотурбинной установки, включающий механическую обработку и обезжиривание поверхности трубы, последовательное нанесение на нее ряда слоев лакокрасочного покрытия, сушку, покрытие формируют из 4-х слоев лакокрасочного покрытия с добавкой в каждый слой ультрадисперсного цинка на 100 мас. ч. лакокрасочного покрытия по следующей схеме:

- 1 слой - лакокрасочное покрытие + 0,5 мас. ч ультрадисперсного цинка;

- 2 слой - лакокрасочное покрытие + 2 мас. ч ультрадисперсного цинка;

- 3 слой - лакокрасочное покрытие + 3,5 мас. ч ультрадисперсного цинка;

- 4 слой - лакокрасочное покрытие + 5 мас. ч ультрадисперсного цинка, производят сушку каждого слоя до неполной полимеризации лакокрасочного покрытия, а после нанесения четвертого слоя лакокрасочного покрытия производят окончательную сушку слоев термостойкого влагозащитного покрытия до полной полимеризации.

При этом в качестве лакокрасочного покрытия может быть использован полисилоксановый лакокрасочный материал Армакот Термо.

Ультрадисперсный цинк может быть использован пластинчатой и сферической формы в соотношении 1:1.

Отличительные признаки являются существенными.

Значения концентрации ультрадисперсного цинка в каждом слое лакокрасочного покрытия в количестве 0,5 мас. ч., 2 мас. ч., 3,5 мас. ч., 5 мас. ч. получено путем экспериментальных исследований лакокрасочного покрытия, результат которых представлен в таблице 1.

Нанесение четырех слов лакокрасочного покрытия позволяет исключить трещинообразование, обеспечить высокое качество, надежность и долговечность работы термостойкого влагозащитного покрытия, выдерживающего многоцикловые термоперепады от -40°С до+400°С, за счет наличия УДЦ в слоях лакокрасочного покрытия, который в результате образования оксида цинка от взаимодействия с диффузионной влагой создает сетчатую структуру по схеме:

Данная схема позволяет перераспределить напряжения в поверхностных слоях термостойкого влагозащитного покрытия.

Очевидно, что такая ориентация образуется постепенно по мере взаимодействия с диффузионной влагой из окружающей среды, а наличие двух геометрических форм способствует «прорастанию» упрочненной структуры и химически препятствует влагопроницаемости к поверхности выхлопной трубы ГТУ.

Лабораторно-экспериментальные исследования подтвердили высокую эффективность термостойкого влагозащитного покрытия.

Результаты обследования натурного объекта с покрытием привели к созданию модельной системы покрытий с использованием УДЦ.

Результаты исследований модельных образцов термоградиентного покрытия позволили выявить целый ряд особенностей (таблицы 2, 3):

1) Моделирование системы термостойкого влагозащитного покрытия с использованием ультрадисперсного цинка позволило изменить в сторону улучшения комплекс чувствительных показателей, а именно:

- снижение влагопоглощения на 25% (в прилегающих слоях к металлу);

- объемное электросопротивление - на 1-2 порядка.

- исключение растрескивания ЛКП при толщине вплоть до 200 мкм.

2) Введение УДЦ в верхние элементарные слои покрытия позволило изменить в сторону улучшения физико-механические свойства по напряжению сжатия.

3) Дополнительно выявлено, что образование оксида цинка в результате взаимодействия с диффузионной влагой создает сетчатую структуру.

Модификацию лакокрасочного материала производят путем введения в полимерную матрицу ультрадисперсного цинка пластинчатой и сферической формы при соотношении 1:1 в установленных в лабораторно-экспериментальных исследованиях, результат которых представлен в таблицах 4 и 5.

Анализ результатов воспроизводимых экспериментов показывает, что по совокупности технических характеристик градиентное соотношение лакокрасочного материала (на примере материала «Армакот Термо») и ультрадисперсного цинка обеспечивает оптимальный технический результат при толщине каждого слоя 40-50 мкм.

Изобретение поясняется разработанной схемой термостойкого влагозащитного покрытия выхлопной трубы во время работы ГТУ (см. Фиг.), где приняты следующие обозначения:

1 - выхлопная труба;

2 - слои ЛКП с различными концентрациями УДЦ.

Пример изготовления термостойкого влагозащитного покрытия.

На стальную цилиндрическую трубку 1 (∅ 30 мм), предварительно прошедшую механическую обработку и обезжиривание поверхности, последовательно наносят четыре слоя 2 лакокрасочного покрытия Армакот Термо с добавкой в каждый слой УДЦ на 100 мас. ч. лакокрасочного покрытия по следующей схеме:

- 1 слой - Армакот Термо + 0,5 мас. ч ультрадисперсного цинка;

- 2 слой - Армакот Термо + 2 мас. ч ультрадисперсного цинка;

- 3 слой - Армакот Термо + 3,5 мас. ч ультрадисперсного цинка;

- 4 слой - Армакот Термо + 5 мас. ч ультрадисперсного цинка, производят сушку каждого слоя до неполной полимеризации лакокрасочного покрытия в течение 1 часа при температуре (20+5)°С, а после нанесения четвертого слоя лакокрасочного покрытия производят окончательную сушку слоев термостойкого влагозащитного покрытия до полной полимеризации в течение 12 часов при температуре (20+5)°С.

Предлагаемое изобретение позволяет исключить трещинообразование, то есть повысить надежность и долговечность работы термостойкого влагозащитного покрытия.

СПОСОБ ФОРМИРОВАНИЯ ТЕРМОСТОЙКОГО ВЛАГОЗАЩИТНОГО ПОКРЫТИЯ

числитель - показания тензодатчика

знаменатель - показания волоконно-оптического датчика

СПОСОБ ФОРМИРОВАНИЯ ТЕРМОСТОЙКОГО ВЛАГОЗАЩИТНОГО ПОКРЫТИЯ

1. Способ формирования термостойкого влагозащитного покрытия выхлопной трубы газотурбинной установки, включающий механическую обработку и обезжиривание поверхности трубы, последовательное нанесение на нее слоев лакокрасочного покрытия, сушку, отличающийся тем, что покрытие наносят из 4-х слоев лакокрасочного покрытия с добавкой в каждый слой ультрадисперсного цинка на 100 мас. ч. лакокрасочного покрытия по следующей схеме:

1 слой - лакокрасочное покрытие + 0,5 мас. ч. ультрадисперсного цинка;

2 слой - лакокрасочное покрытие + 2 мас. ч. ультрадисперсного цинка;

3 слой - лакокрасочное покрытие + 3,5 мас. ч. ультрадисперсного цинка;

4 слой - лакокрасочное покрытие + 5 мас. ч. ультрадисперсного цинка,

производят сушку каждого слоя до неполной полимеризации лакокрасочного покрытия, а после нанесения четвертого слоя лакокрасочного покрытия производят окончательную сушку слоев термостойкого влагозащитного покрытия до полной полимеризации.

2. Способ формирования термостойкого влагозащитного покрытия по п. 1, отличающийся тем, что в качестве лакокрасочного покрытия используют полисилоксановый лакокрасочный материал Армакот Термо.

3. Способ формирования термостойкого влагозащитного покрытия по п. 1, отличающийся тем, что ультрадисперсный цинк добавляют в виде частиц пластинчатой и сферической формы в соотношении 1:1.



 

Похожие патенты:

Изобретение относится к конструкциям авиационных газотурбинных двигателей, в частности к конструкциям узлов для отвода горячих газов. Выхлопное устройство газоперекачивающего агрегата содержит элементы, состоящие, в свою очередь, из четырех стенок.

Изобретение относится к области машиностроения, в частности к производству нефтегазового машиностроения, и может быть использовано при изготовлении выхлопных труб газотурбинных установок: газоперекачивающих агрегатов, газотурбинных электростанций.

Изобретение относится к поворотным запорным устройствам топок котлов и может быть использовано в котлостроении для предотвращения попадания топочных газов в помещение котельной.

Изобретение относится к трубе со многими функциями, такими как защита от коррозии, сбор пыли и сбережение энергии. Антикоррозионная пылесборная энергосберегающая труба включает ствол трубы.

Изобретение относится к дымовым трубам, выполненным по принципу «труба в трубе» и собираемым (наращиваемым) по раструбной схеме. Модуль дымовой трубы имеет конструкцию типа «труба в трубе» и содержит наружный металлический ствол и внутреннюю металлическую газоотводящую трубу, зазор между которыми заполнен теплоизоляционным материалом, по меньшей мере две прокладки, плотно закрывающие указанный зазор сверху и снизу, и расположенное снизу модуля опорное приспособление.

Изобретение относится к поворотным запорным устройствам топок котлов и может быть использовано в котлостроении для предотвращения попадания топочных газов в помещение котельной.

Изобретение относится к области энергетики, в частности к факельным наконечникам. .

Изобретение относится к бумажной промышленности и служит для выброса дыма в атмосферу. .

Изобретение относится к области часовых изделий. Компенсирующая балансирная пружина (1) для термокомпенсированного пружинного балансного резонатора, имеющая сердечник (9а, 9b, 9c, 9d, 9e, 9f), выполненный из по меньшей мере одного неметаллического материала (11а, 11b, 13b, 15b, 11c, 17c, 19с, 11d, 13d, 15d, 17d, 19d, 11e, 13e, 15e, 17e, 19e, 11f, 21f).

Изобретение относится к способу получения органо-неорганического светопоглощающего материала с перовскитоподобной структурой, который может быть использован при изготовлении перовскитных солнечных ячеек.

Изобретение относится к получению полосы из высокомарганцевой стали с антикоррозионным покрытием, обеспечивающим повышение свариваемости полос из высокомарганцевой стали следующего состава (в мас.

Изобретение относится к обработке материалов резанием и может быть использовано при обработке изделий из труднообрабатываемых материалов, в том числе титановых сплавов.

Изобретение относится к нанесению антифрикционного слоя на металлические поверхности. Металлическую деталь устанавливают на магнитный диск диаметром 300 мм, который вращают со скоростью 50-52 об/ мин или на поворотный стол с диаметром 550 мм, которому сообщают возвратно-поступательное вращение на 180° со скоростью 1500 мм/мин.

Изобретение относится к получению функционально-градиентного материала на подложке методом прямого лазерного нанесения. Устройство содержит лазерный блок и акустический генератор.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ синтеза рентгеноконтрастного поверхностного Ti-Ta-Ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из TiNi сплава, осуществляемый аддитивным методом путем многократного чередования в едином вакуумном цикле операций осаждения аморфообразующей пленки и ее жидкофазного перемешивания с компонентами подложки, отличающийся тем, что в качестве аморфообразующей пленки, осаждаемой c помощью одновременного магнетронного распыления мишеней из Ti и Ta, используют пленку состава Ti60-70Ta40-30 (ат.%), а последующее жидкофазное перемешивание компонентов пленки и подложки и высокоскоростную закалку расплавленного поверхностного слоя осуществляют с помощью широкоапертурного низкоэнергетического сильноточного электронного пучка (НСЭП) с параметрами: длительность импульса 2 ÷ 3 мкс, плотность энергии 1.5 ÷ 2.5 Дж/см2.

Изобретение относится к сверхтвердым алмазным материалам с покрытием и может быть использовано в износостойких изделиях, армированных твердым сплавом и содержащих абразив инструментах.

Изобретение относится к способу плазменного напыления износостойких порошковых покрытий на детали различных механизмов, используемых в машиностроении, металлургии, энергетике, авиации, судостроении, оборонной промышленности и других сферах производства.

Компонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, содержит металлическую подложку, крепящий слой на поверхности подложки, теплозащитное покрытие, структуру выступающих элементов и структуру элементов в виде канавок.

Данное изобретение относится к композиции для покрытия с антикоррозийным эффектом, применению ее для частичного покрытия подложки грунтовочным слоем, к способу, по меньшей мере, для частичного покрытия металлической подложки и к покрытой металлической подложке.
Наверх