Способ разрезания плазморезом стальной круглой трубы вдоль продольной оси, конструкция усиления башни круглого сечения и элемент усиления

Изобретение относится к способу разрезания плазморезом стальной круглой трубы длиной до 12 м вдоль продольной оси для получения продольного сегмента трубы, обеспечивающей геометрическую неизменяемость и отсутствие деформации полученных после окончания процесса резки сегментов трубы. Способ заключается в том, что трубу укладывают на роликовые вращатели, имеющие систему регулировки по высоте для разных диаметров труб, а торец трубы закрепляют в трехкулачковом патроне. Затем производят разрезание трубы на продольные сегменты плазморезом воздушного охлаждения на токах от 90 до 120А. В плазморезе в качестве плазмообразующего газа используют воздух с давлением от 0,5 до 0,6 МПа. Плазморез состоит из двух частей, жестко фиксированных друг с другом по горизонтали. Одна из частей плазмореза установлена на горизонтальной направляющей, расположенной параллельно стальной круглой трубе, что позволяет двигать вторую часть плазмореза, разрезающую стальную круглую трубу, вдоль продольной оси стальной круглой трубы на фиксированном расстоянии, обеспечивая ровный продольный рез трубы по всей длине. 4 н.п. ф-лы, 5 ил.

 

Способ разрезания плазморезом стальной круглой трубы вдоль продольной оси, конструкция усиления башни круглого сечения и элемент усиления.

Изобретение относится к области строительства, а именно к капитальному ремонту и реконструкции стальных строительных конструкций зданий и сооружений трубчатого сечения.

Уровень техники

Аналогами изобретения являются способы разрезания стальных труб вдоль продольной оси для изготовления прорезей (например, под установку на трубах приборов и креплений).

При выполнении прорезей (длиной до 1000 мм) могут быть применены: фреза, шлифовальная машинка с отрезным диском, газопламенная резка, плазменная резка и т.п.Технология резки труб вдоль продольной оси на части длиной до 12 м не применялась и в литературе не описана.

Например, из уровня техники ((http://umdplus.ru/informacziya/plazmennaya-rezka-trub) известен нашедший широкое потребление способ плазменной резки труб квадратного сечения с максимальной длиной до 3,3 метра, которые в процессе резки не подвержены деформации настолько, насколько этому подвержены трубы круглого сечения.

Из уровня техники известен способ резки труб круглого сечения лазером. Однако в этом случае потребитель сталкивается с рядом ограничений, а именно:

1. Максимальная длина обрабатываемых труб должна составлять 6000 мм (6 метров).

2. Максимальная длина готового изделия должна быть не более 3000 мм (3 метров).

3. Максимальная длина готового изделия при увеличенном варианте исполнения может быть до 6000 мм (6 метров).

Сущность изобретения.

Усиление несущих металлоконструкций трубчатого сечения с использованием в качестве элементов усиления частей стальных труб, полученных при их разрезании вдоль продольной оси на сегменты сталкивается с проблемой изготовления элементов усиления.

Основная задача состояла в определении технологии разрезания стальных труб вдоль продольной оси, которая обеспечивает геометрическую неизменяемость частей трубы после окончания процесса резки.

Техническим результатом является отсутствие деформации и геометрической неизменяемости полученного в процессе изготовления сегмента трубы длиной до 12 метров, полученного при разрезании плазморезом стальной круглой трубы вдоль продольной оси.

Также техническим результатом является то, использование полученных таким образом сегментов трубы как элементов усиления типа скорлупы для формирования составного сечения позволяет увеличить площадь сечения стержня укрепляемой конструкции, несущая способность которой в результате этого увеличивается не менее чем на 30%.

Основным признаком изобретения, характеризующим способ решения проблемы разрезания стальных труб вдоль продольной оси (длиной до 12 м), является подбор технологических параметров выполнения плазменной резки, которые обеспечивают геометрическую неизменяемость частей трубы после процесса резки. Подбор технологических параметров (ток, скорость резания, длина реза) выполняется индивидуально для каждого диаметра и толщин стальных труб.

Сущность изобретения состоит в разработке технологии выполнения резов вдоль продольной оси, обеспечивающей геометрическую неизменяемость частей трубы после процесса резки. Размеры прорезей определяются на опытном образце: подбор предельной длины продольных прорезей должен обеспечить изменение диаметра трубы в пределах допуска - не более 0,5 мм при замере посередине прорези.

Согласно разработанной Программе на испытательном стенде (фигура 1) проведены экспериментальные резы трубы ∅133×5 мм вдоль продольной оси, во время которых определены геометрические размеры прорезей и технологические параметры оборудования (сила тока, давление плазмообразующего газа, скорость резания), обеспечивающие их требуемую точность.

Резка трубы ∅133×5 мм на сегменты производилась плазмотроном (фигура 1) воздушного охлаждения на токах от 90 до 120А. В качестве плазмообразующего газа использован воздух давлением от 0,5 до 0,6 МПа. Резка производилась щелевым способом длиной прорезей 800, 1200, 1600 и 2000 мм на разных токах и с разной скоростью.

Выполнен расчет параметров оборудования и разработаны основные геометрические характеристики стенда для плазменной резки стальных труб (фигура 1). Для выполнения резов труба укладывается на роликовые вращатели, имеющие систему регулировки по высоте для разных диаметров труб. Торец трубы закрепляется в трехкулачковом патроне.

Суммируя все вышеуказанные признаки сущность заявленной группы изобретений заключается в следующем.

Один объектом изобретения является способ разрезания плазморезом стальной круглой трубы длиной до 12 метров вдоль продольной оси для получения продольного сегмента трубы, обеспечивающий геометрическую неизменяемость и отсутствие деформации полученных после окончания процесса резки сегментов трубы. Способ заключается в том, что трубу укладывают на роликовые вращатели, имеющие систему регулировки по высоте для разных диаметров труб, а торец трубы закрепляется в трехкулачковом патроне, затем производят разрезание трубы на продольные сегменты плазморезом воздушного охлаждения на токах от 90 до 120А. В плазморезе в качестве плазмообразующего газа используют воздух с давлением от 0,5 до 0,6 Мпа, причем плазморез состоит из двух частей, жестко фиксированных друг с другом по-горизонтали. Одна из частей плазмореза установлена на горизонтальной направляющей, расположенной параллельно стальной круглой трубе, что позволяет двигать вторую часть плазмореза, разрезающую стальную круглую трубу, вдоль продольной оси стальной круглой трубы на фиксированном расстоянии, обеспечивая ровный продольный срез трубы по всей длине.

Вторым объектом изобретения является конструкция для усиления башни круглого сечения, включающая, по меньшей мере, один элемент для усиления. Элемент для усиления представляет собой сегмент стальной круглой трубы длиной до 12 метров, изготовленный вышеуказанным способом. Элемент для усиления располагают параллельно поверхности башни круглого сечения с внешней стороны и фиксируют на поверхности башни, по меньшей мере, одним хомутом.

Третьим объектом изобретения является элемент для усиления, который включен в конструкцию для усиления башни круглого сечения, изготовленный вышеуказанным способом продольной резки стальной круглой трубы, представляющий собой сегмент стальной круглой трубы длиной до 12 метров.

Перечень фигур чертежей и иных материалов

Для лучшего уяснения иллюстрации по реализации заявленного изобретения.

На фигуре 1 проиллюстрирована установка с плазмотроном для резки трубы круглого сечения, включаюшая плазморез (поз. 1), состоящий из двух частей, жестко соедниненных друг с другом, одна из которых располжена на направляющей раме (поз. 2), другая используется непосредственно для продольной резки трубы (поз. 3).

На фигуре 2 проиллюстрирована полученная в результате разрезания плазмотроном заготовка, представляющая собой сегмент круглой трубы заданного размера.

На фигуре 3 проиллюстрированно применение заготовки, полученной в результате продольной резки круглой трубы плазмотроном, для усиления конструкции пояса башни (поз. 4) (внутренняя сторона пояса), где показано сама конструкция усиления, усиливаемая конструкция башни (поз. 5) и хомут (поз. 6), обеспечивающий неподвижное сопряжение этих элементов.

На фигуре 4 проиллюстрированно применение заготовки, полученной в результате продольной резки круглой трубы плазмотроном, для усиления конструкции пояса башни (внешняя сторона пояса), где показаны конструкции усиления(поз. 5), захватывающие в виде скорлупы усиливаемую конструкцию и хомут (поз. 6), обеспечивающий неподвижное сопряжение элементов.

На фигурах 3 и 4 наглядно проиллюстрировано использование полученных сегментов трубы в виде скорлуп, обеспечивающих таким образом усиление коонструкции башни.

На фигуре 5 проиллюстрирован вид в разрезе, с иллюстрацией расположения на внешней стороне башни круглого сечения (поз. 4) конструкции усиления в виде скорлупы (поз. 5).

Сведения, подтверждающие возможность реализации изобретения

Конструкции усиления (Фигура 2), изготовленные из труб, разрезанных плазморезом вдоль продольной оси на скорлупы (длиной до 12 м), применены при экспериментальной реконструкции решетчатой башни связи (Фигуры 3, 4 3) в деревне Кабаново Ногинского района Московской области (ноябрь 2016 г.).

1. Способ получения продольного сегмента стальной трубы длиной до 12м, включающий разрезание плазморезом стальной круглой трубы длиной до 12м вдоль продольной оси, при котором трубу укладывают на роликовые вращатели, имеющие систему регулировки по высоте для разных диаметров труб, и торец трубы закрепляют в трехкулачковом патроне, затем производят разрезание трубы на продольные сегменты плазморезом воздушного охлаждения на токах от 90 до 120А, в качестве плазмообразующего газа используют воздух с давлением от 0,5 до 0,6 МПа, причем используют плазморез, состоящий из двух частей, фиксированных друг с другом по горизонтали, при этом одну из частей плазмореза устанавливают на горизонтальной направляющей, расположенной параллельно стальной трубе, а разрезание трубы вдоль продольной оси осуществляют посредством второй части плазмореза путем ее перемещения на фиксированном расстоянии.

2. Продольный сегмент стальной трубы длиной до 12 м, полученный способом по п. 1.

3. Конструкция для усиления пояса башни круглого сечения, содержащая по меньшей мере один элемент для усиления, отличающаяся тем, что элемент для усиления выполнен в виде продольного сегмента стальной трубы длиной до 12 м по п. 2, расположенного с внешней стороны башни и зафиксированного на ее поверхности по меньшей мере одним хомутом.

4. Элемент для усиления пояса башни круглого сечения, отличающийся тем, что он выполнен в виде продольного сегмента стальной трубы длиной до 12 м по п. 2 формулы.



 

Похожие патенты:

Изобретение относится к области строительства, а именно к соединительным узлам для пространственно расположенных металлических стержневых элементов. Техническим результатом данного изобретения является повышение технологичности выполнения соединения.

Изобретение относится к области строительства и предназначено для соединения двутавровых ригелей и колонн. Технический результат изобретения заключается в повышении надежности соединения.

Изобретение относится к области строительства, а именно к каркасообразующему средству. Технический результат изобретения заключается в способности демпфировать нагрузку вследствие деформации сдвига, которая действует на балку, когда балка соединяется со стойкой деревянного здания.

Изобретение относится к области авиации. Ферменная нервюра крыла летательного аппарата содержит верхний металлический пояс нервюры, нижний металлический пояс нервюры и стойки нервюры, соединённые с верхним и нижним металлическими поясами нервюры.

Изобретение относится к области строительства и может быть использовано при возведении покрытий зданий и сооружений, в которых несущие элементы выполняются из решетчатых конструкций.

Изобретение относится к области строительства и может быть использовано в узлах соединений перекрестно-стержневых конструкций или структурных плит покрытий (перекрытий) зданий и сооружений.

Изобретение относится к области строительства и может быть использовано в узлах соединений перекрестно-стержневых конструкций или структурных плит покрытий (перекрытий) зданий и сооружений.

Настоящее изобретение относится к машиностроению, а именно к длинномерной продольной секционной конструкции (далее - ДПСК) и устройству для стыкового соединения секций ДПСК - угловой двухлучевой обойме (УДО).

Изобретение относится к строительству, а именно к узловому соединению тонкостенных стержней пространственной конструкции, и может найти применение в оболочках сферической, конической и других пространственных форм сооружений из металлических стержней П-образного сечения.

Изобретение относится к области строительства зданий, а именно к способу сборки пространственной каркасной конструкции из тонкостенных элементов. Технической задачей изобретения является повышение эксплуатационных качеств.

Изобретение относится к способу плазменной резки заготовок. Для осуществления резки используют горелку плазменной резки, содержащую по меньшей мере корпус горелки, электрод и сопло.

Изобретение относится к способу и устройству для плазменно-дуговой очистки металлических изделий. Способ включает генерацию плазменной струи из по крайней мере одного плазматрона, которую направляют вручную или механически на поверхность изделия в зону очистки и перемещают относительно обрабатываемой поверхности.

Изобретение относится к способу (варианты) и системе для машинной резки заготовки материала на части и машиночитаемому носителю. В процессе лучевой резки нескольких частей (31, 32, 33, 34) из заготовки материала осуществляют управление резкой с использованием набора регулирующих правил и переменных для резки двумерных форм или шаблонов.

Изобретение относится к координатному устройству и может быть использовано в высокоточном технологическом оборудовании, преимущественно при обработке изделий лазерным инструментом.
Изобретение относится к области изготовления объемных поглотителей СВЧ-энергии из высокотемпературного поглощающего материала, применяемых в высокочастотных трактах радиоэлектронной аппаратуры.

Изобретение относится к лазерной резке анизотропных материалов, в частности к способу разделения кристаллического кремния, и может быть использовано в электронной промышленности, а также в других областях техники и производства, где существует необходимость прецизионной обработки изделий из кристаллических материалов.

Изобретение относится к машиностроению и может быть использовано в машинах термического раскроя металла для удержания больших объемов листового металла и удаления продуктов его горения в процессе газокислородного и плазменного раскроя.

Изобретение относится к плазменно-механическому раскрою листового проката и подготовке его для дальнейших операций технологического процесса на оборудовании с числовым программным управлением и может быть использовано при изготовлении больших и сложных конструкций (пролеты мостов, металлоконструкции зданий и опор).

Изобретение относится к области металлургии, а именно к способам горячего ремонта огнеупорной кладки печей, и может быть использовано в любой другой отрасли промышленности для термитной и кислородно-флюсовой резки неметаллических материалов.

Изобретение относится к машиностроению, в частности к устройствам для перемещения обрабатывающего инструмента, и может быть использовано в установках для гидроабразивной, лазерной, плазменной резки.

Изобретение относится к поточному передатчику (100) давления технологической текучей среды. Передатчик (100) включает в себя соединительный элемент (102) для технологической текучей среды, сконфигурированный, чтобы соединяться с источником технологической текучей среды.

Изобретение относится к способу разрезания плазморезом стальной круглой трубы длиной до 12 м вдоль продольной оси для получения продольного сегмента трубы, обеспечивающей геометрическую неизменяемость и отсутствие деформации полученных после окончания процесса резки сегментов трубы. Способ заключается в том, что трубу укладывают на роликовые вращатели, имеющие систему регулировки по высоте для разных диаметров труб, а торец трубы закрепляют в трехкулачковом патроне. Затем производят разрезание трубы на продольные сегменты плазморезом воздушного охлаждения на токах от 90 до 120А. В плазморезе в качестве плазмообразующего газа используют воздух с давлением от 0,5 до 0,6 МПа. Плазморез состоит из двух частей, жестко фиксированных друг с другом по горизонтали. Одна из частей плазмореза установлена на горизонтальной направляющей, расположенной параллельно стальной круглой трубе, что позволяет двигать вторую часть плазмореза, разрезающую стальную круглую трубу, вдоль продольной оси стальной круглой трубы на фиксированном расстоянии, обеспечивая ровный продольный рез трубы по всей длине. 4 н.п. ф-лы, 5 ил.

Наверх