Низкошумное техническое помещение

Изобретение относится к области технических средств обеспечения акустической безопасности окружающей среды за счет подавления шумовых излучений, производимых производственно-технологическим и инженерно-техническим оборудованием, представленным, в частности, насосной, компрессорной станциями, энергетическими установками, системами вентиляции и кондиционирования воздуха, электрическими машинами, смонтированным внутри шумогенерирующих технических помещений. Также оно может быть использовано для улучшения акустической комфортабельности в прилегающих жилых, производственных и общественных помещениях зданий и сооружений, интегрированных сопредельно с указанными шумогенерирующими техническими помещениями. Низкошумное техническое помещение оборудовано монтируемыми с воздушными зазорами между противолежащими торцевыми гранями и относительно оппозитных монтажных поверхностей стеновых и потолочных ограждающих конструкций технического помещения, обособленными цельноформованными комбинированными звукопоглощающими панелями, составленными из пористой воздухопродуваемой дробленой звукопоглощающей структуры вещества и интегрированных в нем полостных частотонастроенных шумоподавляющих конструктивных элементов, представленных в виде четвертьволновых акустических резонаторов. Четвертьволновые акустические резонаторы формируются несущей внутренней воздухонепродуваемой пленочной эластичной оболочкой, выполненной в виде тупикового трубчатого полостного звукопрозрачного элемента определенных габаритных размеров его трубчатой части с открытой горловой частью и перекрытой жестким звукоотражающим донышком донной части. Низкошумное техническое помещение наделено широкополосным по частотному составу эффектом звукопоглощения с выраженным низкочастотным эффектом уменьшения звукового давления на дискретных значениях рабочих доминирующих функциональных частот звукового излучения fms, смонтированных в нем шумогенерирующих технических объектов. 15 з.п. ф-лы, 25 ил.

 

Изобретение относится к области технических средств обеспечения акустической безопасности окружающей среды за счет подавления (уменьшения) шумовых излучений, производимых производственно-технологическим и инженерно-техническим оборудованием, представленным, в частности, насосной, компрессорной станциями, энергетическими установками (двигателями внутреннего сгорания, дизель-генераторными установками), системами вентиляции и кондиционирования воздуха, электрическими машинами (электродвигателями, электротрансформаторами), смонтированным внутри шумогенерирующих (шумоактивных) технических помещений (строительных зданий). Также оно может быть использовано для улучшения акустической комфортабельности в прилегающих жилых, производственных и общественных помещениях зданий и сооружений, интегрированных сопредельных (близкорасположенных) с указанными шумогенерирующими техническими помещениями (строительными зданиями).

Известно, что для защиты окружающей среды от интенсивного акустического загрязнения (высоких уровней шума), производимого разнообразными видами шумогенерирующих технических объектов, широкое распространение находят различного типа звукоизолирующие (шумоизолирующие) ограждения зашумленных технических помещений (экранные перегородки, кожухи, панельные футеровки несущих и/или корпусных конструкций, оборудованные смонтированными на их поверхностях дополнительными слоями вязкоэластичных виброзвукодемпфирующих, и/или пористых воздухопродуваемых звукопоглощающих, и/или плотных воздухонепродуваемых звукоизолирующих материалов, и/или их разнообразными сочетающимися комбинациями с дополнительным включением несущих, армирующих, звукопрозрачных, защитных, адгезионных, декоративных слоев материалов или соответствующих конструктивных элементов). Также, для этих же целей могут применяться обособленные единичные или сблокированные, представленные в виде агрегатированных модульных батарей, разнообразные типы акустических резонаторов - четвертьволновых (RI), полуволновых (RII), Гельмгольца (RIII), или же могут использоваться, содержащиеся в составе технических помещений, присоединенные к звукопередающим (волноводным) каналам (проемам) соответствующего вида объемные расширительные камеры, заграждающие (ослабляющие) передачу акустической энергии за счет образованных в них звукоотражающих воздушных (газонаполненных) «акустических пробок», характеризующихся резкими изменениями (перепадами) волновых акустических сопротивлений. В подавляющем большинстве случаев, применяются разнообразные комбинированные сочетания перечисленных выше типов шумозаглушающих (шумопонижающих) способов и технических устройств по их осуществлению, и их конкретный выбор предопределяется как техническими, так и экономическими факторами. Использование такого широкого разнообразного типа шумозаглушающих технических приемов (способов), технических устройств и веществ (материалов), позволяет в той или иной мере обеспечить акустически безопасную шумокомфортную среду обитания для людей и животных. В частности, широкое распространение находят различного типа гибридные шумопонижающие конструкции, использующие комбинированную реализацию физических процессов звукопоглощения и звукоизоляции, где суммарный шумопонижающий эффект используемого технического устройства может базироваться как на эффектах отражения звуковой энергии, так и на комбинированном сочетании эффектов звукопоглощения и звукоотражения. Такого типа технические шумозаглушающие устройства могут, в том числе, не содержать в своем составе пористых воздухопродуваемых звукопоглощающих структур, или воздухонепродуваемых звукоизоляционных структур, а возникающий эффект шумоглушения может реализовываться исключительно функционированием индивидуальных частотно настроенных акустических резонаторных элементов (четвертьволновых RI, полуволновых RII, Гельмгольца RIII), включая применение перфорированных пластинчатых структур, располагаемых с заданным воздушным зазором относительно жестких звукоотражающих поверхностей, с образованием соответствующих полостных резонаторных устройств (акустических резонаторов Гельмгольца RIII). Такого типа полостные резонаторные устройства могут быть как пустотелыми, так и частично заполненными пористым звукопоглощающим веществом.

В качестве известных примеров использования технических устройств заглушения акустической энергии, функционирующих по отмеченным выше физическим принципам, могут быть указаны, в частности, различного типа панельно-полостные шумопонижающие конструкции:

- международная заявка на изобретение WO 2009/131855 А2 (опубликована 29.10.2009 г.);

- международная заявка на изобретение WO 2008/138840 А1 (опубликована 20.11.2008 г.);

- международная заявка на изобретение WO 2009/037765 А1 (опубликована 20.09.2007 г.);

- патент Германии на изобретение DE 4315759 (опубликован 11.05.1993 г.);

- международная заявка на изобретение WO 2006056351 (опубликована 06.01.2006 г.);

- патент РФ на изобретение RU 2206458 (опубликован 20.06.2003 г.);

- патент Франции на изобретение FR 2910685 (опубликован 27.06.2008 г.);

- заявка Японии на изобретение JP 2008-96826 А (опубликована 13.10.2006 г.);

- заявка Японии на изобретение JP 2007-186186 (опубликована 26.07.2007 г.);

- патент РФ на полезную модель RU 61353 (опубликован 27.02.2007 г.);

- патент РФ на полезную модель RU 67650 (опубликован 27.10.2007 г.).

К выраженным полезным преимуществам использования указанных выше технических устройств заглушения акустической энергии следует отнести возможность их применения в условиях воздействия агрессивных сред, высоких температур и интенсивных динамических нагрузок, вследствие исключения использования в их составе пористых воздухопродуваемых (газопродуваемых) волокнистых и/или вспененных открытоячеистых структур органического или синтетического происхождения характеризующихся, как правило, недостаточно высокими термо-влаго-биостойкими характеристиками. В их составе применяются исключительно плотные структуры перфорированных металлических или термостойких полимерных материалов, с возможным включением термостойких пористых волокнистых (базальтовых, стеклянных, металлических), и/или вспененных открытоячеистых металлических, и/или керамических материалов. В то же время, к отрицательным техническим характеристикам такого типа шумозаглушающих устройств следует отнести их узкий рабочий частотный звуковой диапазон эффективного функционирования, высокую чувствительность к частотной расстройке при изменении физических параметров среды распространения звуковых волн, при недостаточно высоком значении достижения эффекта шумозаглушения в широком частотном диапазоне, высокую стоимость, неудовлетворительные габаритные показатели и повышенную материалоемкость. На современном уровне развития техники указанные негативные факторы могут ограничивать их широкое распространение в эффективном решении актуальных практических задач подавления акустических излучений, производимых различными шумогенерирующими техническими объектами.

Соответственно, известны и широко распространены панельно-полостные шумопонижающие конструкции, образованные полости которых полностью или частично заполнены пористым воздухопродуваемым звукопоглощающим веществом волокнистого и/или открытоячеистого вспененного типа (органического, минерального, синтетического происхождения), характеризующимся более высокими звукопоглощающими (шумопонижающими) характеристиками, однако являющимися достаточно эффективными только в ограниченной области средних и высоких частотах звукового диапазона (свыше 500 Гц). В такого типа известных шумопонижающих конструкциях передняя (лицевая) стенка акустической панели, как правило, выполнена перфорированной и характеризуется достаточно высоким значением коэффициента перфорации, превышающим значение 0,2. Это сообщает ей свойства приемлемой звукопрозрачности и обеспечивает, по-сути, беспрепятственное (с несущественным, не превышающим 10% эффект звукоотражения) прохождение звуковых волн в полость, заполненную пористым звукопоглощающим материалом. Сквозные, преимущественно круглые отверстия или узкие щелевые просечки с отгибами, - наиболее распространенный вид перфорации такого типа лицевой стенки акустической панели. В качестве примеров такого типа известных шумопонижающих технических устройств следует отметить:

- патент Франции на изобретение FR 2899919 (опубликован 19.10.2007);

- патент Франции на изобретение FR 2899992 (опубликован 19.10.2007);

- патент США на изобретение US 3991848 (опубликован 16.09.1974);

- патент США на изобретение US 5422466 (опубликован 11.03.1994);

- патент Японии на изобретение JP 11104898 (опубликован 20.04.1999);

- международная заявка на изобретение WO 2007/017317 (опубликована 15.02.2007);

- патент Японии на изобретение JP 62165043 (опубликован 21.07.1987);

- заявка Германии на изобретение DE 4332856 (опубликована 27.09.1993);

- Европейский патент на изобретение ЕР 1477302 А1 (опубликован 17.11.2004);

- заявка Японии на изобретение JP 2000034937 (опубликована 02.02.2000);

- заявка Германии на изобретение DE 202004018241 (опубликована 24.11.2004);

- патент Великобритании на изобретение GB 1579897 (опубликован 03.06.1976);

- патент Германии на изобретение DE 4332845 А1 (опубликован 27.09.1993);

- Европейский патент на изобретение ЕР 0697051 В1 (опубликован 20.04.1994);

- международная заявка на изобретение WO 2004/013427 А1 (опубликована 12.02.2004);

- патент РФ на изобретение RU 2042547 (опубликован 27.08.1995).

Приведенные выше известные шумопонижающие технические устройства, наряду с достигаемыми удовлетворительными акустическими характеристиками, реализующимися в области средних и высоких частот звукового диапазона, тем не менее характеризуются определенной потерей потенциальных шумозаглушающих свойств, вследствие образования скачкообразного изменения (перепада) волнового акустического сопротивления на плоской границе размежевания (раздела) упругих слоистых сред распространения звуковых волн в рассматриваемой зоне воздушной среды, примыкающей к твердой плосколистовой слоистой структуре, с отличающимися значениями волновых акустических сопротивлений, в составе примыкающей воздушной среды, как в виде твердотелой плоской стенки перфорированной лицевой панели, так и плосколистовой структуры пористого звукопоглощающего вещества. Это вызывает не только соответствующую потенциальную потерю звукопоглощающего эффекта, но и содержащиеся отверстия перфорации, распределенные по всей твердотелой поверхности плоской стенки, вызывают также и определенную потерю звукоизолирующих (в частности, звукоотражающих) свойств указанной многослойной структуры стеновой перегородки в целом. Также, имеет место относительная дороговизна применяемых в такого типа конструкциях полимерных пористых звукопоглощающих веществ производимых, преимущественно, из невозобновляемого дорогостоящего углеводородного сырья (нефти, газа). Также они (полимерные материалы) характеризуются достаточно сложными, трудоемкими и «экологически грязными» проблемами как их производства, так и конечной утилизации различного вида разнородных конструкционных материалов, используемых в составе деталей и узлов указанного типа шумопонижающих технических устройств, после завершения ими своего жизненного цикла.

Для повышения шумопонижающих свойств подобного вида конструкций, путем обеспечения более плавного (не резкого скачкообразного) согласования волновых акустических сопротивлений, на путях распространения звуковых волн, в граничных зонах разделения упругой воздушной среды распространения звуковых волн, включающих граничные зоны контактирования внешней твердооболочковой поверхности панели технического устройства с внешней и с внутренней полостной зонами примыкания воздушной среды, контурам внешней оболочки (стенки) лицевой акустической панели придается неплоская гофровидная геометрическая форма (клинообразная, волнообразная, кулисообразная), как это, в частности, представлено в следующих известных технических устройствах:

- патенте РФ на изобретение RU 2249258 (опубликован 27.09.2004);

- патенте США на изобретение US 4097633 (опубликован 27.06.1978);

- заявке Германии на изобретение DE 4237513 (опубликована 07.11.1992);

- заявке США на изобретение US 2003207086 (опубликована 11.06.2003);

- Европейском патенте на изобретение ЕР 0253376 А2 (опубликован 20.01.1988);

- патенте РФ на изобретение RU 2161825 (опубликован 10.01.2001);

- заявке Австралии на изобретение AU 2007100636 (опубликована 16.08.2007).

Вышеприведенные шумопонижающие конструкции технических устройств характеризуются, в первую очередь, существенным усложнением их технологического исполнения и относительно высокой стоимостью, при реализуемой недостаточно высокой звукоизолирующей способности (из-за наличия выделяющихся «звукоизолирующих провалов» в отдельных звуковых частотных диапазонах характеристики заглушения звуковой энергии, вследствие образования собственных «паразитных» полостных воздушных акустических резонансов), а также вынужденным сопутствующим возникающим сокращением («вытеснением») полезного рабочего объема технического помещения, усложнением процессов их эксплуатационного обслуживания (очистки, мойки).

Еще одним известным техническим направлением совершенствования конструкций технических устройств ослабления распространения негативной («паразитной») звуковой энергии, генерируемой виброшумоактивными техническими объектами, смонтированными в технических помещениях, связанным с увеличением доли поглощенной звуковой энергии, является выполнение в передней лицевой панели технического устройства, непосредственно воспринимающей падающие звуковые волны, отверстий перфорации с заданными узкими технологическими допусками геометрических форм и определенных габаритных размеров. Такого типа шумопонижающие технические устройства известны из следующих патентных документов:

- патента Германии на изобретение DE 4315759 С1 (опубликован 11.05.1993);

- патента США на изобретение US 6194052 В1 (опубликован 20.06.1998);

- Европейского патента на изобретение ЕР 1146178 А2 (опубликован 15.03.2001);

- Европейского патента на изобретение ЕР 1950357 А1 (опубликован 30.07.2000);

- заявки США на изобретение, US 2007/0272472 А1 (опубликована 29.11.2007);

- международной заявки на изобретение WO 2006/101403 А1 (опубликована 28.09.2006);

- заявки США на изобретение US 2007/0151800 А1 (опубликована 05.06.2007).

Указанные шумопонижающие технические устройства могут характеризоваться улучшенными эксплуатационными и декоративными (улучшенным внешним дизайном) свойствами. Однако, их шумопонижающие свойства являются, тем не менее, недостаточно высокими ввиду используемого ограниченного потенциала улучшения эффективности конструктивной модификации технического устройства, базирующейся исключительно на рационализации геометрических форм отверстий перфорации. Также их производство связано с необходимостью применения более сложного высокотехнологического оборудования, обеспечивающего соблюдение узких технологических допусков на изготовление.

Известны шумопонижающие технические устройства, выполненные в виде составных узловых (модульных) звукоизолирующих ограждений, конструктивные элементы которых комбинировано сочетают в себе несколько технических приемов (реализуемых нескольких физических эффектов), позаимствованных из рассмотренных выше группировок известных технических устройств, позволяющие в той или иной степени (в том или ином частотном диапазоне, с тем или иным шумозаглушающим эффектом) целенаправленно улучшать их акустические свойства. Такого типа комбинированные гибридные шумопонижающие технические устройства описаны в следующих патентных документах:

- патенте РФ на изобретение RU 2295089 (опубликован 10.03.2007);

- патенте Франции на изобретение FR 2929749 (опубликован 09.10.2009);

- патенте Великобритании на изобретение GB 822954 (опубликован 04.11.1959);

- патенте РФ на изобретение RU 2340478 (опубликован 10.12.2008);

- заявке Японии на изобретение JP 2002175083 (опубликована 21.06.2002).

Недостатками представленных выше шумопонижающих технических устройств является их более высокая конструктивная сложность и технологическая трудоемкость изготовления, при достигаемых в ряде случаев недостаточно высоких (неудовлетворительных) экологических и стоимостных показателях. Также имеют место недостаточные потенциалы дополнительного улучшения их шумозаглушающих характеристик в низкочастотном диапазоне звуковых частот, являющимся наиболее интенсивным и актуальным в решении типичных проблем уменьшения шума машин и оборудования.

Известно техническое решение по патенту РФ на изобретение №2465390, опубликованном 20.01.2011, в котором описана конструкция звукоизолирующего ограждения, выполненного в виде автономного шумопонижающего экрана, содержащего в своем составе несущие элементы типа поперечных стоек и продольных профилей, а также соответствующего типа шумопоглощающий элемент, расположенный с заданным воздушным зазором в полости между тыльной звукоотражающей панелью и перфорированной сквозными отверстиями лицевой звукопрозрачной панелью, при этом указанный шумопоглощающий элемент содержит несущую основу листового перфорированного или сетчатого типа, закрепленную механическими крепежными элементами к горизонтальным профилям и/или основанию шумопонижающего экрана, футерованную, по крайней мере, с одной из ее сторон, обособленными звукопоглощающими панелями, представляющими совокупность дробленых фрагментов пористых волокнистых или вспененных открытоячеистых звукопоглощающих материалов, которые определенным образом распределены и неподвижно закреплены на поверхности несущей основы, с образованием соответствующих воздушных зазоров между ними. По крайней мере, со стороны размещения обособленных звукопоглощающих панелей, поверхность шумопонижающего элемента футерована слоем звукопрозрачной газовлагонепроницаемой пленки или ткани. Недостатком анализируемого известного технического решения является ограниченная возможность его эффективного использования, осуществляемого преимущественно не внутри замкнутых ограниченных объемов технических помещений, а на открытых пространствах окружающей среды для защиты селитебных территорий населенных пунктов от негативного акустического излучения, распространяющегося со стороны шумогенерирующих технических объектов - транспортных средств и промышленного оборудования, устанавливаемых вблизи автомобильных и железных дорог, аэродромов, открытых участков линий метрополитена, испытательных полигонов, шумоактивных строительных и производственных площадок, или каких-либо других пространственно распределенных источников повышенного шумового излучения, производящих интенсивное акустическое загрязнение окружающей среды. Это обуславливает, в частности, необходимость использования в составе такого типа звукоизолирующего ограждения дополнительных несущих и опорных элементов (фундамента, опорного основания, поперечных стоек и продольных профилей), что существенно усложняет проблему использования указанной шумопонижающей конструкции, приводит к увеличению ее весо-габаритных параметров и стоимости. Одновременно с этим, применение несущей основы в виде плосколистовой геометрической формы, закрепляемой в вертикальном положении на горизонтальных профилях или основании, усложняет технологический процесс последующего размещения обособленных звукопоглощающих панелей, а также затрудняет выполнение звукоизолирующего ограждения сложной пространственной геометрической формы. Ограниченный выбор габаритных размеров и геометрических форм, физико-механических параметров, при необходимости соблюдения заданных величин воздушных зазоров между отдельными образцами дробленных фрагментов обособленных звукопоглощающих панелей, предопределяет недостаточно эффективное поглощение звуковой энергии, реализующееся в условиях диффузного звукового поля закрытых помещений и отмечается в зауженном рабочем частотном диапазоне, характерном только для пространственно распределенных локальных излучателей звуковой энергии в условиях свободного звукового поля типа движущихся на открытых пространствах потоков автотранспортных средств (легковых и грузовых автомобилей, автобусов) или средств железнодорожного транспорта. Использование такого типа конструкции звукоизолирующего ограждения, выполняемого в виде автономного шумопонижающего экрана (нескольких составных конструкций, для последующего размещения внутри технического помещения, в зонах его ограждающих стеновых и потолочных конструкций), существенно уменьшит (загромоздит) его полезное рабочее пространство, ухудшит процесс технологического обслуживания смонтированного в нем производственно-технологического и инженерно-технического оборудования.

Известным и используемым в, технике (архитектурной акустике) техническим приемом частичного исключения (частичного ослабления) развития физического процесса формирования выраженных полуволновых акустических резонансов упругих тел воздушных объемов, представленных внутренними трехмерными воздушными полостями помещений, является применение специализированного по конструктивному исполнению технического помещения, представленного в виде соответствующего измерительного акустического инструментария, выполненного в виде измерительной реверберационной камеры, как это описано, в частности в [1, 2, 3]:

[1] - ASTM с 423-02а. Standart Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. American Society for Testing and Materials International. - West Conshohocken. - 2002. - 11 p.;

[2] - ГОСТ 31274-2004 (ИСО 3741:199) «Шум машин. Определение уровней звуковой мощности по звуковому давлению. Точные методы для реверберационных камер».

[3] - ГОСТ 31704-2011 (ISO 354:2003) «Материалы звукопоглощающие. Метод измерения звукопоглощения в реверберационной камере».

Габаритные размеры и геометрические формы измерительной реверберационной камеры, соотношения ее составных габаритных размеров и физические характеристики ее стеновых конструкций позволяют в определенной степени исключать (частично ослаблять) развитие физического процесса формирования синфазного резонансного сложения полудлин звуковых волн λ/2), возбуждаемых внутри воздушной полости измерительной реверберационной камеры исследуемым шумогенерирующим источником звука (или калиброванным звуковым излучателем), предотвращая тем самым образование выраженных резонирующих собственных акустических мод воздушного объема помещения измерительной реверберационной камеры. Таким образом, это позволяет из состава диффузного акустического поля внутренней воздушной полости такого типа технического помещения частично исключать (частично ослаблять) развитие физического процесса формирования выраженной неравномерной пространственной плотности распределения интенсивности звуковой энергии, локализирующейся в воздушной полости измерительной реверберационной камеры. Такого типа измерительные реверберационые камеры имеют ограниченное применение и используются в области акустических измерений образцов акустических материалов, а также применяются для исследований звукопоглощающих характеристик конструкций деталей, узлов и систем машин, выполняемых в условиях диффузного (реверберационного) звукового поля. В нормативных требованиях, приведенных в [1, 2, 3], даны указания по соответствующим принципам проектирования конструкций измерительных реверберационных камер, предъявляющие требования к объему (габаритным размерам) и геометрической форме ее воздушной полости, физическим характеристикам используемых стеновых конструкций, исключающих негативное развитие физических процессов формирования резонансно выраженных пространственных зон неравноплотного распределения интенсивности звуковой энергии, а также исключения процесса звукопоглощения, производимомго ограждающими поверхностями стеновых конструкций и дверным проемом измерительной реверберационной камеры. Однако, альтернативное использование такого типа оригинальных конструкций измерительных реверберационных камер, в качестве возможных типичных вариантных исполнений низкошумных технических помещений, с частично устраненными полуволновыми акустическими резонансами, существенно усложняет и удорожает конструкции типичных технических помещений, предназначенных для последующего монтажа в них шумогенерирующих технических объектов (ШГТО) при их проектировании, строительстве и последующей эксплуатации. Очевидным недостатком такого типа технических помещений, выполненных в виде измерительных реверберационных камер, является также неудовлетворительное (неполное и неудобное в эксплуатации) использование их полезного рабочего пространства, ввиду выполняемых в них непараллельных противолежащих поверхностей стеновых ограждений, пола и потолочного перекрытия (потолка). Более того, в ряде случаев, для обеспечения требуемой диффузности звукового поля (равномерной пространственной плотности распределения звукового давления по объему помещения измерительной реверберационной камеры), использование свободного рабочего пространства помещения затруднено применяемыми в воздушной полости измерительной реверберационной камеры монтируемых в ней дополнительных рефлекторных экранных элементов, дополнительно выравнивающих пространственную плотность распределения интенсивности звуковой энергии в воздушной полости измерительной реверберационной камеры, что связано с нежелательным дополнительным загромождением ее полезного рабочего пространства.

Известно техническое решение по патенту РФ на изобретение №2579104, опубликованном 20.12.2015, принимаемое в качестве ПРОТОТИПА, в котором представлено зашумленное техническое помещение, оборудованное звукоизолирующей зашивкой, выполненной в виде звукоизолирующей лицевой плосколистовой и/или звукоизолирующей формованной неплоской панели, зазорно монтируемой относительно поверхности оппозитно расположенной несущей стеновой (потолочной) конструкции технического помещения, с образованием соответствующих замкнутых воздушных полостей. При этом, к указанным звукоизолирующим лицевым панелям и/или несущим стеновым (потолочным) конструкциям технического помещения соответствующим образом закреплены четвертьволновые акустические резонаторы RI и/или полуволновые акустические резонаторы RII, частотно настроенные и температурно адаптированные на подавление в образованных воздушных полостях возникающих воздушных акустических резонансов, формирующихся на их собственных поперечных, продольных и повысотных акустических модах. Функцию частичного по эффективности подавления амплитудных значений собственных акустических резонансов в воздушных полостях, образуемых между оппозитно расположенными стенками звукоизолирующей лицевой панели звукоизолирующей зашивки и несущей стеновой (потолочной) конструкцией технического помещения, выполняют обособленные брикетированные звукопоглощающие модули, составленные из дробленных пористых звукопоглощающих веществ, соответствующим образом размещаемые в заданных.пространственных зонах воздушных полостей.

Недостатком известного технического решения, представленного в прототипе, является сложность его технологического исполнения, а также высокая стоимость, трудоемкость монтажа и технического обслуживания, обусловленная, в первую очередь, необходимостью отдельного монтажа различного типа шумоподавляющих конструктивных элементов (четвертьволновых акустических резонаторов RI и/или полуволновых акустических резонаторов RII), с использованием соответствующих крепежных элементов и отдельной лицевой панели. Применение лицевой панели в составе рассматриваемого технического решения вызывает соответствующее скачкообразное изменение (перепад) волнового акустического сопротивления на пути распространения звуковых волн. Кроме этого, следует отметить недостаточное (слабое) слабое использование механизма (физического эффекта) краевого дифракционного поглощения звуковой энергии, ввиду малого суммарного периметра краевых зон незначительного числа используемых брикетированных звукопоглощающих модулей, и/или отсутствия в пористой структуре брикетированных звукопоглощающих модулей сквозных отверстий перфорации, потенциально способных усиливать эффект дифракционного поглощения энергии распространения звуковых волн.

Заявляемое в качестве изобретения техническое устройство «Низкошумное техническое помещение» направлено на устранение выявленных и проанализированных недостатков аналогов и прототипа в отношении простоты его технической реализации, технологичности, экологичности, стоимости и эффективности функционирования, с обеспечением эффекта расширения частотного диапазона снижения уровня звукового излучения, производимого как самим ШГТО, установленным в техническом помещении, так и направленного на исключение (предотвращение) реализации развития физических процессов резонансного взаимодействия и усиления уровней звукового излучения, а также возникновения биений взаимодействующих акустических сигналов (звуковых волн) с близкими значениями частот звуковых колебаний fms и fmA, производимых находящимся в нем ШГТО (несколькими ШГТО) и осуществляемым им потенциально возможным динамическим возбуждением резонансных акустических колебаний массо-упругого тела воздушного объема, заключенного во внутренней трехмерной воздушной полости технического помещения. Необходимость предотвращения развития физического процесса биений взаимодействующих акустических сигналов (звуковых волн) с близкими значениями частот звуковых колебаний fms и fmA, вызвана целесообразностью исключения образующегося результирующего пульсирующего шумового сигнала с частотой нарастания и спада его уровней, равной разности значений взаимодействующих частот звуковых колебаний fms и fmA. Для рассматриваемого в материалах заявки актуального низкочастотного звукового диапазона излучения (см. фиг. 1-4), не превышающего 500 Гц, результирующий акустический сигнал указанных физических взаимодействий, проявляющийся в виде биений акустических сигналов, по субъективным восприятиям человеческого слуха воспринимается в виде резкого неприятного раздражающего воздействия, ухудшающего психо-физиологическое состояние человека и является отрицательным фактором обеспечения акустической безопасности окружающей среды.

На актуальность и возможные пути (способы, устройства) решения проблем уменьшения низкочастотных звуковых излучений на доминирующих значениях отдельных дискретных частотных составляющих fms, выделяющихся в широкополосных спектрах звуковых давлений различного типа ШГТО, эксплуатируемых (смонтированных) в составе технических помещений, в частности, - поршневых ДВС, механических редукторов, роторов, вентиляторных установок, электрогенераторов, электротрансформаторов, тягодутьевых машин, дымососов (осевого, центробежного типа), насосов и компрессоров (поршневых, центробежных) - указывается в известных информационных источниках [4…10], а также подтверждается результатами экспериментальных исследований авторов, приведенными на фиг. 1…4.

[4] - Helmut V. Fuchs. Schallabsorber und , Springer-Verlag Berlin Heidelberg, 2007 - 546 p.;

[5] - Н.И. Иванов. Инженерная акустика. Теория и практика борьбы с шумом. - М.: Логос, 2010. - 424 с.;

[6] - В.Б. Тупов. Снижение шума от энергетического оборудования. - М: Издательство МЭИ, 2005. - 232 с.;

[7] - Д.Ф. Лазароиу, Н.Л. Бикир. Шум электрических машин и трансформаторов. Перевод с рум., - М.: «Энергия», 1973. - 271 с.;

[8] - Борьба с шумом на производстве. Справочник. Под ред. Е.Я. Юдина, Машиностроение, М., 1985, 400 с.;

[9] - Справочник по контролю промышленных шумов. Перевод с англ. Л.Б. Скрябиной и Н.И. Шабановой, М., Машиностроение, 1979, 447 с.;

[10] - Справочник по технической акустике. Под ред. М. Хекла и Х.А. Мюллера. Л., Судостроение, 1980, 440 с.;

С учетом функционирующих постоянных (установившихся) скоростных и нагрузочных режимов работы указанных выше эксплуатируемых ШГТО, доминирующие дискретные низкочастотные составляющие fms, выделяющиеся в широкополосных спектрах звуковых давлений, также являются неизменными (с постоянными значениями частоты звука fms), как это следует из приведенных фиг.1, 2, 3, 4. Это относится, в частности, к ШГТО, представленным силовым электротрансформатором, с выделяющимися частотными гармониками f1s, f2s, f3s, равными 100, 200 и 300 Гц, кратными постоянному значению промышленной частоты сети переменного тока fc=50 Гц (см. фиг. 1 и 2). Аналогичным образом, это может относиться к постоянным установившимся значениям номинальных частот вращения ns (fms) валов поршневых машин (ДВС, компрессоров, насосов), электрогенераторов, механических или электрических вентиляторов, механических редукторов, а также к периодическим возвратно-поступательно движущимся неуравновешенным массам неуравновешенных сил и моментов кривошипно-шатунных механизмов поршневых машин (см., в частности, фиг. 3 и фиг. 4). Источниками (динамическими возбудителями) интенсивных звуковых излучений на указанных выделяющихся доминирующих дискретных составляющих fms, с формирующимися соответствующими акустическими полями, являются, в частности, пульсации газа (воздуха) в процессах всасывания воздуха в цилиндры поршневых машин, периодические динамические перемещения воздуха лопатками (лопастями) крыльчаток вентиляторов, динамические дисбалансы вращающихся валов, неуравновешенные силы и неуравновешенные моменты возвратно-поступательно движущихся масс поршневых машин (шатунно-поршневых масс кривошипно-шатунного механизма, коленчатого вала), знакопеременные динамические нагрузки рабочих процессов пересопряжения зубьев в зубчатых зацеплениях редукторных агрегатов, динамические знакопеременные электромагнитные и магнитострикционные силы различного типа электрических машин и установок. Числовые значения частот звуковых колебаний рассматриваемых доминирующих дискретных составляющих fms известны в виде конкретного результата (значения), определенного экспериментальным путем, выполненного с помощью соответствующей регистрирующей и анализирующей виброакустической аппаратуры (как это в качестве иллюстративных примеров приведено авторами на фиг. 1, 2, 3, 4), или известны в виде результата (значения), определенного расчетным путем, с учетом известных исходных данных - известного заданного постоянного установившегося скоростного (нагрузочного) эксплуатационного режима работы ns агрегата или системы и известных конструктивных характеристик (технических параметров) составных элементов рассматриваемого ШГТО (например, частоты вращения коленчатого вала, числа цилиндров и тактности рабочего процесса поршневой машины, частоты вращения и числа лопаток (лопастей) крыльчатки вентилятора, числа зубьев сопрягаемых зубчатых пар зубчатого зацепления при известной частоте вращения зубчатых колес, частоты сети переменного тока), как это определяется, в том числе и из известных, указанных выше, информационных источников [4…10].

Технический результат заявляемого устройства в виде изобретения заключается в обеспечении (повышении) акустической безопасности окружающей среды путем улучшения звукопоглощающих (шумопонижающих) характеристик используемого технического устройства, реализующихся, преимущественно, в актуальном низкочастотном звуковом диапазоне, при сопутствующем снижении широкополосного по частотному составу звукового излучения, генерируемого ШГТО. Заявляемое техническое устройство представлено низкошумным техническим помещением, оборудованным техническими средствами эффективного подавления, преимущественно, низкочастотного акустического излучения, генерируемого ШГТО, смонтированными в данном техническом помещении (фиг. 5…7). Данные технические средства (составные элементы технического устройства) предназначены, в первую очередь, для исключения (предотвращения) реализации развития физических процессов низкочастотного резонансного взаимодействия и последующего результирующего усиления уровней звукового давления, а также для предотвращения возникновения физических процессов биений взаимодействующих акустических сигналов (звуковых волн), имеющих достаточно близкие значения уровней звуковых давлений (УЗД) и частот звуковых колебаний fms и fmA, производимых находящимся в нем ШГТО (fms) и осуществляемым им возможным динамическим возбуждением резонансных реакций - откликов, проявляющихся в виде акустических колебаний массо-упругого тела воздушного объема, заключенного во внутренней трехмерной воздушной полости технического помещения (fmA). Технический результат достигается за счет соответствующего применения (монтажа с заданными воздушными зазорами) на стеновых и потолочных перекрытиях технического помещения соответствующих конструктивно-технологических исполнений обособленных цельноформованных комбинированных звукопоглощающих панелей, выполненных, преимущественно, из твердотелых веществ, характеризующихся пористой воздухопродуваемой дробленной звукопоглощающей структурой, в которых размещены (интегрированы) частотонастроенные полостные шумозаглушающие конструктивные элементы, представленные в виде четвертьволновых акустических резонаторов RIms (см. фиг. 8, 9, 10а, 10б, 11а, 11б, 11в, 12а, 12б, 12в, 13а, 13б, 14а, 14б, 15а, 15б, 16а, 16б, 17а, 17б, 18а, 18б, 19а, 19б).

Достигаемое, при этом, эффективное снижение уровня звуковой энергии реализуется в расширенном частотном диапазоне звукового спектра, включающем как низкочастотное, так и средне- и высокочастотное звуковое излучение, что обусловлено соответствующим конструктивно-технологическим комбинированным совмещением с параллельным функционированием составных технических элементов, предназначенных для частотно-настроенного подавления низкочастотной звуковой энергии (энергии распространяемых низкочастотных звуковых волн) на выделяющихся (доминирующих) в частотных спектрах шума слабозадемпфированных низкочастотных акустических резонансах, а также диссипативного поглощения используемым пористым дробленным воздухопродуваемым звукопоглощающим веществом, средне- и высокочастотной звуковой энергии. Физический эффект при этом базируется на реализуемых частотно настроенных звукоподавляющих процессах функционирующей акустической колебательной системы, возбуждаемой падающими на нее звуковыми волнами, которая избирательно поглощает акустическую энергию (преобразует ее в тепловую энергию) на звуковых частотах, близких (совпадающих) к собственной (резонансной) частоте колебаний fIR используемого четвертьволнового акустического резонатора RI. Одновременно с этим, параллельно, осуществляется высокоэффективное широкополосное (средне- и высокочастотное) звукопоглощение, производимое непосредственно веществом дробленной пористой воздухопродуваемой звукопоглощающей структуры (см. фиг. 20, 21). В физический процесс поглощения звуковой энергии при этом также эффективно включаются дополнительные звукопоглощающие поверхностные зоны, образованные свободными поверхностями граней каждого из обособленных дробленых фрагментированных звукопоглощающих элементов. Также имеет место возникновение дополнительных механизмов интенсификации физического процесса поглощения звуковой энергии, вызванных реализуемыми дифракционными диссипативными потерями, возникающими в зонах краевых граневых и реберных участков обособленных дробленых фрагментированных звукопоглощающих элементов, при прохождении и огибании их звуковыми волнами по сформированным, хаотично распределенным, сообщающимся извилистым разветвленным воздушным каналам, образованным неплотными прилегающимися и/или адгезивно сопрягающимися контактирующими ребрами и гранями обособленных дробленых фрагментированных звукопоглощающих элементов, наряду с реализующимися типичными физическими процессами звукопоглощения, осуществляемыми непосредственно пористыми структурами звукопоглощающих веществ каждого из обособленных дробленых фрагментированных звукопоглощающих элементов. Образованные в структурах обособленных цельноформованных комбинированных звукопоглощающих панелей пустотелые объемные тупиковые трубчатые полости четвертьволновых акустических резонаторов R1, ограниченные звукопрозрачными воздухонепродуваемыми пленочными эластичными оболочками, способствуют формированию анизотропной акустической структуры обособленной цельноформованной комбинированной звукопоглощающей панели, усиливающей (интенсифицирующей) физические процессы диссипативного поглощения звуковой энергии (см. фиг. 11а, 11б, 11в, 12а, 12б, 12в, 13а, 13б, 14а, 15а, 15б, 16а, 16б, 17а, 17б, 18а, 18б, 19а, 19б, 20, 21). Также дополнительное краевое дифракционное диссипативное поглощение звуковой энергии возникает и в процессах огибания падающими звуковыми волнами периметрических зон полостных горловых частей четвертьволновых акустических резонаторов RI (как это показано на фиг. 21, 24) и свободных торцевых граней обособленных цельноформованных комбинированных звукопоглощающих панелей при их узкощелевом зазорном размещении друг относительно друга (см. схемы на фиг 6, 7, 8, 9, 10а, 10б, 23, 25.).

Этим же физическим явлениям (формированию акустической анизотропии, улучшающей диссипативное поглощение звуковой энергии) может способствовать и преднамеренное дополнительное введение в состав дробленного звукопоглощающего вещества, составленного из пористых воздухопродуваемых звукопоглощающих материалов, представленных обособленными дробленными фрагментированными пористыми звукопоглощающими элементами, соответствующих по структурному составу, геометрическим формам и габаритам дробленных фрагментов, выполненных из плотных (непористых) воздухонепродуваемых полимерных веществ (см. фиг. 22). При этом, может соблюдаться их заданный ограниченный количественный дозированный состав, при необходимом осуществляемом соответствующем объемном распределении в образуемой смеси разнородных (пористых и непористых) дробленных фрагментов. Аналогичного типа физический эффект диссипационного рассеивания звуковой энергии в краевых (концевых) зонах огибания звуковыми волнами встречных твердотелых препятствий, имеет место при их огибании жесткого звукоотражающего донышка донной части четвертьволнового акустического резонатора RI, как это показано на фиг. 21. Монтажная установка обособленных цельноформованных комбинированных звукопоглощающих панелей с узкощелевыми воздушными зазорами между противолежащими торцевыми частями обуславливает реализацию диссипативного дифракционного поглощения звуковой энергии их свободными краевыми зонами пористой звукопоглощающей структуры, при их свободном огибании распространяемыми звуковыми волнами (см. фиг. 23).

В результате достижения более высоких результирующих звукопоглощающих эффектов, в ряде случаев это позволяет, при необходимости, уменьшить количество используемого пористого звукопоглощающего вещества, при удовлетворении заданной (определенной техническим заданием на разработку или техническими условиями на изготовление) требуемой величины эффекта шумозаглушения. По аналогичным причинам, возможно применение более дешевого и экологичного исходного полуфабрикатного сырья для получения звукопоглощающего материала (далее - ЗПМ), производимого из производственно-технологических отходов, производственного брака, или демонтированных пористых звукопоглощающих структур материалов, содержащихся в составе шумоизоляционных пакетов технических объектов, завершивших свой жизненный цикл и вынужденно подвергаемых утилизации. В конечном итоге, это способствует улучшению безопасностных экологических характеристик производимого заявляемого технического устройства (и сопутствующему «оздоровлению» окружающей среды), реализующегося за счет уменьшения количества непродуктивно утилизируемых звукопоглощающих веществ, вынужденно подвергаемых, в том числе, процессам захоронения (например, в виде демонтированных шумопонижающих пакетов, входящих в состав деталей и узлов АТС, завершивших свой жизненный цикл), которые не допускают их непосредственной энергетической утилизации путем сжигания, вследствие выделения вредных и опасных продуктов сгорания и/или разрушающих, в том числе, озоновый слой (выбросами СО2). Это в еще большей степени актуализирует экономическую и экологическую эффективность и целесообразность применения технических устройств, использующих утилизируемые отходы в качестве сырьевого продукта, выполненных согласно заявляемого технического решения (изобретения). Также в этих случаях более продуктивно реализуется экономное замещающее ресурсо-энергосбережение невозбновляемых углеводородных сырьевых материалов (нефти, природного газа), в меньших количествах расходуемых на первоначальное (исходное) производство из них синтетических звукопоглощающих материалов.

В качестве исходного полуфабрикатного сырья, используемого для изготовления обособленных дробленых фрагментированных звукопоглощающих элементов, могут применяться продукты вторичной рециклированной утилизационной переработки технологических отходов и технологического брака производства волокнистых, вспененных открытоячеистых ЗПМ и/или технологических отходов и брака производства различного типа деталей из ЗПМ. Также в состав исходного полуфабрикатного сырья включаются уже произведенные соответствующие детали (панели, обивки, прокладки - из пористых ЗПМ), отобранные из состава демонтированных пакетов шумоизоляции разнообразных технических объектов типа шумоактивных средств транспорта (автомобильного, железнодорожного, авиационного, тракторов, комбайнов, передвижной коммунальной и дорожно-строительной техники, и т.п.), и/или других шумогенерирующих агрегатов и систем энергетических установок (стационарных ДВС, стационарных и передвижных компрессорных установок и т.п.), и/или используемых в различного типа строительных объектах (звукотеплоизоляционные волокнистые или вспененные открытоячеистые облицовочные панели для стеновых футеровок, межэтажных перекрытий, лифтовых шахт, вентиляционных систем). В конечном итоге, это позволяет уменьшать стоимость производимого технического устройства и обеспечивает снижение загрязнения окружающей среды уже образованными отходами производства и накопившимися неиспользованными продуктами утилизации акустических материалов. Тем самым, это способствует улучшению экологических характеристик устройства, в том числе и за счет уменьшения количества звукопоглощающих веществ подлежащих вынужденному захоронению (например, шумопонижающих пакетов в составе деталей АТС, отслуживших свой срок), которые не допускают их непосредственной энергетической утилизации путем сжигания. Для управляемого упрощения осуществления технологических операций механического дробления (вырубки/нарезки) и их последующего объемного распределения с обеспечением заданного дозирования по структурному составу и весогабаритным параметрам, в отдельных случаях в качестве исходного полуфабрикатного сырья, используемого для изготовления обособленных цельноформованных комбинированных звукопоглощающих панелей низкошумного технического помещения, могут также использоваться произведенные «новые» обособленные дробленые фрагментированные звукопоглощающие элементы. Под термином «новые» подразумеваются дробленные фрагментированные звукопоглощающие элементы, произведенные из «нового» (не утилизируемого) сырья, например, из полуфабриката плосколистового типа (плоских листов или рулонов ЗПМ). Могут использоваться также комбинированные смеси, задаваемые в определенных пропорциях дозированных сочетаний обособленных дробленых фрагментированных звукопоглощающих элементов, полученных из рециклированных утилизационных материалов деталей и узлов, в состав которых добавляется определенное количество произведенных «новых» обособленных дробленых фрагментированных звукопоглощающих элементов заданных геометрических форм и габаритных размеров, изготовленных из «нового» исходного полуфабрикатного сырья производства пористых ЗПМ (листового, рулонного). В ряде случае, это позволяет более гибко управлять конечными физическими (акустическими) параметрами образуемой смешанной комбинированной структурной массы звукопоглощающего вещества (акустическими, весовыми, плотностными, жесткостными, эксплуатационными), осуществляемыми за счет введения в необходимых пропорциях в него заданной количественной дозированной добавки «новых» обособленных дробленых фрагментированных звукопоглощающих элементов, характеризуемых более узкими полями разброса акустических параметров пористого звукопоглощающего вещества. Тем самым могут быть реализованы технологические процедуры, в той или иной требуемой мере, улучшающие физические (акустические) характеристики структуры обособленных цельноформованных комбинированных звукопоглощающих панелей в составе заявляемого низкошумного технического помещения.

Сравнение научно-технической и патентной документации на дату приоритета в основной и смежной рубриках МКИ показывает, что совокупность существенных признаков заявленного технического решения ранее не была известна, следовательно, оно соответствует условию патентоспособности «новизна».

Анализ известных технических решений в данной области техники показал, что заявляемое устройство низкошумного технического помещения имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический результат, следовательно, предложенное техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.

Предложенное техническое решение промышленно применимо, т.к. может быть изготовлено промышленным способом, работоспособно, осуществимо и воспроизводимо, следовательно, соответствует условию патентоспособности «промышленная применимость».

Особенности и преимущества заявляемого изобретения станут понятны из представленных чертежей и следующего детального описания устройства, где:

- на фиг. 1 приведены экспериментальные результаты измерений спектра звукового давления (FFT-спектра), излучаемого ШГТО 9, представленным электротрансформаторной подстанцией закрытого типа (ЭТПЗТ), размещенной в техническом помещении 1 подвального этажа здания испытательного центра промышленного предприятия. Измерительный микрофон располагался вне технического помещения 1 на высоте 1,2 м от поверхности его пола, на расстоянии 1 м от перекрытого входной дверью 6 дверного проема 5 технического помещения 1 ЭТПЗТ;

- на фиг. 2 приведены экспериментальные результаты измерений спектра звукового давления (1/3 октавного спектра), излучаемого ШГТО 9, представленным силовым электротрансформатором типа 3МК 260-1 фирмы PLATTHAUS (Германия), расположенным в техническом помещении 1 испытательного центра промышленного предприятия. Измерительный микрофон располагался внутри технического помещения 1 на расстоянии 0,5 м от корпуса электротрансформатора, на высоте 1,2 м от поверности пола 4 технического помещения 1;

- на фиг. 3 приведены экспериментальные результаты измерений спектра звукового давления (1/3 октавного спектра), излучаемого ШГТО 9, представленным промышленным вентилятором типа Аксипал FTDA-050-3 (Россия), смонтированном в техническом помещении 1, представленным помещением испытательной акустической лаборатории испытательного центра промышленного предприятия. Измерительный микрофон располагался внутри технического помещения 1 по оси вращения рабочего колеса вентилятора на расстоянии 0,25 м от поверхности его ступицы;

- на фиг. 4 приведены экспериментальные результаты измерений спектра звукового давления (1/3 октавного спектра), излучаемого ШГТО 9, представленным поршневым компрессором фирмы STAL (Швеция), смонтированным внутри технического помещения 1, представленного компрессорно-холодильной станцией испытательного центра промышленного предприятия. Измерения проводились внутри технического помещения 1, на расстоянии 3 м от поверхности стенки передней части корпуса компрессора, на высоте 1,2 м от поверхности пола 4 технического помещения 1;

- на фиг. 5 приведено схематичное изображение технического помещения 1 и базовых направлений и путей передачи воздушного и структурного шума, излучаемого ШГТО 9, смонтированным в замкнутом (закрытом) техническом помещении 1;

- на фиг. 6 представлен иллюстративный конкретизированный пример технического помещения 1 с установленным в нем ШГТО 9, представленным в виде силового электротрансформатора, со смонтированными на ограждающих стеновых (поз. 2) и потолочных 3 (на фиг. - не показана) перекрытиях обособленными цельноформованными комбинированными звукопоглощающими панелями 10, с интегрированными в их пористую структуру четвертьволновыми акустическими резонаторами RIms (поз. 11), сформированными с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29;

- на фиг.7 представлен иллюстративный пример технического помещения 1 с установленным в нем ШГТО 9, представленным в виде дизель-генераторной установки, со смонтированными на ограждающих стеновых (поз. 2) и потолочных 3 (на фиг. - не показана) перекрытиях обособленными цельноформованными комбинированными звукопоглощающими панелями 10, с интегрированными в их пористую структуру четвертьволновыми акустическими резонаторами RIms (поз. 11), сформированными с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29;

- на фиг. 8 схематично изображен фрагмент стенового ограждающего перекрытия (поз. 2) технического помещения 1 со смонтированными на его поверхности обособленными цельноформованными комбинированными звукопоглощающими панелями 10, установленными с узкощелевыми воздушными дистанционными зазорами γ между их противолежащими торцевыми поверхностями;

- на фиг. 9 схематично представлен фрагмент стенового ограждающего перекрытия (поз. 2) технического помещения 1 со смонтированными обособленными цельноформованными комбинированными звукопоглощающими панелями 10, установленными с дистанционным воздушным зазором k относительно поверхности стенового перекрытия (поз. 2);

- на фиг. 10а схематично представлено стеновое ограждение (перекрытие) 2 технического помещения 1 с выполненным комбинированным, без взаимного перекрытия, монтажем обособленных цельноформованных комбинированных звукопоглощающих панелей 10, смонтированных беззазорно, непосредственно на поверхности стенового перекрытия (поз. 2) технического помещения 1, и установленных с заданным воздушным дистанционным зазором k относительно противолежащей поверхности стенового ограждения (перекрытия), поз. 2;

- на фиг. 10б схематично представлено стеновое ограждение (перекрытие) 2 технического помещения 1 с выполненным комбинированным, с взаимным перекрытием, монтажем обособленных цельноформованных комбинированных звукопоглощающих панелей 10, смонтированных беззазорно, непосредственно на поверхности стенового перекрытия (поз. 2) технического помещения 1, и установленных с заданным воздушным дистанционным зазором k относительно противолежащей поверхности стенового ограждения (перекрытия), поз. 2, футеровка из обособленных цельноформованных комбинированных звукопоглощающих панелей 10 перекрыта звукопрозрачной облицовочной защитно-декоративной перфорированной панелью 25;

- на фиг. 11а представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в горизонтальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10 посредством использования соответствующих подвесных узлов, смонтированных на горизонтальной поверхности потолка 3 технического помещения 1, выполненных в виде соответствующего типа дистанционных механических крепежных элементов 12;

- на фиг. 11б представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в горизонтальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10 посредством использования соответствующих подвесных узлов, смонтированных на горизонтальной поверхности потолка 3 технического помещения 1, выполненных в виде соответствующего типа подвесных тросовых элементов 13, соединенных с внешней несущей звукопрозрачной оболочкой 19;

- на фиг. 11в представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в горизонтальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10 посредством использования соответствующих подвесных узлов, смонтированных на горизонтальной поверхности потолка 3 технического помещения 1, выполненных в виде соответствующего типа подвесных тросовых элементов 13, соединенных с закладным армирующим звукопрозрачным элементом 24 обособленной цельноформованной комбинированной звукопоглощающей панели 10;

- на фиг. 12а представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в вертикальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10 посредством использования соответствующего типа монтажных шипов 14, проходящих через структуру сплошного несущего опорного основания 22;

- на фиг. 12б представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в вертикальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10 посредством использования соответствующего типа монтажной рамки 15, удерживающей обособленную цельноформованную комбинированную звукопоглощающую панель 10 в верхней и нижней части;

- на фиг. 12в представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в вертикальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10 посредством использования соответствующего типа монтажных упругих (виброизолирующих) элементов 16, интегрированных в структуру внешней тонкостенной звукопрозрачной оболочки 19;

- на фиг. 13а представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в вертикальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10, посредством использования соответствующего типа монтажных профилей 17, закрепленных на монтажной поверхности посредством механических крепежных элементов;

- на фиг. 13б представлен пример возможного конструктивно-технологического исполнения технических средств закрепления в горизонтальном положении обособленных цельноформованных комбинированных звукопоглощающих панелей 10, посредством использования соответствующего типа монтажных профилей 17, закрепленных на монтажной поверхности посредством механических крепежных элементов;

- на фиг. 14а изображено продольное сечение обособленной цельноформованной комбинированной звукопоглощающей панели 10, в пористой воздухопродуваемой звукопоглощающей структуре которой, составленной из обособленных дробленных фрагментированных звукопоглощающих элементов 18, интегрированы тупиковые трубчатые, круглого поперечного сечения, полостные четвертьволновые акустические резонаторы RIms (поз. 11), сформированные с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29;

- на фиг. 14б изображен вид сбоку на торцевую грань обособленной цельноформованной комбинированной звукопоглощающей панели 10 со стороны горловой части 30 (поз. 29) четвертьволнового акустического резонатора RIms (поз. 11), трубчатая часть 28 которого выполнена в виде кругового цилиндра, обособленная цельноформованная комбинированная звукопоглощающая панель 10 составлена из двух соединенных адгезионным покрытием 26 сопрягаемыми поверхностями составных модулей 27;

- на фиг. 15а изображено продольное сечение обособленной цельноформованной комбинированной звукопоглощающей панели 10, в пористой воздухопродуваемой звукопоглощающей структуре которой, составленной из обособленных дробленных фрагментированных звукопоглощающих элементов 18, интегрированы тупиковые трубчатые, прямоугольного поперечного сечения, полостные четвертьволновые акустические резонаторы RIms (поз. 11), сформированные с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29;

- на фиг. 15б изображен вид сбоку на торцевую грань обособленной цельноформованной комбинированной звукопоглощающей панели 10 со стороны горловой части 30 (поз. 29) четвертьволнового акустического резонатора RIms (поз. 11), трубчатая часть 28 которого выполнена в виде прямоугольного цилиндра, обособленная цельноформованная комбинированная звукопоглощающая панель 10 составлена из двух соединенных адгезионным покрытием 26 сопрягаемыми поверхностями составных модулей 27;

- на фиг. 16а изображено продольное сечение обособленной цельноформованной комбинированной звукопоглощающей панели 10, в пористой звукопоглощающей структуре которой, составленной из обособленных дробленных фрагментированных звукопоглощающих элементов 18, интегрированы тупиковые трубчатые, полостные элементы, в виде круговых и прямоугольных цилиндров, сформированных с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29, образующих четвертьволновые акустические резонаторы RIms (поз. 11), отличающиеся частотной резонансной настройкой (параметром fIRms), определяемой их геометрической lIr и динамической lIR длинами;

- на фиг. 16б изображен вид сбоку на торцевую грань обособленной цельноформованной комбинированной звукопоглощающей панели 10 со стороны горловой части 30 (поз. 29) четвертьволнового акустического резонатора RIms (поз. 11), трубчатая часть 28 которого выполнена в виде кругового и прямоугольного цилиндра, обособленная цельноформованная комбинированная звукопоглощающая панель 10 составлена из двух соединенных адгезионным покрытием 26 сопрягаемыми поверхностями составных модулей 27;

- на фиг. 17а изображено продольное сечение обособленной цельноформованной комбинированной звукопоглощающей панели 10, в пористой воздухопродуваемой звукопоглощающей структуре которой, составленной из обособленных дробленных фрагментированных звукопоглощающих элементов 18, интегрированы тупиковые трубчатые, полостные элементы, сформированные с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29, выполненные в виде негладкой (шероховатой) поверхности стенки образуемой полости трубчатой части 28 четвертьволнового акустического резонатора RIms (поз. 11);

- на фиг. 17б изображен вид сбоку на торцевую грань обособленной цельноформованной комбинированной звукопоглощающей панели 10 со стороны горловой части 30 (поз. 29) четвертьволнового акустического резонатора RIms (поз. 11), трубчатая часть 28 которого выполнена в виде кругового цилиндра, обособленная цельноформованная комбинированная звукопоглощающая панель 10 составлена из двух соединенных адгезионным покрытием 26 сопрягаемыми поверхностями составных модулей 27;

- на фиг. 18а изображено продольное сечение обособленной цельноформованной комбинированной звукопоглощающей панели 10, в пористой воздухопродуваемой звукопоглощающей структуре которой, составленной из обособленных дробленных фрагментированных звукопоглощающих элементов, интегрированы тупиковые трубчатые, полостные элементы, сформированные с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29, в виде шести (трех пар) четвертьволновых акустических резонаторов RIms (поз. 11), отличающихся частотной резонансной настройкой (параметром fIRms), определяемой их геометрической lIr и динамической lIR длинами, с оппозитным расположением пар открытых горловых частей (поз. 30), расположенных в противоположных торцевых гранях 32, и общими жесткими звукоотражающими донышками донной части 29 в составе обособленной цельноформованной комбинированной звукопоглощающей панели 10;

- на фиг. 18б изображен вид сбоку на торцевую грань обособленной цельноформованной комбинированной звукопоглощающей панели 10 со стороны горловой части 30 (поз. 29) четвертьволнового акустического резонатора RIms (поз. 11), трубчатая часть 28 которого выполнена в виде кругового цилиндра, обособленная цельноформованная комбинированная звукопоглощающая панель 10 составлена из двух соединенных адгезионным покрытием 26 сопрягаемыми поверхностями составных модулей 27;

- на фиг. 19а изображено продольное сечение обособленной цельноформованной комбинированной звукопоглощающей; панели 10, смонтированной на потолке 3 технического помещения 1, в структуре которой интегрированы вертикально расположенные тупиковые трубчатые, полостные четвертьволновые акустические резонаторы RIms (поз. 11), сформированные с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 и жесткого звукоотражающего донышка донной части 29, (открытые горловые части 30 трубчатых частей 28 четвертьволновых акустических резонаторов RIms направлены вниз, в сторону пола технического помещения 1);

- на фиг. 19б изображен вид сбоку на торцевую грань обособленной цельноформованной комбинированной звукопоглощающей панели 10, обособленная цельноформованная комбинированная звукопоглощающая панель 10 составлена из двух соединенных адгезионным покрытием 26 сопрягаемыми поверхностями составных модулей 27;

- на фиг. 20 представлено схематичное изображение реализации физического процесса частичной амплитудной интерференционной компенсацией падающей (Рпад) звуковой волны с отраженной (Ротр) звуковой волной в зоне горловой части 30 четвертьволнового акустического резонатора RIms (поз. 11), при варианте конструктивно-технологического исполнения его боковой стенки в виде несущей внутренней воздухонепродуваемой пленочной эластичной оболочки 20, обеспечивающей прохождение звуковой волны (Рпр) в структуру пористого звукопоглощающего вещества, составленного из обособленных дробленных фрагментированных звукопоглощающих элементов 18, с соответствующим эффектом поглощения части звуковой энергии падающей (Рпад) и отраженной Ротр звуковой волны;

- на фиг. 21 представлена схема реализации механизмов дифракционного поглощения энергии падающих звуковых волн на краевых периметрических зонах открытой горловой части 30 и концевых периметрических зонах жесткого звукоотражающего донышка донной части 29 четвертьволнового акустического резонатора RIms (поз. 11);

- на фиг. 22 представлена схема реализации механизма дифракционного поглощения энергии распространяющихся звуковых волн в пористой звукопоглощающей структуре вещества фрагмента замкнутой внутренней полости 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10, содержащей в структуре пористого звукопоглощающего вещества, представленного обособленными дробленными фрагментированными звукопоглощающими элементами 18, звукоотражающие воздухонепродуваемые закрытоячеистые вспененные и/или плотные непористые структуры полимерных материалов;

- на фиг. 23 представлена схема реализации физического процесса дифракционных огибаний звуковыми волнами в узкощелевых воздушных зазорах краевых (концевых, торцевых) зон торцевых граней 32 пористых звукопоглощающих воздухопродуваемых структур вещества обособленных цельноформованных комбинированных звукопоглощающих панелей 10, с возникающими сопутствующими им диссипативными энергетическими потерями (дополнительным поглощением звуковой энергии);

- на фиг. 24 представлена схема реализации физического процесса дифракционных огибаний звуковыми волнами краевых периметрических зон горловых частей 30 полостей трубчатых частей 28 четвертьволновых акустических резонаторов RIms (поз. 11), интегрированных в структуре пористого звукопоглощающего воздухопродуваемого вещества, представленного обособленными дробленными фрагментированными звукопоглощающими элементами 18, в составе обособленных цельноформованных комбинированных звукопоглощающих панелей 10, с возникающими сопутствующими им диссипативными энергетическими потерями;

- на фиг. 25 представлена схема монтажных зазорных (γ, k) установок обособленных цельноформованных комбинированных звукопоглощающих панелей 10 относительно поверхности ограждающей стеновой конструкции (поз. 2) технического помещения 1 (зазор k) и между противолежащими торцевыми гранями 32 обособленных цельноформованных комбинированных звукопоглощающих панелей 10 (зазор γ) при схематичных изображениях прямого падения звуковых волн (сплошные стрелки) и отраженного падения звуковых волн (штриховые стрелки).

Цифровыми позициями на представленных фигурах указаны:

1 - техническое помещение;

2 - стены технического помещения 1 (далее - стены 2);

3 - потолок (потолочное перекрытие) технического помещения 1 (далее - потолок 3);

4 - пол технического помещения 1 (далее - пол 4);

5 - дверной проем стены 2 (далее - дверной проем 5);

6 - входная дверь дверного проема 5 (далее - входная дверь 6);

7 - приточный и вытяжной вентиляционные проемы технического помещения 1 (далее - вентиляционные проемы 7);

8 - внутренняя трехмерная воздушная полость технического помещения 1, ограниченная ограждающими поверхностями потолка 3, пола 4, боковых стен 2 и закрытой входной дверью 6 (далее - воздушная полость 8);

9 - шумогенерирующий технический объект (далее - ШГТО 9);

10 - обособленная цельноформованная комбинированная звукопоглощающая панель;

11 - четвертьволновые акустические резонаторы RI (RIms, RImA);

12 - дистанционные механические крепежные элементы;

13 - подвесные тросовые элементы;

14 - монтажные шипы;

15 - монтажные рамки;

16 - монтажные упругие элементы;

17 - монтажный профиль;

18 - обособленные дробленные фрагментированные звукопоглощающие элементы;

19 - несущая внешняя поверхностная облицовочная звукопрозрачная оболочка;

20 - несущая внутренняя воздухонепродуваемая пленочная эластичная звукопрозрачная оболочка, образующая трубчатую часть 28 четвертьволнового акустического резонатора RI (RIms, RImA), поз. 11;

21 - внешний поверхностный облицовочный звукопрозрачный слой материала;

22 - опорное основание, выполненное из сплошного плотного воздухонепродуваемого звукоотражающего материала (далее - опорное основание 22);

23 - воздухонепродуваемые закрытоячеистые вспененные и/или плотные непористые структуры полимерных материалов;

24 - внутренние закладные звукопрозрачные армирующие элементы стержневого, сетчатого или пластинчато-перфорированного типов обособленной цельноформованной комбинированной звукопоглощающей панели 10, (далее - внутренние закладные звукопрозрачные армирующие элементы 24);

25 - звукопрозрачная облицовочная защитно-декоративная перфорированная панель (kperf≥0,25);

26 - адгезионное сплошное слоистое (пленочное) или прерывистое (волокнистое, порошкообразное, перфорированное пленочное) звукопрозрачное покрытие, представленное соответствующим образом поверхностным и/или объемно распределенным липким клеевым или термоактивным термоплавким адгезионным веществом (далее - адгезионное покрытие 26);

27 - составные сборные модули обособленной цельноформованной комбинированной звукопоглощающей панели 10;

28 - трубчатая часть четвертьволнового акустического резонатора RI (поз. 11);

29 - жесткое звукоотражающее донышко донной части (донная часть) четвертьволнового акустического резонатора RI (поз. 11);

30 - горловая часть четвертьволнового акустического резонатора RI (поз. 11);

31 - замкнутая внутренняя полость обособленной цельноформованной комбинированной звукопоглощающей панели 10;

32 - торцевые грани обособленной цельноформованной комбинированной звукопоглощающей панели 10;

33 - защитный футерующий демпфирующий воздухопродуваемый слой материала, смонтированный на горловой части 30 четвертьволнового акустического резонатора RI (поз. 11);

34 - узкощелевые воздушные зазоры, образуемые между противолежащими торцевыми гранями 32 обособленных цельноформованных комбинированных звукопоглощающих панелей 10, смонтированных на несущих ограждающих элементах стен 2 и потолка 3 технического помещения 1;

35 - жесткая звукоотражающая торцевая часть цельноформованной комбинированной звукопоглощающей панели 10, используемая для формирования единой донной части 29 четвертьволновых акустических резонаторов RI (поз. 11);

А - один из базовых габаритных параметров (L, В, Н), характеризующих габаритные размеры внутреннего трехмерного пространства воздушной полости 8 технического помещения 1;

L - габаритная длина внутреннего пространства трехмерной внутренней воздушной полости 8 технического помещения 1;

В - габаритная ширина внутреннего пространства трехмерной внутренней воздушной полости 8 технического помещения 1;

Н - габаритная высота внутреннего пространства трехмерной внутренней воздушной полости 8 технического помещения 1;

RI - четвертьволновый акустический резонатор;

RIms - четвертьволновый акустический резонатор, предназначенный для заглушения шума, генерируемым ШГТО 9, производимого им на рабочих функциональных частотах акустического излучения fms;

RI1s - четвертьволновый акустический резонатор, предназначенный для заглушения шума, генерируемым ШГТО 9, производимого им на рабочей функциональной частоте акустического излучения f1s;

RI2s - четвертьволновый акустический резонатор, предназначенный для заглушения шума, генерируемым ШГТО 9, производимого им на рабочей функциональной частоте акустического излучения f2s;

RI3s - четвертьволновый акустический резонатор, предназначенный для заглушения шума, генерируемым ШГТО 9, производимого им на рабочей функциональной частоте акустического излучения f3s;

ns - заданный (паспортный) установившийся скоростной эксплуатационный режим работы ШГТО 9, характеризуемый звуковым излучением, содержащим в спектре выделяющиеся рабочие доминирующие функциональные частоты звуковых колебаний fms, мин-1, с-1;

RImA - четвертьволновый акустический резонатор, предназначенный для подавления резонансного звукового излучения в техническом помещении 1, обусловленного возбуждением собственных акустических мод массо-упругого тела воздушного объема, с длинами волн λmAmL, λmB, λmH) на дискретных значениях собственных частот fmA (fmL, fmB, fmH) во внутренней трехмерной воздушной полости 8 технического помещения 1, в направлении ее габаритного параметра A (L, В, Н);

f - частота звуковых колебаний, Гц (с-1);

fmA (fmL, fmB, fmH) - дискретные значения собственных частот звуковых колебаний на собственных акустических модах массо-упругого тела воздушного объема, характеризуемых длинами звуковых волн λmAmL, λmB, λmH), формирующихся во внутренней трехмерной воздушной полости 8 технического помещения 1, в направлении ее габаритных параметров A (L, В, Н), Гц;

fms - дискретные значения рабочих доминирующих функциональных частот звукового излучения ШГТО 9, Гц;

(f1s, f2s, f3s) - дискретные значения рабочих доминирующих функциональных частот звуковых колебаний, представленных тремя кратными низшими гармоническими составляющими спектра звукового излучения ШГТО 9, Гц;

fR - собственная (резонансная) частота в Гц акустического резонатора R;

fIR - собственная (резонансная) частота в Гц четвертьволнового акустического резонатора RI;

fIR1s, fIR2s, fIR3s, - собственные (резонансные) частоты в Гц четвертьволновых акустических резонаторов RI1s, RI2s, RI3s (поз. 11), предназначенных для заглушения шума, генерируемым ШГТО 9, производимого им на его дискретных значениях рабочих доминирующих функциональных частот акустического излучения f1s, f2s, f3s;

ΔfR - ширина частотной полосы в Гц, на границах которой акустическая энергия при вынужденных резонансных звуковых колебаниях вдвое (на 3 дБ) меньше акустической энергии на резонансной частоте акустического резонатора fR;

ϕ - фаза звуковой волны (рад.);

с - скорость звука, м/с;

c(t°Cст) - скорость звуковых волн в м/с, распространяемых в воздушной среде технического помещения 1 при установившемся температурном режиме воздуха, в t°Cст;

λ - длина звуковой волны, м;

λ(t°C) - длина звуковой волны в м, распространяющейся со скоростью c(t°Cст) в м/с в воздушной среде технического помещения 1 при установившемся температурном режиме в °С;

λRI - длина звуковой волны, четверть расстояния которой (0,25λRI) укладывается в пределах габаритов динамической длины IRI четвертьволнового акустического резонатора RI;

Δλ - диапазон изменения длины звуковой волны λ в м, вызванный эксплуатационным диапазоном изменения температуры воздушной среды Δt в техническом помещении 1, в котором распространяется звуковая волна;

λms - длина звуковой волны рабочей доминирующей функциональной частоты fms звукового излучения ШГТО 9, функционирующего на заданном установившемся эксплуатационном режиме работы ns, м;

1s, λ2s, λ3s) - длины звуковых волн трех кратных доминирующих частотных гармоник (f1s, f2s, f3s) рабочей доминирующей функциональной частоты fms звукового излучения ШГТО 9, функционирующего на заданном установившемся эксплуатационном режиме работы ns, м;

λmAmL, λmB, λmH) - длины звуковых волн на низших собственных акустических модах, представленных собственными акустическими колебаниями массо-упругого тела воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1, м;

t°C - температура среды (воздуха) в град. Цельсия;

t°Cст - установившееся (стабилизированное) значение температуры воздуха в °С во внутренней трехмерной воздушной полости 8 технического помещения 1;

Δt - эксплуатационный диапазон изменения температуры воздуха, в °С;

Рпад - амплитуда падающей на твердотелое препятствие звуковой волны;

Ротр - амплитуда отраженной от твердотелого препятствия звуковой волны;

Рпр - амплитуда звуковой волны, прошедшей через твердотелое препятствие на пути ее распространения (прошедшей в структуру пористого звукопоглощающего вещества, составленного из обособленных дробленных фрагментированных звукопоглощающих элементов 18);

Ррез - амплитуда результирующей звуковой волны, формируемая в процессе динамического (амплитудного, фазового) взаимодействия падающих, отраженных и прошедших через препятствие звуковых волн;

dпp - приведенный гидравлический диаметр, в м, произвольной геометрической формы проходного сечения трубчатой части 28 (для круглого проходного сечения dпp=dкp, где dкp - диаметр круга) четвертьволнового акустического резонатора RI (RIms, RImA), поз. 11;

Sт - площадь проходного сечения, в м2, трубчатой части 28 четвертьволнового акустического резонатора RI (RIms, RIma), поз. 11;

l1r (lIr1, lIr2, lIr3) - геометрическая длина, в м, трубчатой части 28 четвертьволновых акустических резонаторов RI (RI1, RI2, RI3) - поз. 11, частотонастроенных на процесс подавления звукового излучения на частотах f1, f2, f3;

lIR (lIR1, lIR2, lIR3) - динамическая длина, в м, четвертьволновых акустических резонаторов RI (RI1, RI2, RI3) - поз. 11, частотонастроенных на процесс подавления звукового излучения на частотах f1s, f2s, f3s;

m, mL, mB, mH - целые числа натурального ряда (1, 2, 3, …).

k - дистанционный воздушный зазор между тыльной поверхностью обособленной цельноформованной комбинированной звукопоглощающей панели 10 и противолежащей поверхностью стенового (потолочного) перекрытия (поз. 2, 3) технического помещения 1;

γ - дистанционный воздушный зазор между противолежащими поверхностями торцевых граней 32 обособленных цельноформованных комбинированных звукопоглощающих панелей 10, смонтированных на ограждающих стеновых и потолочных перекрытиях (поз. 2, 3) технического помещения 1;

αrev - реверберационный коэффициент звукопоглощения;

αN - нормальный коэффициент звукопоглощения;

Aekv - площадь эквивалентного звукопоглощения;

Kperf - коэффициент перфорации;

ρф - плотность в кг/м3 заполнения замкнутой внутренней полости 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10 обособленными дробленными фрагментированными звукопоглощающими элементами 18;

Терминологические определения, используемые в тексте описания заявки на изобретение

Акустические резонаторы (R) - частотонастроенные звукозаглушающие устройства (акустические резонаторы Гельмгольца RIII, четвертьволновые RI и полуволновые RII акустические резонаторы R), предназначенные для диссипативного поглощения (рассеивания, демпфирования, противофазной компенсации) звуковой (акустической) энергии, распространяемой в рассматриваемой газодинамической (аэродинамической) системе, к которой они подключены; наиболее эффективное использование акустических резонаторов R относится к поглощению резонансных звуковых колебаний, выделяющихся в спектрах звукового излучения газодинамической (аэродинамической) системы.

Волна стоячая - состояние упругой среды в процессе распространения звуковых волн, при котором расположение максимумов и минимумов упругих перемещений колеблющихся частиц среды не меняется во времени; образуется в результате интерференции двух встречных (противофазно направленных) гармонических колебаний с идентичными частотами; отмечается, в частности в закрытом помещении между оппозитно расположенными жесткими поверхностями стен, полом и потолком; регистрируются на частотах собственных полуволновых акустических резонансов собственных акустических мод массо-упругого тела воздушного объема (полости) помещения.

Дифракция звуковых волн - физическое явление, связанное с отклонением волн от их прямолинейного распространения при взаимодействии с твердым препятствием (находящемся на пути их распространения); возникновение дифракционного эффекта звукопоглощения обусловлено физическим процессом рассеивания энергии звуковой волны на твердом (пористом) препятствии с конечным значением входного акустического сопротивления поверхности твердого препятствия (пористой волокнистой или вспененной открытоячеистой структуры); новая рассеянная звуковая волна, образованная дифракционным процессом распространения на краях (гранях) пористого элемента конечных размеров (формирующая краевой дифракционный эффект), вызывает дополнительный поток звуковой энергии, направленный (распространяющийся) внутрь пористой структуры этого элемента, что приводит к возрастанию суммарного звукопоглощающего эффекта.

Диффузное звуковое поле - звуковое поле, в каждой точке которого уровень звукового давления один и тот же; формируется в закрытых объемах (помещениях), ограниченных жесткими звукоотражающими стенками.

Добротность частотной характеристики акустического резонатора R - параметрическая характеристика акустического резонатора R, указывающая на величину внутренних диссипативных потерь, возникающих как в составных структурах (элементах) акустического резонатора R, так и обусловленных внешними энергетическими потерями, непосредственно связанными с процессом излучения звука в окружающую среду, на который также расходуется определенная часть колебательной (звуковой) энергии акустического резонатора R.

Звукопоглощение - физический процесс ослабления части энергии звуковых колебаний, распространяемых в пористой структуре звукопоглощающего материала, с необратимым диссипативным преобразованием звуковой энергии в тепловую энергию, рассеиваемую исключительно средой пористой структуры, в которой распространяется звуковая волна; характеризуется коэффициентом звукопоглощения (нормальным αN, реверберационным αrev) или площадью эквивалентного звукопоглощения Aekv.

Эквивалентная площадь звукопоглощения - оценочный технический параметр звукопоглощающих свойств плосколистовых образцов материалов или полномасштабных неплоских объемных шумопоглощающих деталей, определяемый в условиях воздействия на них диффузного звукового поля, который сопоставляется с соответствующей эквивалентной площадью абстрактной плоской звукопоглощающей поверхности, обладающей 100% поглощением звуковой энергии. Реверберационный коэффициент звукопоглощения αrev=1,0 усл. ед. количественно оценивается в м2 площади плосколистового образца, обладающего 100% поглощением звуковой энергии.

Коэффициент звукопоглощения реверберационный (αrev) - отношение энергии диффузного звукового поля, поглощенной поверхностью исследуемого образца материала (исследуемой полномасштабной деталью), к энергии диффузного звукового поля, падающей на нее; определяется по изменяемому регистрируемому времени реверберации trev в рабочей полости измерительной реверберационной камеры по результатам помещения в ее полость исследуемого образца материала (исследуемой полномасштабной детали).

Коэффициент звукопоглощения нормальный (αN) - коэффициент звукопоглощения малогабаритного образца материала, определенный при нормальном падении на него синусоидальной звуковой волны; определяется по результатам регистрации локализации амплитуд максимальных и минимальных значений звуковых давлений стоячих волн, искусственно создаваемых в акустическом интерферометре (Трубе Кундта), с последующим расчетом значений на каждой исследуемой частоте звуковой волны.

Звукопрозрачность - свойство структурных элементов конструкций (пластин, оболочек, пленок, тканей), находящихся на пути распространения звуковой волны, пропускать распространяемую в упругой среде звуковую волну без существенного (не более чем на 10%) ослабления (без существенного эффекта отражения в направлении, противоположном распространению от источника излучения звуковых волн); характеризуется коэффициентом прохождения звука через конструкцию, представляющим отношение амплитуд звукового давления в волне, прошедшей через конструкцию (Рпр), к звуковому давлению в падающей звуковой волне (Рпад).

Интерференция волн - физический процесс сложения в неограниченном пространстве (или в ограниченном волноводе) двух или более двух волн, имеющих одинаковые периоды колебаний Т, в результате которого в различных зонах неограниченного пространства (или ограниченного пространства) волновода амплитудное значение результирующей волны увеличивается или уменьшается в зависимости от соотношений фаз колебаний ϕ складывающихся (взаимодействующих) волн, формируя таким образом неравномерные пространственные распределения амплитуды результирующей волны.

Биения звуковых (акустических колебаний) - результат интерференционного сложения двух гармонических звуковых колебаний с близкими частотами, проявляющийся в виде чередующихся амплитудных максимумов и минимумов.

Клеи, адгезивы - композиции на основе органических или неорганических веществ, способные соединять (склеивать) различные материалы; их действие обусловлено образованием прочной адгезионной связи между клеевой прослойкой и соединяемыми поверхностями; на прочность клеевого шва влияют также когезия клеевого слоя и сопрягаемых поверхностей; основой органических клеев служат главным образом синтетические олигомеры и полимеры (феноло-формальдегидные, эпоксидные, полиэфирные смолы, полиамиды, полиуретаны, кремний-органические полимеры, каучуки и др.), образующие клеевую пленку в результате затвердевания при охлаждении (термопластичные клеи), отверждении (термоактивные клеи) или вулканизации (резиновые клеи); к неорганическим клеям относят алюмофосфатные, керамические, силикатные, металлические.

Антипирены - вещества или смеси, предохраняющие древесину, ткани и другие материалы органического происхождения (в том числе звукопоглощающие или звукоизолирующие) от воспламенения и самостоятельного горения. Распадаются с образованием негорючих и/или препятствуют разложению материала с выделением горючих газов. Антипирены наносятся на поверхность изделий в составе красок или (и) используют в виде растворов, которыми пропитывают материал. Распространенные антипирены - гидрооксид алюминия, соединения бора, сурьмы, хлоридов, органические и неорганические соединения фосфора.

Коэффициент перфорации - отношение суммарной площади отверстий (проекций отверстий) к общей площади (локальной зоны) поверхности стенки конструктивного элемента подвергнутого процессу перфорирования (до момента ее перфорирования).

Материал звукопоглощающий - акустический материал, обладающий реверберационным коэффициентом звукопоглощения αrev не менее 0,2.

Материал звукопоглощающий волокнистый - пористый акустический материал, структура которого представлена упругим деформируемым скелетом, сформированным множеством динамически связанных и взаимодействующих между собой волокон; образованные между поверхностями волокон воздушные поры в таких упругих структурах волокнистых материалов имеют вид узких сообщающихся капиллярных каналов; выполняется на основе натуральных (хлопковых, шелковых, джутовых, сизальных, льняных, конопляных и др., или белковых животного происхождения), синтетических (акриловых, полиэстеровых, полиоксадиазольных, полиимидных, углеродных, арамидных, полипропиленовых, нейлоновых, и т.д.), минеральных волокон (базальтовых, керамических, стеклянных и т.д.), металлических волокон (в виде специально подготовленных металлических структур типа пористого волокнистого материала - ПВМ, пористого сетчатого материала - ПСМ, металлорезины - MP).

Материал звукопоглощающий вспененный (губчатый) - пористый открытоячеистый акустический материал, упруго-деформируемый скелет которого сформирован посредством технологического вспенивания и последующей полимеризации раствора полимерного материала или посредством проведения соответствующей химической реакции; вспененные звукопоглощающие материалы выполняются на основе уретанового, нитрильного, винилового, бутадиен-стирольных полимерных составов.

Материал звукопоглощающий пористый - акустический материал, у которого твердое вещество занимает часть общего объема, образуя пространственный пористый скелет, а остальной объем приходится на многочисленные сообщающиеся полости и каналы (для вспененных открытоячеистых материалов) или сообщающиеся капиллярные каналы (для волокнистых материалов), которые открыты наружу и заполнены упругой воздушной средой.;

Дробленное пористое воздухопродуваемое звукопоглощающее вещество - оригинальный сырьевой продукт рециклированной утилизационной переработки акустических материалов, преимущественно; пористых воздухопродуваемых звукопоглощающих волокнистых и/или: вспененных открытоячеистых, содержащихся в составе деталей и узлов, завершивших свой жизненный цикл, а также в производственно-технологическом браке производства и отходах производства указанных типов акустических материалов, используемый вторично в качестве исходного производственного сырья при изготовлении разнообразных технических устройств уменьшения шумовых излучений, производимых различными шумогенерирующими объектами (шумозащитных экранов, шумопоглощающих панелей, шумоизоляционных обивок моторных отсеков, багажных отделений и пассажирских помещений транспортных средств и прочих технических устройств обеспечения акустической безопасности окружающей среды); используемые обособленные дробленные фрагментированные звукопоглощающие элементы, произведенные из указанного типа утилизируемого сырья, производятся из идентичных или различающихся типов и марок пористых звукопоглощающих материалов, обладающих идентичными или отличающимися физическими характеристиками, химическим составом, пористостью, количеством и сочетанием типов структур пористых слоев в составе одно- и/или многослойных комбинаций, идентичной или отличающейся геометрической формы и габаритных размеров, находящихся преимущественно в линейном габаритном диапазоне 5…100 мм, при этом объем каждого из обособленных дробленных фрагментированных звукопоглощающих элементов находится в диапазоне значений 4,2×(10-9…10-2) м3.

Материал звукопрозрачный (пленочный, фольгированный микроперфорированный, тканевый, нетканого полотна) - конструкционный материал, установка которого на поверхность пористого звукопоглощающего слоя (выполнением, в том числе, «технологической сшивки» их сопрягаемых поверхностей) вызывает допустимое падение реверберационного коэффициента звукопоглощения (αrev) не более чем на 10%. Обеспечиваемые свойства звукопрозрачности в существенной степени характеризуются выбранными соответствующими значениями параметров сопротивления продуванию воздушным потоком (тканевые или микроперфорированные пленочные или микроперфорированные фольговые слои), и/или установленными значениями толщины, изгибной жесткости и удельной поверхностной массы, определяемых массой приходящейся на 1 м2 поверхности (непродуваемые воздушным потоком сплошные пленочные или фольговые слои). Значения величин сопротивления продуванию воздушным потоком звукопрозрачных воздухопродуваемых тканей или воздухопродуваемых нетканых полотен (перфорированных пленочных полимерных или перфорированных фольговых металлических слоев), должны находиться в пределах 20…500 н⋅с/м3, при толщинах волокнистого слоя тканевого материала, волокнистого нетканого полотна, микроперфорироваиного пленочного полимерного или микроперфорированного фольгового металлического слоя, составляющих 0,025…0,25 мм и их поверхностной плотности 20…300 г/м2. Значения поверхностной плотности (удельной поверхностной массы) сплошных звукопрозрачных пленок непродуваемых воздушным потоком, должны находиться в диапазоне 20…70 г/м2, при толщине пленки 0,01…0,1 мм. Материал звукопрозрачный может быть выполнен из различных конструкционных материалов - полиэстеровой алюминизированной, уретановой, поливинилхлоридной пленок, или из аналогичного типа других приемлемых для этих целей полимерных материалов. Применение микроперфорированного фольгового металлического материала предусматривает использование в качестве конструкционного материала алюминия, меди, латуни. Сплошной слой воздухопродуваемого тканевого (нетканого полотна) может быть изготовлен из материалов типа «малифлиз», «филтс», стеклоткань, полотна на основе супертонких базальтовых волокон.

Материал плосколистовой - конструкционный материал, выпускаемый в виде отдельных плоских листов заданного геометрического размера.

Материал формованный (цельноформованный) - конструкционный материал, образуемый в результате осуществления технологических операций формования, с последующим получением, как правило, неплоских деталей сложной геометрической формы, реализующей геометрическую топологию различной кривизны, пористости, плотности и т.д.

Моды колебаний резонансные (собственные акустические моды) - характеристика виброакустических свойств механической или газодинамической системы, напрямую связанная с ее собственной резонансной частотой. Резонансная виброакустическая мода (собственная акустическая мода) иллюстрирует тип (форму) колебаний системы на ее собственной (резонансной) частоте (на собственных резонансных частотах) при совпадении значений (при близких значениях) частот собственных колебаний системы и частот вынужденных колебаний (частот внешнего возбуждения).

Отходы - это всякое вещество или предмет, которое владелец выбрасывает, или намеревается выбросить или оно подлежит выбросу (согласно определению Диррективы 75/442 ЕЭС).

Перфорированные отверстия (отверстия перфорации) - несколько (не менее двух) отверстий заданной идентичной геометрической формы и площади, расположенных друг относительно друга и/или относительно другого конструктивного элемента детали (узла) на заданном расстоянии; перфорации - от латинского perforato - пробиваю, прокалываю - технологический процесс выполнения отверстий заданных размеров, расположенных соответствующим образом в структуре изготавливаемой детали (узла).

Микроперфорированные отверстия (отверстия микроперфорации) - несколько (не менее двух) отверстий заданной идентичной геометрической формы и площади, расположенных друг относительно друга и/или относительно другого конструктивного элемента детали (узла) на заданном расстоянии, диаметр которых не превышает 1 мм (≤0,001 м).

Пористость - отношение объема пустот в пористой структуре образца материала к общему объему образца.

Потери диссипативные - необратимое рассеяние (потеря) энергии (в данном рассматриваемом случае - колебательной энергии).

Рециклирование - возвращение в.производство утилизируемых отходов материалов (в данном рассматриваемом случае - акустических материалов), путем их вторичной переработки; рециклирование является одной из разновидностей утилизации (в отличие от других видов утилизации, связанных, например, с повторным использованием деталей и узлов, в том виде, как они есть, или после восстановления их работоспособности, а также связанных с выработкой энергии путем сжигания части отходов (энергетическая утилизация).

Собственная (резонансная) частота fm - частота колебаний, на которой имеет место явление резонанса (в данном случае, частота звука f на которой наблюдается акустический резонанс, характеризуемый существенным усилением амплитуд звукового давления).

Собственные (резонансные) акустические моды - характеристика виброакустических свойств механической или газодинамической системы, напрямую связанная с собственной (резонансной) частотой ее колебаний fm; собственная (резонансная) акустическая мода иллюстрирует тип (пространственную форму) акустических колебаний системы на ее собственных (резонансных) частотах колебаний fm, реализующуюся при совпадении частот собственных колебаний системы fm с частотами ее вынужденных колебаний (частотами внешнего динамического возбуждения), fs.

Температурное поле технического помещения - совокупность значений распределения температур в пространственной области внутренней трехмерной воздушной полости технического помещения в данный момент времени.

Звуковое (акустическое) поле технического помещения - результирующее установившееся распределение энергии падающих и отраженных звуковых волн, с реализуемыми сопутствующими физическими процессами ее распространения, усиления и поглощения в ограниченном жесткими стеновыми конструкциями трехмерном полостном воздушном объеме технического помещения; одним из базовых составных элементов акустического поля технического помещения, является выражение (1):

где с - скорость распространения звуковых волн в воздушной среде внутреннего пространства внутренней трехмерной воздушной полости 8 технического помещения 1, м/с (с=344,057 м/с при +20°С);

L - габаритная длина внутреннего пространства трехмерной воздушной полости 8 технического помещения 1, м;

В - габаритная ширина внутреннего пространства трехмерной воздушной полости 8 технического помещения 1, м;

Н - габаритная высота внутреннего пространства трехмерной воздушной полости 8 технического помещения 1, м;

mL - порядковый номер собственной акустической моды звуковых колебаний массо-упругого тела воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1 в направлении ее габаритной длины L, выраженный целым числом натурального ряда (m=1, 2, 3 …);

mв - порядковый номер собственной акустической моды звуковых колебаний массо-упругого тела воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1 в направлении ее габаритной ширины В, выраженный целым числом натурального ряда (m=1, 2, 3 …);

mн - порядковый номер собственной акустической моды звуковых колебаний массо-упругого тела воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1 в направлении ее габаритной высоты Н, выраженный целым числом натурального ряда (m=1, 2, 3 …).

Существенные признаки заявляемого технического решения иллюстрируются также фигурами 1…25.

Схематично изображенное на фиг. 5 техническое помещение 1, содержит жесткие несущие ограждающие элементы, выполненные в виде стен 2, потолка 3, пола 4, дверного проема 5 с закрытой входной дверью 6 и вентиляционными проемами 7. Образованная внутренняя трехмерная воздушная полость 8 технического помещения 1 представлена полым прямоугольным цилиндром типа полого прямоугольного параллелепипеда габаритными размерами A (L, В, Н), в котором смонтирован ШГТО 9, производящий «паразитное» акустическое (шумовое) излучение, в виде распространяемых звуковых волн, квалифицируемых шумом, изображенное на указанной фигуре соответствующими стрелками. Одновременно с этим, при работе ШГТО 9 генерируется тепловая энергия, которая также распространяется во внутренней трехмерной воздушной полости 8 технического помещения 1. Таким образом, во внутренней трехмерной воздушной полости 8 формируются (пространственно распределяются) соответствующие звуковые и температурные поля. Жесткие несущие ограждающие звукоотражающие элементы технического помещения 1 могут быть представлены сборными крупнопанельными (железо-бетонными, каркасно-металлическими), крупноблочными монолитными или ручной кирпичной кладки конструктивно-технологическими исполнениями. ШГТО 9 (например, поршневой ДВС, механический редуктор, вентиляторная установка, электрогенератор, силовой электротрансформатор, тягодутьевая машина, дымосос осевого или центробежного типа, поршневой или центробежный насос, поршневой компрессор, или одновременно несколько эксплуатируемых в техническом помещении 1 ШГТО 9), функционирует на заданном паспортом (заданными техническими условиями эксплуатации) установившемся постоянном скоростном эксплуатационном режиме работы ns. Конкретные величины габаритных размеров А внутренней трехмерной воздушной полости 8 (L, В, Н) технического помещения 1 предопределяют конкретные физические характеристики образуещегося массо-упругого тела воздушного объема характеризуемые, в частности, определенными значениями низших собственных акустических мод, формирующихся на соответствующих дискретных значениях собственных (резонансных) частот звуковых колебаний fmA (fmL, fmB, fmH), с соответствующими им длинами звуковых волн λmAmL, λmB, λmH), возбуждаемых в результате реализации физического процесса динамического возбуждения и ответной динамической колебательной реакции упругой воздушной среды в результате распространения в ней звуковых волн, представленных в виде собственных акустических колебаний массо-упругого тела воздушного объема, заключенного внутри внутренней трехмерной воздушной полости 8 технического помещения 1.

Отличительной особенностью заявляемого технического устройства, представленного в виде низкошумного технического помещения 1, является оборудование (футеровка стеновых и потолочных конструкций) технического помещения 1, монтируемыми с воздушными зазорами между противолежащими торцевыми гранями и относительно оппозитных монтажных поверхностей (стены 2 и потолка 3) технического помещения 1, обособленными цельноформованными комбинированными звукопоглощающими панелями 10 (см. фиг. 6, 7, 8, 9, 10а, 10б, 11б, 11в, 12а, 12б, 12в, 13а, 13б), составленными из пористой воздухопродуваемой дробленной звукопоглощающей структуры вещества и интегрированных в нем полостных частотонастроенных шумоподавляющих конструктивных элементов, представленных в виде четвертьволновых акустических резонаторов RI (поз. 11).

Установка в техническом, помещении 1 обособленных цельноформованных комбинированных звукопоглощающих панелей 10 может, в частности, осуществляться путем их подвешивания к потолку 3 с помощью соответствующего типа дистанционных механических крепежных элементов 12 (см. фиг. 11а), подвесных тросовых элементов 13 (см. фиг.11б и 11в), монтажа на стенах 2 посредством монтажного профиля 17 (см. фиг. 13а и фиг. 13б), с образованием вертикально подвешенных объемных поглотителей звуковой энергии, со смонтированной с дистанционным воздушным зазором k между обособленной цельноформованной комбинированной звукопоглощающей панелью 10 и стеной 2 технического помещения 1 (см. фиг. 9, 10а, 10б, 13а, 13б), или монтироваться беззазорно (см. фиг. 12а, 12б, 12в) на поверхности стеновых ограждений (перекрытий) технического помещения 1, с применением механических крепежных элементов в виде монтажных шипов 14, проходящих через структуру сплошного несущего опорного основания 22, рамок 15, удерживающих обособленную цельноформованную комбинированную звукопоглощающую панель 10 в верхней и нижней части, упругих элементов 16, интегрированных в структуру внешней тонкостенной звукопрозрачной оболочки 19. Дистанционный воздушный зазор γ между противолежащими торцевыми поверхностями граней смонтированных образцов обособленных цельноформованных комбинированных звукопоглощающих панелей 10 составляет при этом не более четвертой части габаритной толщины (размеров) противолежащих торцевых граней 32 обособленных цельноформованных комбинированных звукопоглощающих панелей 10. Смонтированные обособленные цельноформованные комбинированные звукопоглощающие панели 10 могут перекрываться дополнительно установленной звукопрозрачной облицовочной защитно-декоративной перфорированной панелью 25 (Kperf≥0,25), свободно пропускающей излучаемые звуковые волны в направлении смонтированных обособленных цельноформованных комбинированных звукопоглощающих панелей 10, как это, в частности, показано на фиг. 10б. Звукопрозрачная облицовочная защитно-декоративная перфорированная панель 25 может монтироваться беззазорно (бесконтактно) к поверхностям обособленных цельноформованных комбинированных звукопоглощающих панелей 10 или с заданным воздушным зазором. Допустимое уменьшение реверберационного коэффициента звукопоглощения αrev от установки звукопрозрачной облицовочной защитно-декоративной перфорированной панели 25 не превышает величины 0,1.

Установка обособленных цельноформованных комбинированных звукопоглощающих панелей 10 с заданным воздушным зазором k их тыльных поверхностей относительно близко расположенных к ним звукоотражающих поверхностей потолочного 3 или стеновых 2 перекрытий технического помещения 1 (если это не ограничивают требования технического задания на разработку), как это представлено на фиг. 9, 10б, 11а, 11б, 11в, 13а, 13б, 25, позволяет преднамеренно управляемо влиять на увеличение звукопоглощающего эффекта в низкочастотном диапазоне звукового спектра при соответствующем увеличении параметра k, а также приводит к дополнительному эффекту усиления диссипационного дифракционного поглощения звуковой энергии, возникающего на свободных периметрических краях (концевых зонах) обособленных цельноформованных комбинированных звукопоглощающих панелей 10 при их дифракционном огибании отраженными звуковыми волнами (см. фиг 23, 25). Огибаемая при своем распространении и рассеиваемая в пористом звукопоглощающем веществе на свободных периферийных краях каждой обособленной цельноформованной комбинированной звукопоглощающей панели 10, звуковая волна вследствие реализуемого краевого дифракционного эффекта диссипационного поглощения ее энергии, сопровождается процессом дополнительного перетока звуковой энергии с ее лицевой на тыльную пористую поверхность. Для отраженной звуковой волны от поверхности стенового или потолочного перекрытия имеет место аналогичный дифракционный диссипационный эффект перетока звуковой энергии с тыльной поверхности обособленной цельноформованной комбинированной звукопоглощающей панели 10 на ее лицевую поверхность, с последующим распространением ее вглубь пористой воздухопродуваемой звукопоглощающей структуры обособленной цельноформованной комбинированной звукопоглощающей панели 10. Это, в свою очередь, и приводит к соответствующему дополнительному результирующему эффекту увеличения диссипационного поглощения звуковой энергии.

Обособленная цельноформованная комбинированная звукопоглощающая панель 10 выполнена в виде цельноформованной объемной оболочковой конструкции, содержащей, в качестве составного элемента, несущую внешнюю поверхностную облицовочную звукопрозрачную воздухонепродуваемую или воздухопродуваемую оболочку 19. Замкнутая внутренняя полость 31, образуемая несущей внешней поверхностью облицовочной звукопрозрачной воздухонепродуваемой или воздухопродуваемой оболочкой 19, и сопряженной с ней адгезионным соединением несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой 20, образующей трубчатую часть 28 четвертьволнового акустического резонатора RI (поз. 11), обособленной цельноформованной комбинированной звукопоглощающей панели 10, заполнена пористым воздухопродуваемым звукопоглощающим веществом, образованным обособленными дробленными фрагментированными звукопоглощающими элементами 18, с контактирующими между собой ребрами и гранями, в результате чего формируются многочисленные дополнительные сообщающиеся извилистые межреберные и межграневые воздухопродуваемые волноводные звукораспространяемые (звукопередающие) и, соответственно, звукопоглощающие каналы. Такого типа используемое звукопоглощающее вещество включает преимущественно применяемые идентичные или различающиеся типы, структуры и марки пористых воздухопродуваемых звукопоглощающих материалов, характеризуемые идентичными или отличающимися физическими характеристиками, химическим и струкурным составом, количеством и сочетанием используемых типов структур пористых слоев в составе многослойных комбинаций звукопоглощающих материалов, идентичной или отличающейся геометрической формы и габаритных; размеров, произведенных из твердых утилизируемых, преимущественно полимерных отходов, представленных в виде технологически переработанных методом механического дробления звукопоглощающих структур деталей и узлов, демонтированых с утилизируемых технических объектов, преимущественно деталей шумоизоляционных пакетов транспортных средств, завершивших свой жизненный цикл, и/или из технологических отходов и брака производства звукопоглощающих материалов и произведенных из них деталей и узлов. Указанная замкнутая внутренняя полость 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10, посредством несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 сообщается с присоединенными к ней полостными пустотелыми формованными звкопоглощающими (шумоподавляющими) конструктивными элементами (по крайней мере - с одним полостным пустотелым формованным звукопоглощающим элементом), выполненными в виде четвертьволновых акустических резонаторов RI (поз. 11). Трубчатые части 28 указанных четвертьволновых акустических резонаторов RI (поз. 11) сформированы с использованием несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20 (см. фиг. 11а, 1б, 11в, 12а, 12б, 12в, 13а, 13б, 14а, 14б, 15а, 15б, 16а, 16б, 17а, 17б, 18а, 18б, 19а, 19б), футерующей изнутри поверхности прилегающих (контактирующих) к ней граней и ребер обособленных дробленных фрагментированных звукопоглощающих элементов 18, размещенных во внутренней полости 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10. Адгезионно присоединенные к трубчатым частям 28 жесткие звукоотражающие донышки донных частей 29 четвертьволновых акустических резонаторов RI (поз. 11) выполняются из жесткого пластинчатого типа полимерного материала (например f полиамида, поливинилхлорида, полиэтилена, полипропилена). Замкнутая} внутренняя полость 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10 заполнена обособленными дробленными фрагментированными звукопоглощающими элементами 18, которые изготовлены, преимущественно, из утилизируемых акустических материалов. Также они (обособленные дробленные фрагментированные звукопоглощающие элементы 18) могут быть изготвлены по типичным технологиям их производства из «новых» полуфабрикатных листовых (рулонных) акустических материалов, подвергаемых последующему технологическому процессу их механического дробления на фрагменты заданных геометрических форм и габаритных размеров, в дополнение уже к помещенным в замкнутую внутреннюю полость 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10, обособленным дробленым фрагментированным звукопоглощающим элементам 18, изготовленным из утилизируемых акустических; материалов, перечисленных выше. В качестве возможных конструктивно-технологических вариантов исполнения обособленной цельноформованной комбинированной звукопоглощающей панели 10, ее замкнутая внутренняя полость 31 может быть также частично, но не более чем на 30% ее полостного объема, заполнена дробленно-фрагментированными воздухонепродуваемыми закрытоячеистыми вспененными и/или плотными непористыми структурами полимерных материалов 23.

Обеспечиваемые свойства звукопрозрачности несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19, в составе обособленной цельноформованной комбинированной звукопоглощающей панели 10, в существенной степени характеризуются выбранными соответствующими значениями параметров сопротивления продуванию воздушным потоком тканевых или нетканого полотна, или микроперфорированных пленочных, или микроперфорированных фольговых слоев), и/или установленными значениями толщины, изгибной жесткости и удельной поверхностной массы, определяемых массой приходящейся на 1 м2 поверхности (непродуваемых воздушным потоком сплошных пленочных или фольговых слоев). Значения величин сопротивления продуванию воздушным потоком звукопрозрачных воздухопродуваемых тканей или звукопрозрачных воздухопродуваемых нетканых полотен (микроперфорированных пленочных полимерных или микроперфорированных фольговых металлических слоев), должны находиться в пределах 20…500 н⋅с/м3, при толщинах волокнистого слоя тканевого материала, волокнистого нетканого полотна, микроперфорированного пленочного полимерного или микроперфорированного фольгового металлического слоя, составляющих 0,025…0,25 мм и их поверхностной плотности 20…300 г/м2.

Значения поверхностной плотности (удельной поверхностной массы) сплошных звукопрозрачных пленок непродуваемых воздушным потоком, должны находиться в диапазоне 20…70 г/м2, при толщине пленки 0,01…0,1 мм. Внешний поверхностный облицовочный звукопрозрачный слой материала 21 несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19 пленочного типа может быть выполнен из различных конструкционных материалов - полиэстеровой алюминизированной, уретановой, поливинилхлоридной пленки, или из аналогичного типа других приемлемых для этих целей пленочных полимерных материалов.

Внешний поверхностный облицовочный звукопрозрачный слой материала 21 несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19 может быть выполнен сплошным или перфорированным. Например, он может быть выполнен из микроперфорированного (с диаметром проходного сечения отверстий перфорации, не превышающим 1 мм) фольгового материала, предусматривающего использование в качестве конструкционного материала алюминий, медь, латунь. Внешний поверхностный облицовочный звукопрозрачный слой материала 21 несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19, выполненный из сплошного слоя воздухопродуваемого тканевого (нетканого полотна) материала, может быть представлен материалами типа «малифлиз», «филтс», стеклоткань, базальтовая ткань из супертонкого базальтового волокна Использование указанных типов конструкционных материалов для изготовления внешнего поверхностного облицовочного звукопрозрачного слоя материала 21 несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19, применяемого в составе обособленной цельноформованной комбинированной звукопоглощающей панели 10, обеспечивает при заданной плотности набивки (ρф=10…655 кг/м3) замкнутой внутренней полости 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10, соответствующими обособленными дроблеными фрагментированными звукопоглощающими элементами 18, исключение нежелательного попадания и накапливания (впитывания) в пористые открытоячеистые вспененные или пористые волокнистые структуры обособленных дробленых фрагментированных звукопоглощающих элементов 18, различного типа технологических и/или эксплуатационных жидкостей (влаги, топлива, смазочно-охлаждающих жидкостей), а также мелких аморфных частиц или насекомых в процессе эксплуатации заявляемого технического объекта.

Для образования соответствующих звукопрозрачных соединений (звукопрозрачных технологических «сшивок») составных элементов обособленной цельноформованной комбинированной звукопоглощающей панели 10, могут использоваться разнообразные типы звукопрозрачных адгезионных покрытий 26, реализуемых, например, соответствующим температурным разогревом и расплавлением используемых термоплавких полимерных пленок или волокон, размещенных на поверхности структуры внешнего поверхностного облицовочного звукопрозрачного слоя материала 21 (несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19), или несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20, или между контактирующими ребрами и гранями обособленных дробленных фрагментированных звукопоглощающих элементов 18 в процессе реализации технологического процесса изготовления обособленной цельноформованной комбинированной звукопоглощающей панели 10. Для возможных реализаций разнообразных конструктивно-технологических вариантов исполнения обособленной цельноформованной комбинированной звукопоглощающей панели 10, когда используется полимерный материал внешнего поверхностного облицовочного звукопрозрачного слоя материала 21 (несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19) или несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20, который не обеспечивает требуемой адгезионной связи путем его приплавления (при соответствующем разогреве его структуры), удовлетворяющее адгезионное соединение может обеспечиваться с помощью введения дополнительных звукопрозрачных (не оказывающих существенного негативного, не более чем на 10%, на уменьшения значения коэффициента звукопоглощения звуковой энергии) определенного типа клеевых адгезионных слоев (в виде липких клеевых или термоактивных термоплавких веществ), технологически реализуемых поверхностно разнесенными обособленными тонкими сплошными линиями, или поверхностно разнесенными обособленными тонкими прерывистыми линиями, или в виде перфорированного сквозными отверстиями тонкого сплошного поверхностного слоя звукопрозрачного адгезионного вещества, или в виде сплошного тонкого звукопрозрачного липкого клеевого слоя с низким удельным поверхностным весом (не превышающем 100 г/м2), или в виде сплошного тонкого звукопрозрачного термоактивного термоплавкого слоя адгезионного вещества с низким удельным поверхностным весом (не более 50 г/м2).

В замкнутой внутренней полости 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10, заполненной звукопоглощающим веществом, образованным обособленными дробленными фрагментированными звукопоглощающими элементами 18, могут содержаться соответствующие внутренние закладные звукопрозрачные армирующие элементы 24 стержневого, или сетчатого, или пластинчато-перфорированного типов.

Несущая внешняя поверхностная облицовочная звукопрозрачная оболочка 19 обособленной цельноформованной комбинированной звукопоглощающей панели 10 может дополнительно перекрываться металлической или полимерной звукопрозрачной облицовочной защитно-декоративной сетчатой или перфорированной панелью 25 (как это показано на фиг.106), с коэффициентом перфорации Kperf≥0,25.

Трубчатые части 28 четвертьволновых акустических резонаторов RI (поз. 11) могут размещаться соосно и содержать общее звукоотражающее донышко донной части 29, в виде присоединенной жесткой звукоотражающей торцевой части 35, присоединенной к обособленной цельноформованной комбинированной звукопоглощающей панели 10, как это показано на фиг. 17а.

При эксплуатации ШГТО 9, содержащего термонагруженные узлы и системы, смонтированные в непосредственной близости от поверхностных зон обособленных цельноформованных комбинированных звукопоглощающих панелей 10 и звукопрозрачных облицовочных защитно-декоративных перфорированных панелей 25 технического помещения 1, указанные конструктивные элементы (поз. 10 и 25) могут выполняться с учетом их термостойкого пожарно-безопасного конструктивно-технологического исполнения. В этих случаях, в частности, могут применяться вещества - антипирены для их структурной пропитки и/или тонкослойного поверхностного наполнения. Таким образом, дополнительно могут использоваться отдельные вещества или смеси веществ, предохраняющие материалы органического или синтетического происхождения от воспламенения и самостоятельного горения. В качестве антипиренов могут, в частности, использоваться гидрооксид алюминия, соединения бора, сурьмы, хлоридов, органические и неорганические соединения фосфора. Несущая внешняя поверхностная облицовочная звукопрозрачная оболочка 19 и защитный футерующий демпфирующий воздухопродуваемый слой материала 33, смонтированный на горловой части 28 четвертьволнового акустического резонатора RI (поз. 11), в этих случаях могут быть изготовлены из микроперфорированных металлических материалов. Аналогичные пожаробезопасностные требования по применению антипиренов могут, при необходимости, относиться к звукопрозрачным адгезионным покрытиям 26 и к обособленным дробленным фрагментированным звукопоглощающим элементам 18. В рассматриваемых конструктивно-технологических исполнениях, использование такого типа пожаростойких элементов преимущественно может относиться лишь к локальным зонам их применения, а не в составе полного комплекта звукопоглощающей футеровки несущих ограждающих конструкций технического помещения 1. Удаленные от ШГТО 9 стеновые (поз. 2) и/или потолочные (поз. 3) конструкции указанных акустических элементов (поз. 10, 25, 19, 26, 18) могут быть при этом изготовлены из других видов материалов, не требующих обработки антипиренами или не требующих металлического исполнения, как это приведено в описании заявляемого технического устройства.

Конструктивно-технологические исполнения отдельных составных частей обособленной цельноформованной комбинированной звукопоглощающей панели 10, а также сгруппированных из отдельных частей (полуформ) сопрягаемых между собой в монолитные конструкции составных сборных модулей 27 (см. фиг. 14б, 15б, 16б, 17б, 18б, 19б), могут быть представлены в виде сборных неразъемных соединений, с использованием соответствующих звукопрозрачных адгезионных покрытий 26, выполненных в виде сплошных, или перфорированных пленочных, или прерывистых волокнистых или порошкообразных звукопрозрачных покрытий. Они могут быть представлены соответствующим образом поверхностным и/или объемным распределением липких клеевых или термоактивных адгезионных веществ, с образованием во внутренней полости 31 обособленной цельноформованной комбинированной звукопоглощающей панели 10 неподвижных конструктивных звукопоглощающих (шумоподавляющих) элементов, представленных как пористо-дробленным звукопоглощающим веществом в виде скрепленных между собой дробленных фрагментированных звукопоглощающих элементов 18, так и четвертьволновыми акустическими резонаторами RI (поз. 11).

Внешний поверхностный слой, образуемый адгезионно скрепленными между собой контактирующими гранями и ребрами отдельных образцов обособленных дробленных фрагментированных звукопоглощающих элементов 18, в составе обособленной цельноформованной комбинированной звукопоглощающей панели 10, может формировать соответствующую монолитную воздухопродуваемую звукопоглощающую брикетированную структуру, которая, в свою очередь, адгезионно сопрягается с встречной поверхностью несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19 в составе обособленной цельноформованной комбинированной звукопоглощающей панели 10.

Внешний поверхностный слой пористой воздухопродуваемой звукопоглощающей структуры, составленной из обособленных дробленных фрагментированных звукопоглощающих элементов 18, которые соответствующим образом распределены в пространственных зонах внутренней полости 31, примыкающей (сопрягающейся) с несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой 20 и жестким звукоотражающим донышком донной части 29, формирует соответствующих габаритов трубчатые части 28 четвертьволновых акустических резонаторов RI (поз. 11), интегрированных в пористой воздухопродуваемой структуре вещества обособленной цельноформованной комбинированной звукопоглощающей панели 10.

Пустотелые формованные полостные емкости, представленные донной 29, трубчатой 28 и горловой 30 частями четвертьволнового акустического резонатора RI (поз. 11), в составе обособленной цельноформованной комбинированной звукопоглощающей панели 10, могут включать как идентичных габаритных размеров и геометрических форм акустические четвертьволновые резонаторы RI (поз. 11), как это показано на фиг. 11а, 11б, 11в, 14а, 15а, 17а, 19а, характеризующиеся идентичной частотной настройкой на заданные конкретные значения (совокупность значений звуковых частот, сгруппированных в узкую частотную полосу) собственных (резонансных) частот звуковых колебаний (fIR), образованных акустических четвертьволновых резонаторов RI (поз. 11), так и отличающихся между собой габаритных размеров и геометрических форм акустических четвертьволновых резонаторов RI (поз. 11), как это показано на фиг.16а, 16б, 18а, обеспечивающих их отличающуюся частотную настройку на заданные отличающиеся значения (заданные совокупности значений звуковых частот, сгруппированных в узкую частотную полосу) собственных (резонансных) частот звуковых колебаний (fIR) образованных четвертьволновых акустических резонаторов RI (поз. 11).

Конструктивно-технологические исполнения четвертьволновых акустических резонаторов RI (поз. 11) представлены полым полостным тупиковым трубчатым элементом (трубчатой частью 28), ограниченным несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой 20 и жестким звукоотражающим донышком донной части 29, перекрывающим проходное сечение трубчатой части 28 на его концевом участке (см. фиг. 11а, 11б, 11в, 12а, 12б, 12в, 13а, 13б, 14а, 14б, 15а, 15б, 16а, 16б, 17а, 17б, 18а, 18б, 19а, 19б, 20, 21). Противолежащая открытая концевая зона трубчатой части 28 с вязкоприсоединенной к ней частью колеблющегося в трубчатой части 28 воздушного столба, (находящейся за плоскостью открытого среза трубчатой части 28), формирующей присоединенную колеблющуюся воздушную массу в виде динамического приращения к воздушной массе, сосредоточенной в трубчатой части 28, образует горловую часть 30 четвертьволнового акустического резонатора RI (поз. 11), см. фиг. 20 и фиг. 21. Формирование заданных значений физических и конструктивных параметров четвертьволновых акустических резонаторов RI (поз. 11) осуществляется конкретизированным расчетом значений их собственной (резонансной) частоты fIR, с учетом геометрической длины трубчатой части 28 (lIr), и динамической длины (lIR), учитывающей величину динамического приращения, формируемого приведенным гидравлическим диаметром проходного сечения трубчатой части 28 - dпр, с учетом влияния на ее величину возможного использования защитных футерующих демпфирующих слоев материалов 33, монтируемых на горловой части 30 (перекрывающих проходное сечение горловой части 30 на ее открытом концевом срезе). Техническое исполнение трубчатой части 28, выполненной из воздухонепродуваемой структуры материала, с герметично присоединенной к ней донной частью 29, в виде жесткого звукоотражающего донышка, выполненного также из воздухонепродуваемой структуры материала, позволяет формироваться (локализироваться) в образованной тупиковой полости упруго-массового воздушного столба, возбуждаемого набегаемой на горловую часть 30 звуковой волны с частотой fms и длиной волны λms и возбуждаемой в ней резонансные полостные колебания упругого воздушного столба с частотой fRms, четверть длины волны которой обеспечивает компенсационное выравнивание полей давлении падающих глад и отраженных Ротр звуковых волн в зоне горловой части 30 четвертьволнового акустического резонатора RI (поз. 11). Указанная частотная настройка эффективного функционирования четвертьволнового акустического резонатора RI (поз. 11) осуществляется с учетом заданных известных (определенных расчетным или экспериментальным путем, или известных согласно паспортным характеристикам эксплуатируемого ШГТО 9, или известных согласно технического задания на проектирование или техническим условиям производства ШГТО 9) спектральных акустических характеристик ШГТО 9, смонтированного в техническом помещении 1, известных габаритно-геометрических параметров его внутренней трехмерной воздушной полости 8, известных значений эксплуатационной температуры воздушной среды в техническом помещении 1 (уже эксплуатируемого или проектируемого).

Функционирование четвертьволновых акустических резонаторов RI (поз. 11), как технических устройств ослабления (подавления, заглушения) акустической энергии в заданных узких частотных диапазонах звукового спектра, определяется (характеризуется) соответствующими дискретными значениями их собственных (резонансных) частот колебаний fIR и параметрическими характеристиками добротности (определяемой шириной резонансных характеристик амплитудных откликов, сформированных частотной областью звукового спектра относительно дискретного значения собственной (резонансной) частоты колебаний fIR) указанных используемых четвертьволновых акустических резонаторов RI (поз. 11). Параметр добротность равен отношению значения собственной (резонансной) частоты колебаний fIR четвертьволнового акустического резонатора RI (поз. 11) к ширине прилегающей к ней частотной полосы ΔfR, на границах которой акустическая энергия при вынужденных резонансных колебаниях вдвое (на 3 дБ) меньше акустической энергии на резонансной частоте fIR. Характеристика добротности четвертьволнового акустического резонатора RI (поз. 11) определяется (формируется) реализуемой в нем величиной внутренних диссипативных потерь, возникающих как непосредственно в составных структурах (элементах) четвертьволнового акустического резонатора RI (поз. 11), так и внешними энергетическими потерями, непосредственно связанными с процессом излучения звука в окружающую среду, на который также расходуется колебательная энергия четвертьволнового акустического резонатора RI (поз. 11). Функционирование, с частотной настройкой на собственную (резонансную) частоту колебаний fIR четвертьволновых акустических резонаторов RI (поз. 11), базируется на соответствующем волновом (длина волны λ, фаза волны ϕ) динамическом взаимодействии амплитуд падающих Рпад звуковых волн на звукоотражающее препятствие, представленное его донной частью (жестким звуоотражающим донышком) - поз. 29, и отраженных от него Ротр звуковых волн, с возникающим эффектом интерференционного (фазо-амплитудного) компенсационного подавления энергии распространяемых в упругой (воздушной) среде звуковых волн заданного частотного диапазона, совпадающего (близких по значениям) с собственными (резонансными) частотами fIR четвертьволновых акустических резонаторов RI (поз. 11), см. фиг. 20. Как известно, в общем виде частота f и длина волны λ звуковых колебаний связаны со скоростью с распространения их в упругой (воздушной) среде следующим известным [4] соотношением (2)

где λ - длина звуковой волны, м;

f - частота звуковых колебаний, Гц (с-1);

с - скорость распространения звуковых волн (скорость звука), м/с;

В свою очередь, скорость распространения звуковых волн с в воздушной среде связана известной функциональной зависимостью [4] с температурным состоянием этой среды t°C, согласно выражения (3)

где c(t) - скорость распространения звуковых волн (скорость звука) в упругой среде (воздухе) при температуре воздуха t°C, м/с

t°C - температура воздуха в °С

Таким образом (см. фиг. 20), с учетом известных выражений (2) и (3), четверть длины излучаемой ШГТО (поз. 9) звуковой волны помещающейся в габаритах тупиковой пустотелой полости трубчатой части 28 четвертьволнового акустического резонатора RIms (поз. 11) - и отсчитываемой от поверхности жесткого донышка донной части 29, включающая его горловую часть 30 с вязкоприсоединенным к ней динамическим удлинением на величину (0,1…0,3)dпр (здесь dпр - приведенный гидравлический диаметр, в м, произвольной геометрической формы проходного сечения трубчатой части 28 (для круглого проходного сечения dпр=dкp, где dкp - диаметр крута) четвертьволнового акустического резонатора RIms, поз. 11), характеризуемого физическим параметром динамическая длина lIRms четвертьволнового акустического резонатора RIms (поз. 11), удлиняющим его геометрическую длину lIrms на величину (0,1…0,3)dпp, может быть представлена в виде соотношения (4):

или

С учетом выражений (6) и (7):

где

π=3,14;

Sт - площадь проходного сечения, в м2, трубчатой части 28 четвертьволнового акустического резонатора RIms, поз. 11,

геометрическая длина lIrms четвертьволнового акустического резонатора RIms, поз. 11, используемая на стадии его конструирования, может быть определена из известных геометрических и физических параметров согласно следующих выражений:

В окончательном виде, после преобразований

Аналогичным образом (аналогичными соображениями), может быть представлено выражение для определения геометрической длины lIrmA четвертьволнового акустического резонатора RImA (поз. 11), предназначенного для подавления резонансного звукового излучения в техническом помещении 1, обусловленного возбуждением собственных акустических мод массо-упругого тела его трехмерного воздушного объема, с длинами звуковых волн λmAmL, λmB, λmH) на дискретных значениях собственных частот звуковых колебаний fmA (fmL, fmB, fmH), распространяемых во внутренней трехмерной воздушной полости 8 технического помещения 1, в направлении ее габаритных параметров A (L, В, Н):

Выбор диапазона изменения величины дополнительно вязкоприсоединенной колеблющейся. воздушной массы к колеблющемуся столбу массы воздуха, ограниченной полостью его трубчатой части (поз. 28), формируют заданное значение динамической длины lIR четвертьволнового акустического резонатора RI (поз. 11), которое включает его геометрическую длину llr и присоединенное к открытому срезу горловой части (поз. 30) динамическое приращение (0,1…0,3)dпp согласно выражению (6), которое предопределяется как применяемой заданной геометрической формой сечения трубчатой части четвертьволнового акустического резонатора RI (поз. 11) - круглой, элипсной, прямоугольной, трапецивидной, так и возможной монтажной установкой в зону горловой части (поз.30) четвертьволнового акустического резонатора RI (поз. 11), тем или иным типом внешним поверхностным облицовочным звукопрозрачным слоем материала (поз. 21), с перекрытием проходного сечения трубчатой части (поз. 28), которые могут характеризоваться широким диапазоном изменения значений величин сопротивления продуванию воздушным потоком (20…500 н⋅с/м3), будучи представленными различного вида воздухопродуваемыми тканевыми материалами (техническими марлями, воздухопродуваемыми волокнистыми неткаными полотнами, микроперфорированными пленочными полимерными или воздухопродуваемыми микроперфорированными фольговыми металлическими материалами, отличающиеся толщинами слоев - 0,025…0,25 мм и поверхностной плотностью в виде удельной поверхностной массы - 20…300 г/м2). В качестве нетканых волокнистых полотен могут рассматриваться материалы типа «малифлиз», «филтс», стеклоткань, полотно на основе супертонкого базальтового волокна. Микроперфорированные слои воздухопродуваемых полимерных пленочных материалов могут быть представлены полиэстеровой алюминизированной, уретановой, поливинилхлоридной, полиэтилентерефталатовой пленками. Микроперфорированные металлические слои воздухопродуваемых материалов могут быть представлены сталью, алюминием, медью, латунью.

Ослабить чувствительность (уменьшить температурную зависимость) нерегулируемых (неперенастраиваемых), отличающихся простотой изготовления, конструкций четвертьволновых акустических резонаторов RI (поз. 11), для обеспечения достаточно эффективного функционирования в некотором изменяемом эксплуатационном температурном режиме Δt окружающей воздушной среды, возможно путем соответствующего изменения параметрической характеристики «добротность» четвертьволновых акустических резонаторов RI (поз. 11), с некоторой допустимой (приемлемой) потерей эффективности заглушения по величине подавления амплитудного уровня акустической энергии (уменьшения уровня звукового давления) на дискретных значениях собственных (резонансных) частот fIR, но обеспечении расширения частотного диапазона его функционирования Это, в частности, может достигаться введением в резонирующую колебательную (акустическую) систему, содержащую четвертьволновые акустические резонаторы RI (поз. 11), соответствующих конструктивно-технологических элементов, обладающих дополнительными диссипативными потерями, дополнительно рассеивающими звуковую энергию и, тем самым, обеспечивающими соответствующее расширение частотного диапазона приемлемой эффективности четвертьволновых акустических резонаторов RI (поз. 11). В этих случаях, расширение частотного диапазона эффективности подразумевает возможное увеличение демпфируемого числа звуковых частот, располагаемых (группируемых) вблизи дискретного значения собственной (резонансной) частоты fIR и, соответствующих им, группировок длин λIR (четвертей длин λIR/4) звуковых волн, укладывающихся при их распространении в полости трубчатой части 28 и присоединенным к ней динамическим удлинением, учитываемым динамической длиной lIR, четвертьволнового акустического резонатора RI (поз. 11), с реализацией достигаемых, приемлемых для решения поставленной технической задачи, интерференционных компенсационных эффектов подавления (ослабления) акустической энергии, достигаемом в уже расширенном частотном диапазоне, учитывающим эксплуатационные температурные изменения.

При необходимости (согласно технических требований на проектирование), может рассматриваться возможное применение дополняющего или альтернативного использования технических устройств в виде типичной автоматизированной системы термостатирования (климатического контроля) воздушной среды технического помещения 1, функционирующей во внутренней трехмерной воздушной полости 8, оборудованной регулируемой производительностью функционирования (дискретным «включением - отключением», или плавно регулируемым скоростным режимом работы) электровентиляторной (климатической) установкой устройства вентиляционного охлаждения (на фиг. не показаны), которое может обеспечивать поддержку заданного эксплуатационного (теплового) режима работы ШГТО 9 в достаточно узком температурном диапазоне воздушной среды Δt. Это, соответствующим образом, может исключить (ослабить) недопустимую частотную расстройку эффективного частотонастроенного шумоподавляющего функционирования используемых четвертьволновых акустических резонаторов RI (поз. 11), наделенных дискретным (узкополосным) частотно-настроенным функционированием, с конкретным учетом длин звуковых волн λIR (четвертей длин звуковых волн λIR/4), при данных физических условиях и скоростях распространения звуковых волн c(t) на установившихся температурах воздуха t°Cст.

Как известно, технические помещения 1, стеновые ограждающие конструкции которых выполнены в виде жестких звукоотражающих элементов, могут также создавать проблемы усиления шумового излучения, генерируемого ШГТО 9, возникающие вследствие формирования собственных низкочастотных акустических резонансов их внутренних трехмерных воздушных полостей 8 (см. выражение (1). Образующиеся (возбуждаемые) собственные акустические резонансы внутренней трехмерной воздушной полости 8 технического помещения 1, возникающие на ее собственных акустических модах, с частотами звуковых колебаний fmA (fmL, fmB, fmH, где m=1, 2, 3 …), могут в существенной степени усиливать резонансную передачу акустической энергии из замкнутой внутренней трехмерной воздушной полости 8 технического помещения 1 в смежные помещения строительного сооружения (здания) или в открытое пространство, с соответствующим увеличением акустического загрязнения окружающей среды. Это еще в большей степени актуализирует решение задачи применения соответствующих технических средств устранения (подавления, ослабления) такого типа резонансного усиления акустического излучения. Наряду с физическим процессом резонансного усиления акустического излучения, может иметь место развитие физического процесса биений взаимодействующих акустических сигналов (звуковых волн) с близкими значениями частот звуковых колебаний fms и fmA, проявляющихся в виде пульсирующего шумового сигнала с частотой нарастания и спада его уровней, равной разности значений взаимодействующих частот звуковых колебаний fms и fmA. Для рассматриваемого в материалах заявки доминирующего низкочастотного звукового диапазона излучения (см. фиг. 1-4), не превышающего 500 Гц, результирующий акустический сигнал указанных физических взаимодействий, проявляющийся в виде биений акустических сигналов, по субъективным восприятиям человеческого слуха воспринимается в виде резкого неприятного раздражающего воздействия, ухудшающего психо-физиологическое состояние человека и является отрицательным фактором обеспечения акустической безопасности окружающей среды.

Кроме четвертьволновых акустических резонаторов RIms (поз. 11), настроенных на рабочие доминирующие функциональные частоты fms звуковых спектров акустического излучения ШГТО 9, в структуру обособленной цельноформованной комбинированной звукопоглощающей панели 10 могут быть также дополняюще или альтернативно интегрированы и образцы четвертьволновых акустических резонатов RI (поз. 11), настроенных на подавление акустического излучения в других (отличающихся от значений рабочих функциональных частот fms) частотных диапазонах звукового спектра, которые также могут формироваться многочисленными другими разнообразными источниками акустического излучения, находящимися в составе технического технического помещения 1. Такими, в частности, могут являться шумогенерирующие устройства вентиляционного охлаждения, а также отдельные резонансные усиления звукового излучения, возникающие на собственных акустических модах воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1 - fmA (fmL, fmB, fmH), определяемые расчетным путем согласно выражения (1). К ним могут относиться также звуковые излучения, генерируемые динамически возбужденными собственными структурными вибрациями, отдельных тонкостенных металлических корпусных элементов оборудования или легковозбудимыми тонкостенными металлическими ограждающими панелями стен 2 (внутренних стеновых перегородок) технического помещения 1, вносящими дополнительный вклад в совокупное шумовое излучение многокомпонентного звукового поля, формирующегося в составе заявляемого технического объекта. Подавление резонансных усилений звуковых излучений, возникающих на собственных акустических модах воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1, с собственными (резонансными) частотами fmA (fmL, fmB, fmH), определенные расчетным путем согласно выражению (1), также может быть осуществлено с использованием обособленных цельноформованных комбинированных звукопоглощающих панелей 10 за счет соответствующим образом частотнонастроенных четвертьволновых акустических резонаторов RImA, физические и геометрические параметры которых определяются согласно выражений (4)…(11). В этих случаях, расчетное значение геометрической длины четвертьволнового акустического резонатора RImA, предназначенного для подавления звукового излучения, возникающего на собственных акустических модах внутренней трехмерной воздушной полости 8 технического помещения 1, характеризуемой габаритными параметрами A (L, В, Н), с частотами звуковых колебаний fmA (fmL, fmB, fmH), определяемыми согласно выражению (1), могут быть определены согласно выражению (11).

Образование технического устройства четвертьволнового акустического резонатора RI (поз. 11), с использованием несущей внутренней воздухонепродуваемой пленочной эластичной оболочки 20, выполненного в виде тупикового трубчатого полостного элемента, определенных габаритных размеров его звукопрозрачной воздухонепродуваемой трубчатой части 28, перекрытой жестким звукоотражающим донышком донной части 29, и открытой горловой частью 30, обуславливает развитие динамического процесса резонаторного возбуждения высокоамплитудных колебаний в его горловой части 30 и сопутствующего диссипативного поглощения звука менее эффективно, в сравнении с «классическим» типом функционирования четвертьволнового акустического резонатора RI, при выполнении его трубчатой части 28 в виде жесткой звукоотражающей стенки. Физический процесс распространения, отражения и поглощения энергии звуковых волн такого типа комбинированным звукопоглощающим техническим устройством наглядно иллюстрируется схемой, приведенной на фиг. 20. Падающая на горловую часть 28 четвертьволнового акустического резонатора RIms, (поз. 11), со стороны излучающего звук ШГТО 9 звуковая волна (энергия звуковой волны) заданной частоты fms и длины волны λms (четверти длины волны ), при своем пространственном распространении попадает в горловую часть 30, распространяется по волноводному каналу трубчатой части 28 в направлении расположения жесткого звукоотражающего донышка донной части 29. При этом, энергия звуковых волн проникает через звукопрозрачную структуру несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочки 20, трубчатой части 28, в пористое звукопоглощающее вещество, составленное из обособленных дробленных фрагментированных звукопоглощающих элементов 18, в котором будет эффективно рассеиваться (поглощаться), преобразовываясь в тепловую энергию, указанным пористым звукопоглощающим веществом, представленным обособленными дробленными фрагментированными звукопоглощающими элементами 18. В этом случае, распространяясь в направлении к звукоотражающему донышку донной части 29 и отражаясь от него, амплитуда звукового давления падающей звуковой волны Рпад будет уже частично ослабляться. Уже частично ослабленная отраженная звуковая волна Ротр, распространяясь в обратном направлении к открытой горловой части 30 четвертьволнового акустического резонатора RIms, (поз. 11), будет складываться в противофазе с амплитудой звукового давления падающей звуковой волны Рпад. В результате образующегося интерференционного противофазного сложения амплитуд звуковых давлений падающей Рпад и отраженной Ротр звуковых волн, энергия падающей звуковой волны Рпад будет соответственно уменьшена (скомпенсирована). Вторым действующим механизмом ослабления энергии падающей звуковой волны Рпад-является процесс поглощения ее энергии пористым звукопоглощающим веществом, образованным обособленными дробленными фрагментированными звукопоглощающими элементами 18, а также вследствие реализующихся сопутствующих энергопреобразующихся диссипационных эффектов рассеивания звуковой энергии, базирующихся на дифракционных механизмах дополнительного поглощения энергии звуковых волн, огибающих встречные твердотелые препятствия типа пористого дробленного звукопоглощающего вещества (обособленных дробленных фрагментированных звукопоглощающих элементов 18 пористой воздухопродуваемой структуры, и/или воздухонепродуваемой закрытоячеистой вспененной, и/или плотной непористой структуры 23 полимерных материалов, жесткого звукоотражающего донышка донной части 29, а также периметрических зон открытой горловой части 30 четвертьволнового акустического резонатора RIms, (поз. 11)), как это, в частности, иллюстрируется схемами, приведенными на фиг. 20, 21, 22, 24. Использование тупикового звукопрозрачного тонкопленочного волноводного трубчатого канала 28, оборудованного на концевом участке жестким звукоотражающим донышком донной части 29, позволяет реализовать, в связи с этим, многочисленные физические принципы подавления распространения звуковой энергии, генерируемой ШГТО (поз. 9). Это позволит реализовать более эффективное результирующее диссипативное поглощение звуковой энергии за счет осуществления физических явлений, отмеченных в тексте описания заявки, таких как:

- возникающая дифракция распространяемых звуковых волн в краевых зонах открытых горловых частей 30, с их загибающимся проникновением (прохождением) в противоположном направлении прямому распространению звуковых волн, с последующим диссипативным рассеиванием энергии в пористой звукопоглощающей структуре обособленных дробленных фрагментированных звукопоглощающих элементов 18 (см. фиг. 21, 24);

- дополнительное увеличение встречной площади поверхности падения и, соответственно, диссипативного поглощения звуковой энергии, обусловленное введением в пористой звукопоглощающей структуре тупиковых трубчатых воздушных полостей, облицованных несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой 20, образующейся трубчатой частью 28 четвертьволнового акустического резонатора RI (поз. 11), см. фиг. 20, 21;

- введение тупиковых трубчатых воздушных полостей, представленных трубчатыми частями 28 четвертьволновых акустических резонаторов RI (поз. 11), в пористую звукопоглощающую структуру обособленной цельноформованной комбинированной звукопоглощающей панели 10, способствует более плавному (менее скачкообразному) согласованию волновых акустических сопротивлений в зонах граничного разделения упругих слоистых сред распространения звуковых волн (воздуха и твердотелого пористого дробленного звукопоглощающего вещества, представленного обособленными дробленными фрагментированными звукопоглощающими элементами 18, заключенными в замкнутой внутренней полости 31, образованной несущей внешней поверхностной облицовочной звукопрозрачной оболочкой 19 и несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой 20), в сравнении с типичным плоскоповерхностным вариантом типичной плосколистовой конструкции звукопоглощающей панели (не содержащей чередующихся внутренних воздушных полостей и межполостных перемычек), что способствует уменьшению энергии отражающих звуковых волн и увеличению звукопоглощающего эффекта;

- уменьшение динамической жесткости (увеличение динамической податливости) используемого пористого скелета, формируемого дробленным звукопоглощающим веществом, обусловленное дополнительной интеграцией пустотелых воздушных полостей в структуры обособленной цельноформованной комбинированной звукопоглощающей панели 10 (см. фиг. 20, 21, 24);

- образование структурно-полостной акустической анизотропии, с реализацией физического процесса диссипативного рассеивания энергии распространяемых звуковых волн, вследствие звукопрозрачного введения (подключения) интегрированных в объемную структуру обособленной цельноформованной комбинированной звукопоглощающей панели 10 пустотелых трубчатых полостей 28 четвертьволновых акустических резонаторов RI (поз. 11), см. фиг. 20, 21, 24, 11а, 11б, 11в, 12а, 12б, 12в, 13а, 13б, 14а, 14б, 15а, 15б, 16а, 16б, 17а, 17б, 18а, 18б, 19а;

- образование структурной акустической анизотропии с дополнительными диссипативными дифракционными поглощениями звуковой энергии вследствие введения в объемную структуру пористого дробленного звукопоглощающего вещества обособленной цельноформованной комбинированной звукопоглощающей панели 10 различного типа (разнообразных) твердотелых воздухонепродуваемых закрытоячеистых вспененных и/или плотных непористых структур полимерных материалов 23 (см. фиг. 20, 21, 22);

- реализация физических эффектов поглощения звуковой энергии, возникающих в узкощелевых воздушных зазорах между противолежащими торцевыми частями смонтированных обособленных цельноформованных комбинированных звукопоглощающих панелей 10, обуславливающих дополнительное диссипативное дифракционное поглощение звуковой энергии их свободными краевыми зонами пористой звукопоглощающей структуры при огибании их распространяемыми звуковыми волнами (см. фиг. 23);

- реализация физических эффектов усиления низкочастотного поглощения звуковой энергии от введения заданных воздушных зазоров между тыльными сторонами поверхностей обособленных цельноформованных комбинированных звукопоглощающих панелей 10 и противолежащими лицевыми поверхностями ограждающих стеновых конструкций (стен 2, потолка 3), см. фиг. 25;

- реализация дифракционного поглощения звуковой энергии на краевых периметрических зонах жесткого звукоотражающего донышка донной части 29, при его огибании распространяемыми звуковыми волнами (см. фиг. 21);

- использование конструктивно-технологического исполнения трубчатого канала трубчатой части 28 в виде звукопрозрачного тонкопленочного устройства, оборудованного на концевом участке жестким звукоотражающим донышком донной части 29, представляемого в виде четвертьволнового акустического резонатора RI (поз. 11), позволяет осуществлять физические процессы не только противофазной компенсации амплитудно-фазовых взаимодействий прямой (входящей в горловую часть 30) и отраженной (от жесткого звукоотражающего донышка донной части 29), но и обеспечивать прохождение звуковых волн из звукопрозрачной тупиковой полости, образованной несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой 20, в структуру пористого звукопоглощающего вещества, находящегося в полости несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19 обособленной цельноформованной комбинированной звукопоглощающей панели 10, представленного обособленными дробленными фрагментированными звукопоглощающими элементами 18, с реализацией физического процесса широкополосного по частотному составу звукового излучения диссипативного поглощения звуковой энергии, а не только звуковой энергии на дискретных значений частот звуковых волн, четверть длины которых () укладывается в габаритных размерах динамической длины lIR четвертьволнового акустического резонатора RI (поз. 11), как это имеет место в конструкции классического четвертьволнового акустического резонатора RI (поз. 11), оборудованного трубчатой частью 28, представленной трубчатой звукоизолирующей (звуконепрозрачной, звукооотражающей) твердотелой конструкцией, исключающей прохождение звуковых волн из ее полости в полость несущей внешней поверхностной облицовочной звукопрозрачной оболочки 19, заполненной звукопоглощающим веществом.

Прямые звуковые волны, распространяемые и проникающие внутрь структур составных звукопоглощающих элементов обособленной цельноформованной комбинированной звукопоглощающей панели 10, падая на их лицевые звукопрозрачные поверхности и проникая в пористые воздухопродуваемые структуры, составленные из обособленных дробленных фрагментированных элементов 18, в них эффективно диссипативно рассеиваются с преобразованием в теплоту. Это относится как к микропористым структурам обособленных дробленных фрагментированных элементов 18, так и к сообщающимся макропористым извилистым воздушным каналам и полостям, образующимся между их контактирующими гранями и ребрами. Процесс диссипативного поглощения звуковой энергии включает, в том числе, и формованные полостные емкости, образуемые несущими внутренними воздухонепродуваемыми пленочными эластичными звукопрозрачными оболочками 20 представленные в виде четвертьволновых акустических резонаторов RI (поз. 11).

В качестве иллюстративных примеров актуальной необходимости подавления дискретных низкочастотных составляющих, доминирующих в звуковых спектрах рабочих пространств технического помещения 1, представленных в виде рабочих доминирующих функциональных частот fms, приведены результаты экспериментальных исследований звуковых полей различного типа технических помещений 1. В частности, на фиг. 1-4 приведены экспериментальные результаты измерений спектров звукового давления (FFT-спектров, 1/3 октавных спектров), излучаемых различного типа ШГТО 9 (силовым электротрансформатором, промышленным вентилятором, поршневым компрессором), размещенных в соответствующих технических помещениях 1. Результаты указанных экспериментальных исследований свидетельствуют о наличии выделяющихся в спектрах идентифицируемых низкочастотных рабочих доминирующих функциональных частот fms звукового излучения исследованных ШГТО 9, формирующих звуковое поле технического помещения 1. В частности, результаты измерения узкополосного FFT-звукового спектра, излучаемого ЭТПЗТ, размещенной в подвальном этаже строительного здания испытательного центра промышленного предприятия (см. фиг. 1), указывают на выделяющиеся в звуковом спектре рабочие доминирующие дискретные функциональные частоты fms, в виде трех низкочастотных гармонических составляющих спектра звукового давления f1s=100 Гц, f2s=200 Гц, f3s=300 Гц, кратные частоте сети переменного тока fc=50 Гц ШГТО 9, представленного силовым электротрансформатором. УЗД на зарегистрированных дискретных частотах (f1s, f2s, f3s) превышают при этом более чем на 20 дБ (в 10 раз - в линейных единицах измерений) уровни звуковых давлений (УЗД) остальных частотных составляющих звукового излучения ЭТПЗТ. Таким образом, это указывает на их полное доминирование как в замкнутом пространственном звуковом поле технического помещения 1, представленного в виде ЭТПЗТ, так и на прилегающей к нему территории (измерительный микрофон располагался вне помещения 1 в зоне закрытого дверного проема) и актуальную необходимость их подавления.

Измерения 1/3 октавного спектра звукового давления, излучаемого силовым электротрансформатором типа 3МК 260-1 фирмы PLATTHAUS (Германия), расположенным в техническом помещении 1 испытательного центра промышленного предприятия (см. фиг. 2), также зарегистрировали рабочие доминирующие функциональные частоты fms звукового излучения ШГТО 9, субъективно воспринимаемым в виде выраженного низкочастотного «электротрансформаторного гула» силового электротрансформатора с излучаемыми звуковыми частотами: f1s=100 Гц, f2s=200 Гц, f3s=300 Гц (входит в состав ширины частотной полосы с центром 315 Гц). УЗД на зарегистрированных дискретных частотах (f1s, f2s, f3s) превышают более чем на 15 дБ (в 5,6 раза - в линейных единицах измерения) УЗД других частотных составляющих представленного спектра звукового давления исследуемого электротрансформатора, что также свидетельствует об их доминирующем вкладе в процесс формирования окружающего звукового поля технического помещения 1 с его негативным воздействием на окружающую среду.

Приведенный 1/3 октавный спектр звука, излучаемый промышленным вентилятором модели Аксипал FTDA-050-3 (Россия), смонтированным в техническом помещении 1, представленным помещением испытательной акустической лаборатории (см. фиг. 3), идентифицирует в качестве выраженных низкочастотных спектральных составляющих две рабочие доминирующие функциональные частоты звукового излучения ШГТО 9, проявляющиеся в виде лопастной (лопаточной) частоты вращения крыльчатки f1s=50 Гц и кратной ей гармоники f2s=100 Гц. УЗД на отмеченных дискретных значениях частот (f1s, f2s) более чем на 25 дБ (в 17,8 раза - в линейных единицах измерения) превышают УЗД прилегающего к ним средне- и высокочастотного диапазона исследуемого спектра звукового излучения ШГТО 9. Это позволяет квалифицировать указанные частоты f1s и f2s в качестве выраженных доминантных низкочастотных излучателей звука, формирующих звуковое поле технического помещения 1.

Результаты измерений 1/3 октавного звукового спектра, излучаемого поршневым компрессором фирмы STAL (Швеция), смонтированным в техническом помещении 1 компрессорно-холодильной станции испытательного центра промышленного предприятия, представленные на фиг. 4, также идентифицируют две выраженные дискретные рабочие доминирующие функциональные частоты звукового излучения ШГТО 9 - f1s=200 Гц и f2s=400 Гц. УЗД на зарегистрированных дискретных значениях звуковых частот (f1s, f2s) более чем на 10 дБ (в 3,16 раза - в линейных единицах измерения) превышают УЗД остальных частотных составляющих спектра звукового излучения, зарегистрированного в техническом помещении 1 исследуемой компрессорно-холодильной станции.

Таким образом, как следует из выполненных результатов исследований, приведенных на фиг. 1-4, идентифицируемые в качестве дискретных значений рабочие доминирующие функциональные частоты звукового излучения fms различного типа исследуемых ШГТО 9, смонтированных в соответствующих технических помещениях 1, отличающихся габаритных размеров L, В, Н, сосредоточены в низкочастотной области звукового спектра (50…400 Гц), длины звуковых волн λms которых находятся в метровом диапазоне звуковых частот. Это, в свою очередь, может способствовать их кратному частотно-волновому резонансному совпадению с габаритными размерами A (L, В, Н) массо-упругого воздушного объема внутренней трехмерной воздушной полости 8 технического помещения 1, находящейся в метровых диапазонах измерений и характеризуемой соответствующими собственными акустическими модами с длинами звуковых волн λmA (полудлинами ), укладывающимися между противолежащими (оппозитно расположенными) жесткими звукоотражающими поверхностями стеновых 2 (а также пола 4 и потолка 3) ограждений технического помещения 1. Таким образом, указанные факторы актуализируют решение проблемы подавления звуковых излучений, производимыми ШГТО 9, как в подавляющем широкополосном звуковом диапазоне спектра, так и с первостепенной (исключительной) задачей уменьшения только его доминирующих низкочастотных составляющих звукового спектра. В связи с этим, поставленные задачи могут быть решены использованием комбинированных технических устройств заглушения звуковой энергии, включающих как частотонастроенные элементы ее заглушения, наделенные повышенной эффективностью, так и широкополосные шумозаглушающие устройства, приемлемо эффективные в средне- и высокочастотном звуковом диапазоне, которые представлены пористыми звукопоглощающими структурами акустических материалов и соответствующих звукопоглощающих конструкций. Следует указать, что футеровка ограждающих стеновых и потолочных конструкций технического помещения 1 обособленными цельноформованными комбинированными звукопоглощающими панелями 10, содержащими пористые звукопоглощающие вещества, будет дополнительно способствовать устранению выраженных полостных воздушных резонансов внутренней трехмерной воздушной полости 8 технического помещения 1, проявляющихся на собственных акустических модах, характеризуемых длинами звуковых волн λmA (полудлинами ), с собственными частотами звуковых колебаний fmA (fmL, fmB, fmH). В это же время, для усиления эффективности их подавления, в необходимых случаях, в составе обособленных цельноформованных комбинированных звукопоглощающих панелей 10 могут применяться заданные частотно настроенные устройства эффективного заглушения звукового излучения выраженных дискретных спектральных составляющих (в виде четвертьволнового акустического резонатора RImA (поз. 11)), включающих дискретные значения собственных частот звуковых колебаний fmA (fmL, fmB, fmH), проявляющиеся на слабозадемпфированных собственных акустических модах массо-упругого тела воздушного объема, характеризуемых длинами звуковых волн λmAmL, λmB, λmH), формирующихся во внутренней трехмерной воздушной полости 8 технического помещения 1, и распространяющихся в направлении его габаритных параметров A (L, В, Н).

Как следует из описания, представленное в качестве изобретения техническое устройство низкошумного технического помещения наделено широкополосным по частотному составу эффектом звукопоглощения, с выраженным, повышенной эффективности низкочастотным эффектом подавления дискретных значений рабочих доминирующих функциональных частот звукового излучения fms различного типа ШГТО 9, смонтированных в соответствующих технических помещениях 1. В этом случае, средне- и высокочастотное звуковое излучение подавляется используемыми в техническом устройстве пористыми звукопоглощающими диссипативными структурами, составленными из обособленных дробленных фрагментированных элементов 18 обособленной цельноформованной комбинированной звукопоглощающей панели 10. Оно усиливается краевыми дифракционными диссипативными звукопоглощающими эффектами, а также реализуемым диссипативным эффектом акустической анизотропии за счет включения в объемную пористую структуру обособленных дробленных фрагментированных элементов 18, образованных воздухопродуваемыми пористыми звукопоглощающими частицами утилизируемых материалов, в том числе определенного дозированного количества, с его соответствующим объемным распределением дробленных фрагментов плотных воздухонепродуваемых элементов твердых полимерных материалов в смеси с дробленными фрагментами пористых воздухопродуваемых звукопоглощающих элементов твердых полимерных материалов. Также в процесс поглощения звуковой энергии включаются физические процессы акустической анизотропии, формируемой пустотелыми воздушными полостями трубчатых частей 28 четвертьволновых акустических резонаторов RI (поз. 11), интегрированных в состав обособленных цельноформованных комбинированных звукопоглощающих панелей 10. Кроме этого, дифракционное диссипативное поглощение звуковой энергии реализуется на краевых периметрических зонах жесткого звукоотражающего донышка донной части 29, а также в краевых зонах горловых частей 30 и краевых зонах торцевых граней 32 зазорно смонтированных обособленных цельноформованных комбинированных звукопоглощающих панелей 10. Выполнение воздушных зазоров, образуемых между тыльными сторонами поверхности обособленных цельноформованных комбинированных звукопоглощающих панелей 10 и противолежащими поверхностями ограждающих стеновых конструкций (стен 2, потолка 3), также обеспечивает увеличение эффективности звукопоглощения в низкочастотном звуковом диапазоне. Наиболее эффективно резонансное звуковое излучение в низкочастотном диапазоне, формирующееся на выраженных в звуковых спектрах дискретных рабочих доминирующих функциональных частотах fms, генерируемых ШГТО 9, которое подавляется за счет интегрированных внутри структуры пористого звукопоглощающего вещества обособленной цельноформованной комбинированной звукопоглощающей панели 10 частотонастроенных четвертьволновых акустических резонаторов RIms (поз. 11).

Заявляемое техническое решение в виде изобретения не ограничивается конкретными конструктивными примерами его осуществления, описанными в тексте и показанными на прилагаемых схемах. Остаются возможными и некоторые (несущественные) изменения различных составных элементов или конструкционных материалов, из которых эти элементы выполнены, либо замена их технически эквивалентными, не выходящими за пределы объема притязаний, обозначенного формулой изобретения.

1. Низкошумное техническое помещение, характеризующееся установившимися в его внутренней трехмерной воздушной полости физическими параметрами звукового и температурного поля, представленными дискретными значениями рабочих доминирующих функциональных частот звукового излучения fms эксплуатируемого в техническом помещении по крайней мере одного шумогенерирующего технического объекта, длинами звуковых частот звукового излучения эксплуатируемого шумогенерирующего технического объекта λms, скорости звука с и температуры воздуха во внутренней трехмерной воздушной полости t°С, содержащее несущие ограждающие элементы в виде пола, стен и потолка, на которых соответствующими крепежными элементами, с образованием соответствующих полостных воздушных зазоров, закреплены обособленные звукопоглощающие панели, составленные из обособленных дробленых фрагментированных звукопоглощающих элементов, помещенных в полостях замкнутых обособленных емкостей несущих звукопрозрачных оболочек, а в образованных полостных воздушных зазорах смонтированы обособленные конструкции четвертьволновых акустических резонаторов RI, эксплуатируемый шумогенерирующий технический объект функционирует на заданном установившемся постоянном скоростном эксплуатационном режиме работы ns, сопровождающемся установившимися физическими процессами излучения звуковой и тепловой энергии, в спектральном звуковом составе которых содержатся выделяющиеся дискретные значения рабочих доминирующих функциональных частот fms, характеризуемых соответствующими длинами звуковых волн λms, отличающееся тем, что обособленные звукопоглощающие панели представлены оболочковыми конструктивно-технологическими исполнениями в виде преимущественно прямоугольного поперечного сечения обособленных цельноформованных комбинированных звукопоглощающих панелей, содержащих несущую воздухонепродуваемую или воздухопродуваемую внешнюю поверхностную облицовочную звукопрозрачную оболочку, адгезионно сопрягаемую с несущей внутренней воздухонепродуваемой пленочной эластичной звукопрозрачной оболочкой, образующих замкнутую внутреннюю полость в составе обособленной цельноформованной комбинированной звукопоглощающей панели, заполненную обособленными дроблеными фрагментированными звукопоглощающими элементами, при этом несущая внутренняя воздухонепродуваемая пленочная эластичная оболочка выполнена в виде по крайней мере одного тупикового трубчатого полостного звукопрозрачного элемента определенных габаритных размеров его трубчатой части с открытой горловой частью и перекрытой жестким звукоотражающим донышком донной части, образующего четвертьволновый акустический резонатор RIms, собственная резонансная частота которого fRms, совпадает по крайней мере с одним из дискретных значений рабочих доминирующих функциональных частот звукового излучения по крайней мере одного эксплуатируемого шумогенерирующего технического объекта fms, характеризуемым соответствующей длиной звуковой волны λms, определяемой физическими параметрами температурного и звукового поля, установившегося во внутренней трехмерной воздушной полости технического помещения (с, t°C).

2. Низкошумное техническое помещение по п. 1, отличающееся тем, что габаритные размеры трубчатой части четвертьволнового акустического резонатора RIms, характеризуемые ее геометрической длиной lIrms, определяющей его частотную настройку подавления звукового излучения заданных дискретных значений рабочих доминирующих функциональных частот fms с соответствующими длинами звуковых волн λms, определяется из выражения:

где dпр - приведенный гидравлический диаметр проходного сечения трубчатой части используемого четвертьволнового акустического резонатора RIms, м;

fms - дискретное значение заданной доминирующей функциональной частоты, Гц (с-1);

t°C - температура воздуха, установившаяся во внутренней трехмерной воздушной полости технического помещения,°С.

3. Низкошумное техническое помещение по п. 1, отличающееся тем, что габаритные размеры трубчатой части четвертьволнового акустического резонатора RImA, характеризуемые ее геометрической длиной lIrmA, определяющей его частотную настройку подавления резонансного звукового излучения, возбужденного собственными акустическими модами массоупругого тела воздушного объема внутренней трехмерной воздушной полости технического помещения габаритных размеров A (L, В, Н), характеризуемых длинами звуковых волн λmAmL, λmB, λmH) с дискретными значениями собственных частот звуковых колебаний fmA (fmL, fmB, fmH),

определяются из выражения:

где dпр - приведенный гидравлический диаметр проходного сечения трубчатой части используемого четвертьволнового акустического резонатора RImA, м;

t°C - температура воздуха во внутренней трехмерной воздушной полости технического помещения, °С;

λmL, λmB, λmH) - длины звуковых волн низких собственных акустических модах, представленных собственными акустическими колебаниями массоупругого тела воздушного объема внутренней трехмерной воздушной полости технического помещения, м;

fmA (fmL, fmB, fmH) - дискретные значения собственных частот звуковых колебаний на собственных акустических модах массоупругого тела воздушного объема, характеризуемых длинами звуковых волн λmL, λmB, λmH), формирующихся во внутренней трехмерной воздушной полости технического помещения, Гц (с-1);

A (L, В, Н) - габаритные размеры внутренней трехмерной воздушной полости технического помещения, м.

4. Низкошумное техническое помещение по п. 1, отличающееся тем, что горловые части четвертьволновых акустических резонаторов RIms выполнены на торцевых гранях обособленных цельноформованных комбинированных звукопоглощающих панелей.

5. Низкошумное техническое помещение по п. 1, отличающееся тем, что трубчатые части четвертьволновых акустических резонаторов RIms выполнены соосно с оппозитно размещенными горловыми частями и содержат общие донные части.

6. Низкошумное техническое помещение по п. 1, отличающееся тем, что открытая горловая часть четвертьволновых акустических резонаторов RIms перекрыта защитным футерующим демпфирующим воздухопродуваемым слоем материала.

7. Низкошумное техническое помещение по п. 1, отличающееся тем, что со стороны лицевых поверхностей граней обособленных цельноформованных комбинированных звукопоглощающих панелей дополнительно смонтированы звукопрозрачные облицовочные защитно-декоративные перфорированные панели, коэффициент перфорации стенки которых соответствует выражению Kperf≥0,25.

8. Низкошумное техническое помещение по п. 1, отличающееся тем, что обособленные цельноформованные комбинированные звукопоглощающие панели закреплены к несущим ограждающим элементам стен и потолка соответствующими крепежными элементами, представленными дистанционными механическими крепежными элементами, или подвесными тросовыми элементами, или монтажными шипами, или монтажными рамками, или монтажными упругими элементами, или монтажными профилями.

9. Низкошумное техническое помещение по п. 1, отличающееся тем, что звукопрозрачные адгезионные покрытия сопрягаемых поверхностей составных элементов обособленной цельноформованной комбинированной звукопоглощающей панели представлены термоплавкими волокнами адгезионного вещества, и/или термоплавким порошкообразным адгезионным веществом, и/или слоем липкого клеевого адгезионного вещества, и/или сплошным или перфорированным слоем пленочного термоактивного адгезионного вещества.

10. Низкошумное техническое помещение по п. 1, отличающееся тем, что несущая внешняя поверхностная облицовочная звукопрозрачная оболочка выполнена из микроперфорированного с диаметром проходного сечения отверстий перфорации, не превышающим 1 мм, фольгового материала - алюминия, меди, латуни, или из сплошного слоя воздухопродуваемого тканевого (нетканого полотна) конструкционного материала типа «малифлиз», «филтс», стеклоткань, базальтоволокнистая ткань.

11. Низкошумное техническое помещение по п. 1, отличающееся тем, что несущая внутренняя воздухонепродуваемая пленочная эластичная оболочка, образующая трубчатую часть четвертьволновых акустических резонаторов RIms, выполнена из соответствующих полимерных материалов - полиэтилентерефталата, поливинилхлорида, алюминизированного полиэстера, уретана, толщиной слоя 0,025…0,25 мм и удельным поверхностным весом 20…200 г/м2.

12. Низкошумное техническое помещение по п. 1, отличающееся тем, что жесткое звукоотражающее донышко донной части четвертьволнового акустического резонатора RIms выполнено из соответствующего полимерного материала - полиамида, поливинилхлорида, полиэтилена, полипропилена.

13. Низкошумное техническое помещение по п. 1, отличающееся тем, что обособленные дробленые фрагментированные элементы изготовлены из твердых утилизируемых, преимущественно полимерных отходов, представленных в виде технологически переработанных методом механического дробления звукопоглощающих структур деталей и узлов, демонтированых с утилизируемых технических объектов, преимущественно

деталей шумоизоляционных пакетов транспортных средств, завершивших свой жизненный цикл, и/или из технологических отходов и брака производства звукопоглощающих материалов и произведенных из них деталей и узлов.

14. Низкошумное техническое помещение по п. 1, отличающееся тем, что узкощелевые воздушные зазоры γ, установленные между противолежащими торцевыми гранями обособленных цельноформованных комбинированных звукопоглощающих панелей, смонтированных на несущих ограждающих элементах стен и потолка, не превышают значений, указанных в выражении:

γ≤0,25h,

где h - габаритные толщины противолежащих торцевых граней обособленных цельноформованных комбинированных звукопоглощающих панелей.

15. Низкошумное техническое помещение по п. 7, отличающееся тем, что звукопрозрачные облицовочные защитно-декоративные перфорированные панели изготовлены из соответствующего металлического или полимерного материала - стали, алюминия, полипропилена, полиамида.

16. Низкошумное техническое помещение по п. 1, отличающееся тем, что несущие внешние поверхностные облицовочные звукопрозрачные оболочки обособленных цельноформованных комбинированных звукопоглощающих панелей изготовлены из слоя конструкционного материала толщиной 0,025…0,25 мм и удельным поверхностным весом 20…200 г/м2, представленного воздухонепродуваемой полимерной пленкой, металлической фольгой, или изготовлены из воздухопродуваемого слоя ткани, нетканого полотна, микроперфорированной полимерной пленки, микроперфорированной металлической фольги, сопротивление продуванию воздушным потоком которых находится в диапазоне 20…500 Н⋅с/м3.



 

Похожие патенты:

Изобретение относится к резиновой промышленности и может быть использовано в производстве акустических материалов для снижения шумовых уровней акустических полей защищаемого объекта, находящегося под водой, в частности для объектов судостроения.

Изобретение относится к устройствам для подавления акустических колебаний. Акустическую сотовую панель, имеющую радиус кривизны, разрезают на сегменты, которые имеют продольные и поперечные стороны, продолжающиеся между краями сотовой структуры.

Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к промышленной акустике и может быть использовано для снижения шума привода машин, облицовки производственных помещений и в других звукопоглощающих конструкциях.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.

Изобретение относится к конструкции каркасных палаток. Техническим результатом является повышение эксплуатационных свойств и обеспечение нормального микроклимата проживания.

Изобретение относится к конструкции каркасных палаток для временного проживания людей и/или временного хранения материалов и техники в полевых условиях. Технически достижимый результат - повышение эксплуатационных свойств палатки для проживания людей в зимних условиях с повышенным уровнем шума, например на временных аэродромах для эвакуации населения, пострадавшего от наводнения при весеннем паводке.

Изобретение относится к промышленной акустике. Техническим результатом является повышение эффективности шумоглушения и надежности конструкции в целом.

Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума. Техническим результатом является повышение эффективности шумоглушения.

Изобретение относится к средствам для крупномасштабного производства сельскохозяйственных культур. Высотное сооружение (1) для выращивания сельскохозяйственных культур в лотках оснащено по крайней мере одной конвейерной системой перемещения лотков.

Изобретение относится к области строительства, а именно к разработке проектных решений по созданию энергоэффективных, экологичных зданий и сооружений, в которых поддерживают заданную температуру воздуха, и может быть использовано при строительстве сооружений для отопления и/или охлаждения помещений в жилых и производственных, складских помещениях, в животноводческих фермах, в теплицах для подогрева грунта при выращивании ранних овощей, с помощью труб с проходящими в них теплоносителем или хладагента.

Изобретение относится к строительству и используется для временных и длительных стоянок автомобилей. .

Изобретение относится к области строительства, в частности к зданию для размещения химических производств. .

Изобретение относится к области строительства, в частности к зданию для размещения химических производств. .

Изобретение относится к области строительства, в частности к способу строительства дома. .

Изобретение относится к сооружению зданий для промышленных целей, в частности к зданию для размещения химических производств. .

Изобретение относится к аквариумам и системам жизнеобеспечения их обитателей, а именно к танкам-аквариумам. .

Изобретение относится к сооружению зданий для промышленных целей, в частности к зданию для размещения химических производств. .

Изобретение относится к области технических средств обеспечения акустической безопасности окружающей среды за счет подавления шумовых излучений, производимых производственно-технологическим и инженерно-техническим оборудованием, представленным, в частности, насосной, компрессорной станциями, энергетическими установками, системами вентиляции и кондиционирования воздуха, электрическими машинами, смонтированным внутри шумогенерирующих технических помещений. Также оно может быть использовано для улучшения акустической комфортабельности в прилегающих жилых, производственных и общественных помещениях зданий и сооружений, интегрированных сопредельно с указанными шумогенерирующими техническими помещениями. Низкошумное техническое помещение оборудовано монтируемыми с воздушными зазорами между противолежащими торцевыми гранями и относительно оппозитных монтажных поверхностей стеновых и потолочных ограждающих конструкций технического помещения, обособленными цельноформованными комбинированными звукопоглощающими панелями, составленными из пористой воздухопродуваемой дробленой звукопоглощающей структуры вещества и интегрированных в нем полостных частотонастроенных шумоподавляющих конструктивных элементов, представленных в виде четвертьволновых акустических резонаторов. Четвертьволновые акустические резонаторы формируются несущей внутренней воздухонепродуваемой пленочной эластичной оболочкой, выполненной в виде тупикового трубчатого полостного звукопрозрачного элемента определенных габаритных размеров его трубчатой части с открытой горловой частью и перекрытой жестким звукоотражающим донышком донной части. Низкошумное техническое помещение наделено широкополосным по частотному составу эффектом звукопоглощения с выраженным низкочастотным эффектом уменьшения звукового давления на дискретных значениях рабочих доминирующих функциональных частот звукового излучения fms, смонтированных в нем шумогенерирующих технических объектов. 15 з.п. ф-лы, 25 ил.

Наверх