Способ механохимического получения катализатора реакций гидрогенизации на основе никеля

Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров. Способ получения катализатора реакций гидрогенизации Ni/SiO2 заключается в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля, восстановлении при 450-470°С со скоростью нагрева 4°С/мин в токе водорода со скоростью 30 см3/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты С16-18 при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры, при этом наносят на силикагель (носитель) оксид никеля (NiO) непосредственно в исходном сухом виде с помощью планетарной мельницы при расходе энергии 0,08-3,94 кДж/г.кат., что соответствует 20-40% от максимальной мощности и времени работы 10-240 с в массовом соотношении (NiO:SiO2) 1:2,36. Техническим результатом изобретения является упрощение способа получения, удешевление процесса получения, значительное сокращение количества исходных веществ и побочных продуктов без образования вредных газов (сильных окислителей или парниковых газов) и при отсутствии стадии упаривания водных и неводных растворов. 1 ил., 2 табл.

 

Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров.

Известен способ механохимического получения никелевого катализатора, способ его приготовления и процесс получения ферромагнитного графитированного углерода и водорода [патент №2042425 РФ, МПК B01J 23/78, B01J 37/34, С01В 31/04, С01В 3/26. Катализатор, способ его приготовления и процесс получения ферромагнитного графитированного углерода и водорода/ Чесноков В.В., Прокудина Н.А., Буянов Р.А., Молчанов В.В.; заявитель и патентообладатель: Институт катализа СО РАН; №5065825, заяв. 1992-06-15; опубл. 27.08.1995], в котором катализатор содержит следующие компоненты, мае. NiO 70-90%, CuO 2-16%, Al(ОН)3 или Mg(OH)2 8-14%. Способ приготовления катализатора включает механохимическую активацию двойной смеси оксидов никеля и меди, а затем тройной смеси никеля и меди с гидроксидом алюминия или магния в планетарной центробежной мельнице с последующим восстановлением смеси водородом при нагревании до температуры реакции разложения метана.

Известен механохимический способ приготовления катализатора для селективного гидрирования диеновых и ацетиленовых углеводородов в олефины [патент №2087187 РФ, МПК B01J 35/06, B01J 23/74, B01J 21/18 Катализатор для селективного гидрирования и способ его получения / Молчанов В.В., Чесноков В.В., Буянов Р.А., Зайцева Н.А.; заявитель и патентообладатель: Институт катализа им. Г.К. Борескова СО РАН; №94017624; заявл. 10.05.1994]. Суть изобретения состоит в том, что смесь оксида никеля, оксида меди и гидроксида магния подвергали механохимической активации в центробежной планетарной мельнице, а далее восстанавливали и подвергали закоксованию в смеси метана с водородом при 600°С до дезактивации в отношении коксообразования. при закоксовании металлов подгруппы железа и их сплавов образуется нитевидный углерод. На концах нитей расположена частица металла или сплава.

Известен способ получения катализаторов гидрирования методами пропитки [Патент №2102145 РФ, МПК B01J 37/04. Способ получения никелевого катализатора гидрирования / Кипнис М.А., Газимзянов Н.Р., Алешин А.И., Агоронов B.C.; заявитель и патентообладатель ЗАО НПФ «Химтэк». - №96117610/04; заяв. 05.09.1996; опубл. 20.01.1998]. Сущность изобретения заключается в получении никелевого катализатора гидрирования смешением основного карбоната никеля с алюмооксидным носителем (смеси высокотемпературной и низкотемпературной форм оксида алюминия) в присутствии пептизатора водного раствора аммиака, с последующей сушкой при 100-120°С и прокаливанием при 350-500°С, измельчением, смешением с графитом и таблетированием. Это ведет к образованию газообразного аммиака и углекислого газа, в качестве отходов.

Так же известен способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя [Патент №2492160 РФ, МПК С07С 7/167, С07С 5/09, С07С 15/46, B01J 23/755, B01J 23/72, B01J 23/44. Способ селективного гидрирования фенилацетилена в присутствии стирола с использованием композитного слоя / ЛЮ Юньтао, ЧЖУ Юньхуа, КУАЙ Юнь, ЧЖУ Чжиянь, ЛИ Сицинь; заявитель и патентообладатель ЧАЙНА ПЕТРОЛЕУМ ЭНД КЕМИКАЛ КОРПОРЕЙШН (CN), ШАНХАЙ РИСЕРЧ ИНСТИТЬЮТ ОФ ПЕТРОКЕМИКАЛ ТЕКНОЛОДЖИ СИНОПЕК (CN), заявка №2011129678/04,; заявл. 17.12.2009; опубл. 10.09.2013; Бюл. №25]. В этом способе при приготовлении катализатора есть следующие стадии: медленно добавляют некоторое количество водорастворимой соли никеля, например, нитрата никеля, в водный раствор разбавленной кислоты (например, азотной кислоты) и перемешивают, чтобы растворить соль никеля; затем пропитывают некоторое количество носителя, например оксида алюминия, полученным раствором в течение, например, более чем 8 часов; и затем сушат и кальцинируют. В данном способе в качестве побочного продукта выделяется ядовитый газ - диоксид азота.

Наиболее близким к настоящему патенту по сущности и техническому результату является способ получения катализатора реакций гидрогенизации, заключающийся в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля, восстановлении при 470-500°С в токе водорода со скоростью: 20-40 см3/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты C16-18 при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры [Патент №2604093 РФ, МПК B01J 23/755, 37/00. Способ получения катализатора реакций гидрогенизации / Осадчая Т.Ю., Афинеевский А.В., Прозоров Д.А.; патентообладатель: федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ); №2015143251 заяв. 09.10.2015; опубл. 10.12.2016, Бюл. №34]

Недостатками известных способов синтеза каталитических систем на основе переходных металлов методами пропитки (в том числе ранее упомянутые) являются: относительно высокая стоимость исходных компонентов, трудоемкость, в ходе синтеза образование большого количества побочных веществ (отходов), в том числе таких, как оксиды азота, которые несут высокую экологическую опасность или парниковые газы.

Техническим результатом изобретения является упрощение способа получения, удешевление процесса получения, значительное сокращение количества исходных веществ и побочных продуктов без образования вредных газов (сильных окислителей или парниковых газов), а также при отсутствии стадии упаривания водных и неводных растворов.

Указанный результат достигается тем, что в способе получения катализатора реакций гидрогенизации Ni/SiO2, заключающемся в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля, восстановлении при 450-470°С, со скоростью нагрева 4°С/мин, в токе водорода со скоростью 30 см3/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты C16-18 при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры, согласно изобретению, наносят на силикагель (носитель) оксид никеля (NiO) непосредственно в исходном сухом виде с помощью планетарной мельницы при расходе энергии 0,08-3,94 кДж/г.кат., что соответствует 20-40% от максимальной мощности и времени работы 10-240 с в соотношении (NiO:SiO2)1:2,36.

Технический результат достигается за счет уменьшения числа операций приготовления, что упрощает и удешевляет процесс, за счет исключения процесса температурного разложения солей никеля, при котором выделяются вредные газы (сильные окислители или парниковые газы), проведение процесса без использования растворов, что позволяет снизить потребление воды и исключает необходимость выпаривания влаги.

Для осуществления изобретения используют следующее оборудование:

Мельница «Активатор-2SL» с техническими характеристиками:

Скорость вращения центральной оси - 993 об/мин (макс), 904 об/мин (ср.), 828 об/мин (мин).

Скорость вращения барабанов - 1490 об/мин (макс), 1356 об/мин (ср.), 1242 об/мин (мин).

Соотношение радиусов (центрального и барабанов) - 1,5.

Радиус планетарного вращения - 52,5 мм

Внутренний радиус барабанов - 35 мм.

Объем барабанов - 220 см3.

Потребляемая мощность - 1,7 КВт, 380 В/3 фазы.

Мелющие тела:

малые мелющие тела - диаметр 5 мм, масса 0,499 г,

большие мелющие тела - диаметр 8 мм, масса 2,713 г,

Загрузка в каждом барабане мелющих тел и порошка:

малые мелющие тела - 90 шт.

большие мелющие тела - 90 шт.

Порошок - 41,369 г.

Для регулировки мощности использовали инвертор TOSVERT VF-S11 фирмы Toshiba. Были использованы следующие регулировки мощности: 20%, 30%, 40%.

Для осуществления изобретения используют следующие вещества:

1. Никель (II) окись (NiO) «ЧДА» ТУ-6-09-4125-80, поставщик ООО «Спектр-хим».

2. Диэтиловый эфир малеиновой кислоты (ДЭМК) ТУ 6-09-3932-87 «ХЧ», поставщик ООО «Кристалл-Центр», ρ=1,064 г/см3..

3. Силикагель марки Л 5/40 мкм (SiO2) «ХЧ».

4. Водород электролитический марки Б ГОСТ 3022-80.

5. Вода дистиллированная ГОСТ 6709-72.

6. Цетилстеариловый спирт, поставщик КурскХимПром ООО "КурскХимПром".

Способ осуществляют следующим образом:

Для всех примеров готовят навеску порошка массой 41,37 г простым смешением 12,32 г NiO и 29,05 г SiO2, далее эта смесь обозначена как (NiO+SiO2). Это позволяет получить катализатор состава Ni/SiO2 с w(Ni)=25%.

Пример 1.

В барабан мельницы загружают смесь (NiO+SiO2). Проводят механоактивацию при 40% от максимальной мощности на инверторе TOSVERT в течение 120с, это соответствует 1,97 кДж/г.кат. затраченной энергии.

Активацию (восстановление) катализатора проводят следующим образом. Помещают в трубчатую печь носитель (подложку) с нанесенным никелем и восстанавливают в токе водорода со скоростью 30 см3/мин при t=450°C. Подъем температуры осуществляют с 30°С до 450°С со скоростью нагрева 4°С/мин. При достижении указанной температуры охлаждают катализатор до 80°С. На этой стадии полученный катализатор Ni/SiO2 уже обладает значительной активностью, однако для долговременного хранения используют его пассивацию. Активированный катализатор вносят в атмосфере водорода в жирные одноатомные спирты C16-18 при температуре 80°С, в соотношении спирт: катализатор - 3:1 по массе. Полученную массу размешивают и затем охлаждают до комнатной температуры.

Пример 2.

Отличается от примера 1 тем, что восстанавливают при t=470°C.

Пример 3.

Отличается от примера 1 тем, что восстанавливают при t=470°C. Подъем температуры осуществляют с 30°С до 470°С со скоростью нагрева 4°С/мин., а далее перед охлаждением выдерживают 15 минут при этой температуре.

Пример 4.

В барабан мельницы загружают смесь (NiO+SiO2). Проводят механоактивацию при 40% мощности на инверторе TOSVERT в течение 30 с, это соответствует 0,49 кДж/г.кат. затраченной энергии.

Активацию (восстановление) катализатора проводят следующим образом. Помещают в трубчатую печь носитель (подложку) с нанесенным никелем и восстанавливают в токе водорода со скоростью 30 см3/мин при t=470°C. Подъем температуры осуществляют с 30°С до 470°С со скоростью нагрева 4°С/мин. При достижении указанной температуры охлаждают катализатор до 80°С. На этой стадии полученный катализатор Ni/SiO2 уже обладает значительной активностью, однако для долговременного хранения используют его пассивацию. Активированный катализатор вносят в атмосфере водорода в жирные одноатомные спирты C16-18 при температуре 100°С, в соотношении спирт: катализатор - 3:1 по массе. Полученную массу размешивают и затем охлаждают до комнатной температуры.

Пример 5.

Отличается от примера 4 тем, что проводят механоактивацию в течение 60с, это соответствует 0,98 кДж/г.кат. затраченной энергии.

Пример 6.

Отличается от примера 4 тем, что проводят механоактивацию в течение 10с, это соответствует 0,16 кДж/г.кат. затраченной энергии.

Пример 7.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 10с, это соответствует 0,12 кДж/г.кат. затраченной энергии.

Пример 8.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 240с, это соответствует 2,95 кДж/г.кат. затраченной энергии.

Пример 9.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 120с, это соответствует 1,47 кДж/г.кат. затраченной энергии.

Пример 10.

Отличается от примера 4 тем, что проводят механоактивацию при 30% мощности на инверторе TOSVERT в течение 60с, это соответствует 0,74 кДж/г.кат. затраченной энергии.

Пример 11.

Отличается от примера 4 тем, что проводят механоактивацию при 20% мощности на инверторе TOSVERT в течение 240с, это соответствует 1,97 кДж/г.кат. затраченной энергии.

Пример 12.

Отличается от примера 4 тем, что проводят механоактивацию при 20% мощности на инверторе TOSVERT в течение 120с, это соответствует 0,98 кДж/г.кат. затраченной энергии.

Пример 13.

Отличается от примера 4 тем, что проводят механоактивацию в течение 240с, это соответствует 3,94 кДж/г.кат. затраченной энергии.

Изобретение поясняется чертежом, на котором приведены кинетические кривые поглощения водорода для гидрирования малеата натрия, данный процесс взят, как пример использования катализатора. Зависимость скорости реакции гидрогенизации диэтилового эфира малеиновой кислоты от степени превращения в воде на нанесенных никелевых катализаторах Ni/SiO2, условия механохимического синтеза:

1- 120 с., 1,97 кДж/г.кат., температура восстановления 450°С;

2- 120 с., 1,97 кДж/г.кат., температура восстановления 470°С;

3- 120 с., 1,97 кДж/г.кат., температура восстановления 470°С (выдержка 15 минут);

4- 30 с., 0,49 кДж/г.кат., температура восстановления 470°С;

5- 60 с., 0,98 кДж/г.кат., температура восстановления 470°С;

6- 240 с., 3,94 кДж/г.кат., температура восстановления 470°С. Условия проведения реакции восстановления: температура 30°С, атмосферное давление, скорость вращения мешалки 3000 об./мин.

В таблице 1 приведены условия приготовления катализаторов в примерах 1-13.

В таблице 2 приведены характеристики для активности полученных по указанным примерам (1-13) катализаторов. В качестве каталитической активности принимали скорость реакции гидрогенизации малеата натрия и диэтилового эфира малеиновой кислоты в воде при температуре 30°С и атмосферном давлении водорода отнесенную к 1 грамму металла. Данные соединения были выбраны в качестве модельных так, как реакция их гидрогенизации идет в одну стадию без образования промежуточных продуктов и кинетика данных процессов хорошо изучена. Так же в таблице 2 приведено время полупревращения для указанных реакций гидрогенизации. Кинетические кривые поглощения водорода приведены на чертеже.

Предлагаемый способ позволяет получать катализатор с сопоставимыми или аналогичными характеристиками, при этом получение катализатора требует меньшего количества времени и трудозатрат. Устраняется необходимость использования водных или неводных растворов для нанесения металла на носитель. При данном способе отсутствуют выделения таких побочных продуктов, как газы - сильные окислители, или как парниковые газы. За счет снижения числа стадий приготовления, времени приготовления и устранения необходимости собирать и перерабатывать побочные продукты - происходит удешевление изготовления катализатора.

Способ механохимического получения катализатора реакций гидрогенизации на основе никеля, заключающийся в нанесении на носитель (силикагель) в виде дисперсного порошка оксидов никеля (NiO), восстановлении при 450-470°С со скоростью нагрева 4°С/мин в токе водорода со скоростью 30 см3/мин, пассивации путем внесения его в атмосфере водорода в жирные одноатомные спирты С16-18 при 80-100°С, размешивании и охлаждении готового катализатора до комнатной температуры, отличающийся тем, что оксид никеля (NiO) наносят на носитель (силикагель) непосредственно в исходном сухом виде с помощью планетарной мельницы при расходе энергии 0,08-3,94 кДж/г.кат., что соответствует 20-40% от максимальной мощности, и времени работы 10-240 с при массовом соотношении (NiO:SiO2) 1:2,36.



 

Похожие патенты:
Изобретение относится к способам получения катализаторов на основе активированных углей и каталитических добавок в виде водных растворов переходных металлов и может быть использовано в индивидуальных и коллективных устройствах защиты органов дыхания для удаления из отходящих газов токсичных химических веществ, преимущественно фосфина (РН3).

Настоящее изобретение относится к композитному катализатору, включающему углерод в качестве непрерывной фазы и частицы сплава Ренея в качестве дисперсной фазы. Описан композитный катализатор, применяемый после активации в качестве катализатора Ренея, включающий углерод в качестве непрерывной фазы и частицы сплава Ренея в качестве дисперсной фазы, в котором частицы сплава Ренея диспергированы в непрерывной фазе углерода и в котором углерод в качестве непрерывной фазы получен в результате карбонизации, по меньшей мере, одного способного к карбонизации органического вещества, которое представляет собой органический полимер, и сплав Ренея включает по меньшей мере один металл Ренея, выбранный из группы, состоящей из никеля, кобальта, меди и железа и по меньшей мере одного выщелачиваемого элемента, выбранного из группы, состоящей из алюминия, цинка и кремния.

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена и основного карбоната никеля или кобальта в цилиндрические гранулы, просушивание и прокаливание с последующей пропиткой водным раствором тиомочевины с концентрацией 42-55 масс.% или водным раствором роданида аммония с концентрацией 42-55 масс.%, термообработку при температуре 250-320°С в токе водорода в течение 30-60 мин, при этом получают катализатор, содержащий, масс.%: сульфид никеля или сульфид кобальта 3,0-8,5, сульфид молибдена 8,9-22, оксид алюминия остальное.

Изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке устойчивости к дезактивации в каталитических реакциях. Предварительно проводят нагрев цеолитного катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, после чего осуществляют процесс каталитической олигомеризации под давлением в три стадии.

Предложен катализатор для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов, содержащий оксид алюминия, платину, цеолит со структурой ZSM-5 или ZSM-11.
Изобретение предлагает способ получения катализатора и способ получения ненасыщенного нитрила. Описан способ получения катализатора, предназначенного для использования в реакции газофазного каталитического аммоксидирования пропана, причем данный способ составляют: подготовительная стадия растворения или диспергирования исходного материала для получения подготовленного жидкого исходного материала; первая сушильная стадия высушивания подготовленного жидкого исходного материала для получения высушенного материала; обжиговая стадия обжига высушенного материала для получения сложного оксида, представленного следующей формулой Mo1VaNbbAcXdZeOn (1), где A представляет собой по меньшей мере один элемент, выбранный из группы, которую составляют Sb и Te; X представляет собой по меньшей мере один элемент, выбранный из группы, которую составляют W, Bi, Mn и Ti; и Z представляет собой по меньшей мере один элемент, выбранный из группы, которую составляют La, Ce, Pr, Yb, Y и Sc; и a, b, c, d, e и n представляют собой соотношения чисел атомов соответствующих элементов в расчете на один атом Mo, и 0,01 ≤ a ≤ 1,00, 0,01 ≤ b ≤ 1,00, 0,01 ≤ c ≤ 1,00, 0,00 ≤ d ≤ 1,00 и 0,00 ≤ e ≤ 1,00, и n представляет собой значение, определяемое валентностями атомов составляющих элементов сложного оксида; пропиточная стадия пропитывания сложного оксида раствором, содержащим по меньшей мере один заданный элемент, выбранный из группы, которую составляют вольфрам, молибден, теллур, ниобий, ванадий, висмут, марганец, сурьма, фосфор и редкоземельные элементы, для получения пропитанного сложного оксида; и вторая сушильная стадия высушивания пропитанного сложного оксида, в котором по меньшей мере одна стадия из пропиточной стадии и второй сушильной стадии представляет собой стадию пропитывания сложного оксида или высушивания пропитанного сложного оксида в процессе перемешивания при мощности перемешивания в расчете на единицу объема сложного оксида, заданную следующей формулой Pv (кВт/м3) = P (кВт)/V (м3) (2), где Pv представляет собой мощность смесителя в расчете на единицу объема сложного оксида (кВт/м3); P представляет собой электрическую мощность (кВт) приводного двигателя вращающейся лопатки; и V представляет собой объем (м3) сложного оксида, помещенного в смеситель; и Pv составляет 0,001 ≤ Pv ≤ 300.

Изобретение относится к катализатору очистки выхлопного газа, содержащему два или больше каталитических слоев покрытия на субстрате, в котором каждый каталитический слой покрытия содержит частицы катализатора, имеющие состав, отличающийся от прилежащего каталитического слоя покрытия.

Изобретение относится к серебросодержащему катализатору синтеза этиленоксида. Описан раствор для пропитывания серебром, который содержит: (i) ионы серебра, (ii) повышающее концентрацию серебра вещество, в качестве которого выбираются по меньшей мере одна соль аммония, имеющая анионный компонент, который подвергается термическому разложению; или по меньшей мере одна аминокислота или их сочетание, (iii) по меньшей мере один органический амин; и (iv) воду; причем вышеупомянутые компоненты (i)-(iii) растворяются в вышеупомянутом растворе для пропитывания и может присутствовать или отсутствовать щавелевая кислота.

Предложен катализатор синтеза углеводородов из СО и Н2, селективный в отношении образования углеводородов C5+, включающий кобальт и силикагелевый носитель. Содержит 20,6-22,2% масс.
Изобретение относится к способу получения состава ловушки NOx, содержащему: (a) нагрев железосодержащего цеолита в присутствии инертного газа, содержащего менее 1 об.% кислорода, и органического соединения для получения прокаленного в восстановительной атмосфере железа/цеолита; (b) добавление соединения палладия в прокаленный в восстановительной атмосфере железо/цеолит с образованием Pd-Fe/цеолита; и (c) прокаливание Pd-Fe/цеолита при 400-600°C в присутствии кислородсодержащего газа для получения состава ловушки NOx; где органическое соединение представляет собой органический полимер и/или биополимер.

Изобретение относится к катализатору гидрирования олефинов в процессе получения синтетической нефти. Заявляется катализатор, содержащий 41-60 мас.% никеля от массы прокаленного катализатора и носитель, представляющий собой мезопористый оксид алюминия со средним размером частиц 3-7 нм, общим объемом пор не менее 0,85 см3/г, долей мезопор не менее 90% и удельной площадью поверхности не менее 280 м2/г.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного гидрирования глюкозы в сорбит, и может быть применено на предприятиях пищевой, фармацевтической и энергетической промышленности для получения пищевых подсластителей, вспомогательных компонентов лекарственных препаратов и антивспенивающей добавки к топливам.

Изобретение относится к катализаторам, способам их приготовления и применения в процессах конверсии различных видов углеводородных топлив, таких как природный газ, дизельное топливо, сжиженный углеводородный газ (СУГ), в синтез-газ.
Изобретение относится к способу удаления мышьяка из углеводородного сырья, по меньшей мере частично жидкого при температуре окружающей среды и атмосферном давлении, содержащему по меньшей мере следующие этапы: a) приводят в контакт углеводородное сырье, водород и первую поглощающую массу, содержащую подложку и по меньшей мере один металл M1 группы VIB и по меньшей мере два металла M2 и M3 группы VIII, где металл M1 является молибденом, металл M2 является кобальтом и металл M3 является никелем; b) приводят в контакт углеводородное сырье, водород и вторую поглощающую массу в форме сульфида, содержащую подложку и никель, причем вторая поглощающая масса содержит количество никеля в диапазоне от 5 до 50% по массе NiO, в расчете на суммарную массу второй поглощающей массы в форме оксида перед сульфированием.

Изобретение относится к катализатору реформинга углеводородов и диоксида углерода, включающему оксидный носитель, который содержит гексаалюминат в форме β''-алюмината и частицы металлического никеля.

Изобретение относится к никель-графеновому катализатору гидрирования, содержащему 10-25 мас. % нанокластеров никеля размером 2-5 нм, нанесенных на углеродные наночастицы.

Изобретение относится к улучшенному способу получения вторичных аминов. Получаемые амины находят применение в фармацевтической, сельскохозяйственной промышленности и при производстве пластических масс.

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I, используемой в терапии ряда нейропатических заболеваний, путем энантиоселективного присоединения диэтилмалоната к 4-метил-1-нитропентену-1 с последующим восстановлением и кислотным гидролизом продукта присоединения в соответствии со схемой 1.

Изобретение относится к неорганической химии, а именно к нанотрубкам на основе сложных неорганических оксидов, которые могут быть использованы в качестве сорбентов, гетерогенных катализаторов и компонентов композитных материалов фрикционного и конструкционного назначения.

Изобретение относится к области нефтепереработки, а именно к переработке тяжелого нефтяного сырья, и может быть использовано для получения бензиновой и дизельной фракций.
Наверх