Способ обработки изделий из углепластика

Изобретение относится к области органических высокомолекулярных соединений, в частности к обработке изделий из углепластика. Способ обработки изделий из углепластика содержит обработку без нагрева пульсирующим газовым потоком. Газовый поток обладает скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ. Продолжительность обработки составляет от 2,5 до 10 мин при расположении изделия поперек потока. Изобретение позволяет повысить статическую прочность - предел прочности и динамическую прочность - ударную вязкость изделий из углепластика.

 

Заявляемое изобретение относится к области органических высокомолекулярных соединений, а более конкретно к обработке композиций высокомолекулярных веществ, в частности, к обработке волновой энергией.

Элементы конструкции транспортных средств из полимерных материалов, в том числе композиционных с полимерной матрицей, в частности углепластика, все шире применяются в наземном и воздушном транспорте. В процессе эксплуатации изделия могут подвергаться значительным нагрузкам, с том числе динамическим, что делает актуальной задачу повышения их способности противостоять как повышенной статической нагрузке, так и ударным воздействиям.

Известен способ изготовления изделий из композиционных материалов на основе полимеров (см. патент RU 2266925 С2, 27.12.2005 г. Бюл. №36). Способ заключается в смешивании компонентов, холодном прессовании заготовок и последующем их спекании. Операцию спекания заготовок проводят при 280-350°С в закрытой форме, обеспечивающей натяг в результате теплового расширения заготовки, с последующим охлаждением в форме. Перед спеканием возможна обработка раствором фторсодержащего олигомера марки "Фолеокс" или "Эпилам". Заготовку можно подвергать предварительному механическому натягу. Спекание в закрытой форме с натягом можно осуществлять по двухступенчатому циклу с последующим отжигом. Изобретение обеспечивает получение изделий из композиционных материалов на основе высоковязких полимеров с высокими прочностными и триботехническими характеристиками.

Основными недостатками способа является сложный, многоэтапный характер, использование нагрева и неприменимость к готовым изделиям.

Наиболее близким по технической сущности к заявляемому изобретению является способ термообработки изделий из конструкционных сталей (см. патент RU 2561611 С2, 27.08.2015 г. Бюл. №16) принятый в качестве ближайшего аналога.

Для повышения значений показателей ударной вязкости и пластичности без снижения показателей прочности изделие подвергают закалке и высокому отпуску, а затем осуществляют последующую обработку изделия путем воздействия на него в течение 35 мин пульсирующим газовым потоком со скоростью от 25 до 30 м/с, частотой колебаний от 600 до 1000 Гц и переменным звуковым давлением от 80 до 90 дБ.

Основным недостатком данного известного способа является значительная продолжительность обработки и отсутствие эффекта повышения статической прочности.

Перед заявляемым изобретением поставлена задача расширить область использования прототипа, применив его к изделиям из таких полимерных композиционных материалов, как углепластик, обеспечив при этом рост как динамической, так и статической прочности, при меньшей, в сравнении с прототипом, продолжительности обработки.

Решение поставленной задачи достигается тем, что изделие из углепластика обрабатывают без нагрева пульсирующим газовым потоком, обладающим скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ от 2,5 до 10 минут при расположении изделия поперек потока.

Таким образом, изобретение позволило получить технический результат, а именно повысить статическую и динамическую прочность изделий из углепластика.

Заявляемое изобретение реализуется следующим образом:

Изделие из углепластика без предварительного нагрева размещают на пути следования пульсирующего газового потока, который обладает скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ. В результате происходит комбинированная обработка изделия газовыми импульсами и звуковыми колебаниями, продолжительность которой составляет от 2,5 до 10 минут. Изделие при этом располагают поперек газового потока.

Так, в частности, при обдуве образцов из углепластика КМУ-4Л в течение 10 минут создаваемым газоструйным генератором типа свистка Гавро с цилиндрическим осесимметричным резонатором пульсирующим воздушным потоком с частотой пульсаций порядка 1000 Гц, звуковом давлении порядка 115 дБ, скоростью потока 20 м/с и поперечном расположении образцов относительно пульсирующего воздушного потока перпендикулярно слоям, при направлении удара, совпадающем или противоположном направлению обдува, наблюдается рост ударной вязкости в сравнении с образцами, не подвергавшимися обработке пульсирующим воздушным потоком с 103 кДж/м2 до 113 кДж/м2 или на 9,7% и рост предела прочности с 160 МПа до 214 МПа или на 34%.

Схожие результаты получены при обработке углепластика КМУ-4Л в интервалах скоростей потока от 20 до 30 м/с, частот пульсаций от 500 до 1330 Гц и переменном звуковом давлении от 40 до 130 дБ, продолжительность которой составляет от 2,5 до 10 минут.

Так, при снижении продолжительности обдува до 2,5 мин. в интервалах скоростей потока от 20 до 30 м/с, частот пульсаций от 500 до 1330 Гц и звукового давления от 40 до 130 дБ происходит рост ударной вязкости в сравнении с образцами, не подвергавшимися обработке пульсирующим воздушным потоком с 103 кДж/м2 до 130 кДж/м2 или на 26,2%.

Обдув в течение 15 минут углепластика КМУ-4Л при тех же параметрах потока привел к снижению ударной вязкости до 109 кДж/м2 и предела прочности до 120 МПа при том же расположении образцов.

Полученные данные свидетельствуют о положительном влиянии обработки пульсирующим газовым потоком на статическую и динамическую прочность углепластика КМУ-4Л при условии ее продолжительности, не превышающей определенное время, зависящее от размера обрабатываемого изделия и амплитудно-частотных характеристик газового потока (отношение частоты колебаний газового потока к частоте собственных колебаний изделия) и составляющей не более 10 минут.

Полимерные материалы, в том числе углепластик, в большей степени поглощают энергию механических колебаний по сравнению с металлическими.

Внешнее воздействие может оказывать влияние на структуру полимеров, так, для полимера с линейной макромолекулярной структурой в условиях действия внешнего напряжения происходит перемещение макромолекул относительно друг друга. Прочность торцового контакта макромолекул более чем на порядок превышает прочность бокового контакта и макромолекулы могут ориентироваться параллельно направлению приложения нагрузки.

При этом механические свойства полимера в направлении ориентации увеличиваются по сравнению с исходным значением. Анизотропия прочности объясняется изменением соотношения торцового и бокового контактов макромолекул полимера.

В термореактивных смолах, являющихся матрицей полимерных композиционных материалов, в частности, углепластика, под действием механических колебаний могут протекать процессы устранения воздушных пузырьков, изменения плотности поперечных связей в макромолекулах, модификации физико-механических свойств.

Таким образом изобретение позволило получить технический результат, а именно повысить статическую и динамическую прочность изделий из углепластиков.

Способ обработки изделий из углепластика без нагрева пульсирующим газовым потоком со скоростью от 20 до 30 м/с, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ с продолжительностью обработки от 2,5 до 10 мин, при этом изделие располагают поперек потока.



 

Похожие патенты:

Группа изобретений относится к листу для применения в вакуумном формовании, к исходному материалу для листа, к способу его получения и к способу получения формованного изделия.

Изобретение относится к новым каучукам, стабилизированным особой комбинацией стабилизаторов. Комбинация стабилизаторов состоит по меньшей мере из трех разных стабилизирующих соединений, описываемых структурными формулами (I), (II), (III).

Настоящее изобретение относится к способу получения армированного термопластичного композиционного материала и к материалу, полученному этим способом. Способ получения армированного термопластичного композиционного материала заключается в том, что протягивают некрученые непрерывные волокна основы через пропиточную фильеру с калибровочным выходным отверстием; подают в пропиточную фильеру расплавленный полимер, формирующий термопластичную матрицу композиционного материала и содержащий дискретные волокна армирующего наполнителя; при этом выбирают величину тянущего усилия для протягивания основы из условия обеспечения пропитки расплавленным полимером основы в процессе ее протягивания через калибровочное выходное отверстие.

Изобретение относится к полимеру на основе сопряженного диена и способу получения данного полимера. Описан полимер на основе сопряженного диена, содержащий, по меньшей мере, один сопряженный диеновый мономер, в котором 40% или более его конца представляет собой конец, содержащий аминогруппу и амидогруппу, а показатель b* желтизны, определенный при помощи дифференциального колориметра, составляет 15 или менее, где конец, содержащий аминогруппу и амидогруппу, включает в себя конец, имеющий структуру, представленную следующей формулой (I), и конец, имеющий структуру, представленную следующей формулой (IV): в которой P представляет собой полимер на основе сопряженного диена, содержащий, по меньшей мере, один сопряженный диеновый мономер, а каждый из R1 и R2 независимо представляет собой углеводородную группу, содержащую от 1 до 8 атомов углерода, и в которой P представляет собой полимер на основе сопряженного диена, содержащий, по меньшей мере, один сопряженный диеновый мономер, а каждый из R1 и R2 независимо представляет собой углеводородную группу, содержащую от 1 до 8 атомов углерода.

Изобретение относится к композициям, предназначенным для применения при получении вспененного термопластичного полимера (фторполимеры, полиамды, полиамидоимиды, полибензимидазолы, полиимиды, полибутилентерефталаты и др), к способу получения композиции и способу получения вспененного термопластичного полимера.
Изобретение относится к каучуковой композиции, способу получения каучуковой композиции и покрышке. Каучуковая композиция содержит: каучуковый компонент (А), включающий по меньшей мере 50% (масс.) по меньшей мере одного каучука на изопреновой основе, выбранного из группы, состоящей из натурального каучука и синтетического изопренового каучука; термопластическую смолу (В) и наполнитель (С), включающий по меньшей мере 70% (масс.) диоксида кремния.

Изобретение относится к литому изделию из композиционного материала с отвержденным полимерным связующим и введенными в него частицами наполнителя. В связующее (6) введены стохастически распределенные полиамидные волокна (8), причем волокна имеют длину 5-20 мм и диаметр 0,05-0,2 мм, и доля волокон (8) составляет 0,02-0,5 вес.% от полного веса литого изделия (1).

Изобретение относится к композиции для получения вспененного термопластичного полимера и способу получению композиции и получению вспененного термопластичного полимера, которые могут быть применены, для получения электроизолирующих и термоизоляционных изделий, например кабельной изоляции, витых изделий, труб.
Изобретение относится к композиционным материалам на основе термопластичных полимеров, наполненных нанотрубками, и технологиям их получения, и может использоваться для производства конструкционных материалов с повышенными физико-механическими характеристиками.
Изобретение относится к области полимерных материалов и касается термопластичной кровельной мембраны. Мембрана включает верхний слой, ламинированный на нижний слой, и армирующую сетку, расположенную между верхним и нижним слоями, причем по меньшей мере часть нижнего слоя содержит первый термопластичный полимер и второй термопластичный полимер, содержащий по меньшей мере один реагирующий с изоцианатом заместитель, диспергированный в первом термопластичном полимере.

Изобретение относится к способу спаивания арамида/арамидных волокон. Способ спаивания арамидных волокон состоит в том, что a) по меньшей мере одну зону арамидного волокна обрабатывают ионной жидкостью, чтобы арамид размягчился, b) арамидные волокна размягченной зоной приводят в контакт друг с другом, причем к области контакта предпочтительно прикладывают давление, и затем c) размягченную зону арамида снова коагулируют.

Изобретение относится к экструдируемому антифрикционному композиту на основе сверхвысокомолекулярного полиэтилена и может быть использовано для получения антифрикционных изделий в узлах трения в машиностроении и медицине с применением аддитивных технологий.

Изобретение относится к способу получения смолы, включающему в себя смешивание по меньшей мере одного полиизоцианата по меньшей мере с одним полиэпоксидом, причем это смешивание происходит в присутствии системы катализаторов на основе по меньшей мере одного свободного от металлов основания Льюиса, имеющего по меньшей мере один атом азота, выбираемого из группы, состоящей из 1,8-диазабицикло-5,4,0-ундец-7-ена и его производных, причем система катализаторов используется в количестве от 0,001 до 1% масс.

Изобретение относится к пенопласту на основе фенольной смолы, обладающему низким воздействием на окружающую среду, высокой прочностью при сжатии, превосходной технологичностью при установке и низкой стоимостью, связанной с укреплением, и также способу его получения.

Настоящее изобретение относится к способу получения жесткого пеноматериала, включающему в себя взаимодействие по меньшей мере одного полиизоцианата со смесью, содержащей по меньшей мере один полиэпоксид, воду и по меньшей мере одно дополнительное соединение с кислотными атомами водорода, причем это взаимодействие осуществляется в присутствии не содержащего металлов основания Льюиса, имеющего по меньшей мере один атом азота, причем катализатор выбирают из группы, состоящей из 1,8-диазабицикло-5,4,0-ундецен-7-ена, N-метил-N'-(диметиламино-метил)пиперазина, пентаметилдиэтилентриамина, метилимидазола и их смесей и их производных.

Настоящее изобретение относится к композиции динамически вулканизированного термоэластопласта, используемой для изготовления изделий, находящих свое применение в автомобильной, кабельной, электротехнической, обувной промышленности, а также в производстве резинотехнических изделий и товаров бытового назначения.

Изобретение относится к применению композиции модифицированного усиленного полиалкилентерефталата и формованному изделию из нее. Композиция содержит i) полиалкилентерефталат, ii) сополимер полиалкиленизофталата и полиалкилентерефталата и iii) усиливающее полиалкилентерефталат волокно.

Изобретение относится к области термопластичных формовочных масс, в частности к полиамидной формовочной массе, широко используемой для формования промышленных деталей, труб, контейнеров.

Изобретение относится к области термопластичных формовочных масс, в частности к полиамидной формовочной массе, широко используемой для формования промышленных деталей, труб, контейнеров.

Изобретение относится к шлихтующей композиции для изоляционных продуктов на основе минеральной ваты, в частности стекловаты или каменной ваты. Шлихтующая композиция содержит по меньшей мере один восстанавливающий сахарид, по меньшей мере один гидрогенизованный сахарид, по меньшей мере один полифункциональный сшивающий агент и по меньшей мере один полиглицерин.

Группа изобретений относится к производству стальных труб с защитным полимерным покрытием. Способ включает последовательное нанесение на поверхность стальной трубы первого, затем второго и наружного покрытий.

Изобретение относится к области органических высокомолекулярных соединений, в частности к обработке изделий из углепластика. Способ обработки изделий из углепластика содержит обработку без нагрева пульсирующим газовым потоком. Газовый поток обладает скоростью от 20 до 30 мс, частотой колебаний от 500 до 1130 Гц и переменным звуковым давлением от 40 до 130 дБ. Продолжительность обработки составляет от 2,5 до 10 мин при расположении изделия поперек потока. Изобретение позволяет повысить статическую прочность - предел прочности и динамическую прочность - ударную вязкость изделий из углепластика.

Наверх