Способ получения фотокаталитического диоксида титана модификации анатаз и брукит на поверхности керамического изделия из рутила, полученного окислительным конструированием

Изобретение может быть использовано при получении фотокатализаторов различной формы на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений. Способ получения фотокаталитического диоксида титана TiO2 основывается на поверхностной модификации фазы рутила, полученной методом окислительного конструирования. В процессе двух последовательных гидротермальных синтезов верхний слой компактной рутильной керамики переводился в игольчатые кристаллы фазы титаната натрия посредством гидротермальной обработки в сильнощелочной среде (15 М NaOH) при 200°С 48 ч, с последующим переходом протонированной формы титаната натрия в нанотрубки фазы анатаза и брукита посредством гидротермальной обработки в слабокислой среде (0.05 М HNO3) при 120°С 48 ч. Методом БЭТ установлено, что удельная площадь поверхности наноструктур анатаза и брукита, выращенных на поверхности рутильной керамики, составила Sуд=50 м2/г, что намного больше удельной поверхности исходной рутильной керамики (1-3 м2/г). Наращенные на поверхности рутильной керамики фотокаталитические фазы анатаза и брукита обладают значительной фотокаталитической активностью в процессе фотокаталитического разложения озона, что характеризует такие керамические изделия, как перспективный материал для фотокаталитических применений. 9 ил., 1 пр.

 

Способ получения фотокаталитичекого диоксида титана модификации анатаз и брукит на поверхности керамического изделия из рутила, полученного окислительным конструированием.

Изобретение относится к области способов получения наноразмерных образований диоксида титана TO2 модификации анатаз и брукит на поверхности компактного рутила различной формы и может применяться для приготовления керамических изделий любой формы в качестве фотокатализаторов, преобразователей солнечной энергии в химическую и т.д.

Известен способ получения фотокаталитического диоксида титана (см. патент РФ 2243033, МПК7 B01J 21/06, B01J 37/02, C02F 11/14, C02F 1/32, 2004), включающий обработку суспензии диоксида титана рутильной или анатазной модификации растворами минеральных кислот для модифицирования поверхности диоксида титана анионами, что разрыхляет структуру диоксида титана и увеличивает его удельную поверхность. Обработку суспензии ведут кислотами с концентрацией 0,00001-15 моль/л при соотношении объема кислоты к массе катализатора 1-100 и температуре от 25 до 100°С в течение 0,5-20 ч с последующей выдержкой суспензии при комнатной температуре в течение 0,1-100 ч и отделением осадка диоксида титана. Минеральными кислотами могут быть фтористоводородная, хлористоводородная, серная, хлорная, азотная и фосфорная кислоты. После многократной промывки осадка в его водную суспензию вводят водный раствор неорганических соединений одного или нескольких металлов: Pd, Pt, Au, Ag, которые восстанавливают до металлического состояния формальдегидом, гипофосфитом или борогидратом натрия, или гидразином в течение 0,01-10 ч при температуре 20-100°С. Полученный катализатор отделяют от раствора и высушивают на воздухе при 50-200°С. Массовое содержание металлических частиц в катализаторе должно находиться в пределах 0,01-10,0 мас. %.

К недостаткам данного способа относится то, что при температурах сушки 100-200°С сорбированные поверхностью анионы, в том числе фтор, улетучиваются с парами воды, что снижает удельную поверхность получаемых катализаторов. Кроме того, способ включает большое количество продолжительных операций и значительное число используемых реагентов, что усложняет его. Низкая термостойкость получаемых катализаторов исключает возможность их повторного использования после термической регенерации. Кроме того способ основывается на работе с нанодисперсными порашками.

Эффективность работы фотокатализатора зависит от свойств носителя, который не должен деградировать под действием ультрафиолета, быть прочным и способным удерживать частицы фотокатализатора. Существует целый ряд методов по нанесению диоксида титана на инертные носители.

Золь-гель методом получается синтезировать супергидрофильные пленки диоксида титана. Для их получения используют бутоксид титана (97%), который смешивают с этанолом, уксусной кислотой и водой при комнатной температуре. Затем концентрированный раствор наносят подложку и обжигают при температуре 300°С-500°С [K. Ikeda, Н. Sakai, R. Baba, K. Hashimoto, A. Fujishima, Photocatalytic reaction involving radical chain reaction using microelectrodes, J. Phys. Chem. В., 1997, 101(14), P. 2617-2620].

Покрытия, состоящие из массивов ориентированных стержней диоксида титана могут быть получены на поверхности различных подложек посредством сольвотермального осажденияиз тетрахлорида титана в толуоле [Zhang, Н. Thermodynamic analysis of phase stability of nanocrystalline titania / H. Zhang, J. F. Banfield // J. Mater. Chem. - 1998. - V. 8, - P. 2073-2076] или гидротермального осаждения из водного растворатрихлорида титана [Петухов Д.И., Колесник И.В., Елисеев А.А., Лукашин А.В., Третьяков Ю.Д. Синтез и исследование свойств пленок пористого TiO2, полученных анодным окислением. АЭЭ. №1 (45) (2007)].

Фотокаталитический диоксид титана в виде пленок из нанотрубок, может быть получен путем анодного окисления металлического титана во фторсодержащих электролитах. В работе [Степанов А.Ю., Владимиров А.А., Попова А.Н., Сотникова Л.В. Исследование морфологии и фазового состава тонких пленок диоксида титана. ПМ. №4(20) (5) (2015)] представлен способ синтеза, в котором окисление проводится в электролите, содержащем 0,5% масс.NH4F, 3,5% масс. H2O и 96% масс. C2H6O2 (этиленгликоля). В качестве анода использовали предварительно отполированные пластины диоксида титана, а в качестве катода - платиновую фольгу.

Известен способ (см. патент РФ 2052426 МПК-8: С04В 35/46 от 20.01.1996 г) керамических изделий разнообразного назначения, включая керамические фильтры из рутила и/или анатаза, носители катализаторов, высокопористые мембраны из анатаза, конденсаторы и другие функциональные устройства, огнеупорные изделия. Сущность изобретения: способ получения керамики из диоксида титана включает формование керамических заготовок из смеси порошков диоксида титана и нитрида титана, взятых в соотношении TiO2: TiN 19:1-1:19 по массе и последующий обжиг в кислородсодержащей атмосфере при температуре 870-1970 К до прекращения изменений их массы и/или объема. Получаемая керамика на 100% состоит из диоксида титана в форме анатаза и/или рутила и имеет тонкозернистую структуру, изделия из такой керамики могут иметь сложную геометрическую форму, высокоразвитую поверхность и достаточную для их эксплуатации механическую прочность.

К недостаткам данного метода способа относится то, что невозможно получить таким способом керамические материалы любой формы. Кроме того, удельная поверхность полученного материала не сообщается, как и не приводилось испытание его фотокаталитических свойств.

Наиболее близким по технологической сущности является способ получения наноструктурных титанатов и TiO2 синтезируемых непосредственно из рутиловых минералов и рутилов промышленного класса методом гидротермальной обработки [Н. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. // Journal of the American Chemical Society. - 2005. - T. 127. - №. 18. - C. 6730-6736]. В том числе в данной работе приводится оригинальный метод превращения фазы рутила в фазу анатаза при помощи вспомогательного промежуточного соединения - протонированной формы титаната натрия. Недостатком данного способа является гидротермальная обработка порошков, а не компактных материалов из TiO2.

Исходя из вышеизложенного, в основу настоящего изобретения была положена задача, предложить способ получения фотокаталитических наноразмерных образований диоксида титана ТО2 модификации анатаз и брукит на поверхности компактного керамического изделия из рутила различной формы, полученного окислительным конструированием, который в дальнейшем может быть использован в качестве готового фотокатализатора.

Техничеким результатом является получения фотокаталитичекого диоксида титана модификации анатаз и брукит на поверхности компактного керамического изделия из рутила, с показателями фотокаталитических свойств выше, чем у нанодисперсных порошков, нанесенных на инертные носители (например, пористое кварцевое стекло (ПКС)).

Технический результат достигается тем, что в способе получения фотокаталитичекого диоксида титана модификации анатаз и брукит преобразование фазы рутила происходит на поверхности компактного материала.

В основе метода окислительного конструирования тонкостенной керамики (ОКТК) [Солнцев К.А., Шусторович Е.М., Буслаев Ю.А. Окислительное конструирование тонкостенной керамики. Докл. АН, 2001, Т. 378, №4, С. 492-499] лежит получение изделий из оксидной керамики, основанное на контролируемом окислении тонкостенных металлических заготовок до компактных керамических изделий многообразных форм, изготовление которых традиционными технологиями затруднительно. Следовательно, благодаря предложенному способу двухстадийной гидротермальной обработки поверхности любой формы керамического изделия из рутила, полученного окислительным конструированием, в результате гидротермальной обработки на первой стадии в сильнощелочной среде (15 М NaOH) при 200 оС в течение 48 ч., промежуточной обработки керамики в 2.5 М растворе HCl и гидротермальной обработки на второй стадии в слабокислой среде (0.05 М HNO3) при 120 оС в течение 48 ч. образуются на поверхности фазы анатаза и брукита с удельной поверхностью больше 50 м2/г, что положительно сказывается на фотокаталитическую активность конечного изделия и что позволяет создать перспективный фотокаталитический фильтр по нейтрализации вредных газов в воздухе, в том числе и по нейтрализации озона.

Методом окислительного конструирования сложно получить развитую поверхность фазы рутила (удельная поверхность 1-3м2/г), поэтому он малоактивен в УФ в отличие от фазы анатаза. Решением этой проблемы может быть модификация поверхности рутильной керамики методом двухстадийной гидротермальной обработки, нарастив фазу анатаза с высокой площадью поверхности.

Пример 1. После первой стадии гидротерамальной обработки более 24 часов в 15 М растворе NaOH на поверхности образцов рутила образовывается белый налет фазы титаната натрия Na4Ti3O8 (карточка 38-730 базы данных PDF), что подтверждают данные рентгенофазового анализа (РФА). На рисунке 1 приведены рентгенограммы материала, наросшего на поверхности пластинок рутила после первой стадии гидротермальной обработки в щелочи в течение различного времени. После 36 ч гидротермальной обработки отчетливо видна фаза титаната натрия Na4Ti3O8

На рисунке 2 приведены данные растровой электронном микроскопии (РЭМ) пластинки рутила после гидротермальной обработки в щелочи в течение 36 часов: а) общий вид поверхности; б) вид скола.

На приведенной микрофотографии видно, что на поверхности керамической пластинки образовались игольчатые кристаллы, расположенные под наклоном в различном направлении и равномерно ее покрывающие.

Исследование образцов рутильной керамики сложной формы показало, что поверхностная модификация происходит по всей поверхности образца, включая участки со сложной морфологией (рис. 3), что показывает возможность такой модификации не только для плоский пластин, но и для изделий сложной формы (трехмерные фильтры, пористые системы и т.д.).

На рисунке 4 приведены РЭМ микрофотографии поверхности пластинок рутила при большем увеличении, после их гидротермальной обработки в концентрированном растворе щелочи в течение различного времени. На поверхности образцов, полученных за 12 часов гидротермальной обработки нарастают редкие бесформенные нити, которые уже после 16 часов синтеза начинают оформляться в остроконечные стержни. При дальнейшем увеличении времени гидротермальной обработки до 20 часов морфология образовавшихся стержней изменяется с остроконечных стержней на более правильно кристаллически оформленные, напоминающие гистограммы. Начиная с 24 часов синтеза, на поверхности нарастают нитевидные кристаллы квадратного сечения. Принимая по внимание данные РФА, можно сделать вывод, что в процессе гидротермальной обработки рутильной керамики в ходе первых 24 часов происходит рост и кристаллизация фазы титаната натрия Na4Ti3O8, после чего фазовые превращения, в рассматриваемой системе, останавливаются и увеличивается лишь общее количество образовавшейся фазы.

Наросшие на пластинки рутила нитевидные кристаллы титана натрия переводили в протонированную форму (Н+-форма) промыванием в водном растворе соляной кислоты. На дифрактограмме полученной Н+-формы (рис. 5) наблюдаются рефлексы соответствующие фазе рутила и шум, свидетельствующий о том, что в процессе замены ионов натрия на ионы водорода происходит разупорядочение кристаллической решетки титаната натрия и образование рентгеноаморфной Н+-фазы.

На рисунке 6 приведены дифрактограммы материала, образовавшегося в ходе второго гидротермального синтеза в 0.05 М растворе HNO3 в течение различного времени (24 часа (слева) и 48 часов (справа)). Как видно из приведенных графиков, после 24 ч гидротермальный обработки отчетливо видна только фаза рутила и небольшой сильно уширенный пик в области 26°, который может принадлежать фазам анатаза или брукита. В то же время, на рентгенограмме образца, выдерживаемого в течение 48 часов, заметно преобладают фазы анатаза и брукита

На рисунке 7 приведены данные растровой электронной микроскопии поверхности пластинок рутила после второй гидротермальной обработки в кислоте в течение 24 часов и 48 часов. Из нитевидных кристаллов, образованных после первого гидротермального синтеза, в процессе второго гидротермального синтеза в течение 24 часов, начинают образовываться полые нитевидные кристаллы прямоугольного сечения. Увеличив время второй гидротермальной обработки до 48 часов уже можно получить не только хорошо оформленные полые кристаллы диоксида титана, но и мелкие нитевидные, нарощенные друг на друга кристаллы. Принимая по внимание данные РФА, можно сделать вывод, что превращение Н+-формы титаната натрия, выращенного на керамической пластинке рутила, в процессе гидротермальной обработки происходит медленно и заметное количество фаз анатаза и брукита образовывается только после 48 часов.

Методом капиллярной конденсации азота при 77 К была измерена удельная площадь поверхности наноструктур анатаза и брукита, выращенных на поверхности рутильной керамики. Для этого полученные структуры были счищены с образца, синтезированного двумя последовательными гидротермальными обработками в течение 48 часов каждая.

Результаты расчета удельной площади поверхности по одноточечному и многоточечному методу БЭТ дают хорошо согласующиеся величины Sуд=50 м2/г, что намного больше удельной поверхности исходной рутильной керамики (1-3 м2/г). Появление у обработанных предложенным методом образцов большой удельной поверхности также должно положительно сказываться на их фотокаталитической активности.

Аналогичным образом исследовалась возможность гидротермальной модификации поверхности высокопористых керамических рутильных керамических структур, полученных окислением металлического титанового войлока.

Как и в случае с двумерными образцами, в результате первой гидротермальной обработки на поверхности отдельных нитей рутила сформировались игольчатые кристаллы фазы титаната натрия (рис. 8), конвертируемые затем без разрушения в смешенные фазы анатаза и брукита.

Фотокаталитическая активность полученных материалов была оценена разложением молекулы озона (О3) в процессе облучении УФ лампой (λ=312 нм).

Из диаграммы рисунка 9 показана фотокаталитическая активность модифицированных материалов на основе рутила, из которого следует, что рутил в виде пластины и его модификация после отжига в вакууме фотоактивности не проявляет в спектре УФ излучения. Рутил в виде войлока имеет собственную фотоактивность. Модифицированные пластины рутила методом гидротермирования показали фотокаталитическую активность на уровне коммерческих порошков анатаза (ТИОКРАФТ, Р-25 «Degussa»).

В результате спекания титанового войлока методом окислительного конструирования с последующей двухстадийной гидротермальной обработкой поверхности были созданы фотокаталитические компактные керамические структуры с удельной поверхностью до 50 м2/г, которые показали эффективную фотоактивность (до 78%) в реакции разложения О3, что на 73% выше фотоактивности нанодисперсных порошков TiO2 марки Р-25 («Degussa») / ПКС1 (1 Нанодисперсные порошки TiO2 нанесены на инертный носитель фотокатализаторов - пористое кварцевое стекло (ПКС).) и на 160% выше - TiO2 марки «Тиокрафт»/ПКС.

Способ получения фотокаталитического диоксида титана модификации анатаз и брукит на поверхности керамического изделия из рутила, полученного окислительным конструированием, включающий гидротермальную обработку поверхности керамики из рутила, отличающийся тем, что гидротермальная обработка проводится в две стадии, на первой стадии верхний слой компактной рутильной керамики переводился в фазу титаната натрия Na4Ti3O8 посредством гидротермальной обработки в сильнощелочной среде (15 М NaOH) при 200°C 48 ч, с последующим образованием протонированной формы (Н+-формы) титаната натрия, получаемой в результате промывки керамики в 2.5 М растворе HCl, на второй стадии протонированную форму титаната натрия переводили в нанотрубки фазы анатаза и брукита посредством гидротермальной обработки в слабокислой среде (0.05 М HNO3) при 120°C 48 ч.



 

Похожие патенты:

Изобретение может быть использовано в химической технологии. Для приготовления порошкообразных образцов η-фазы состава TiO2-х×nH2O, где n=0,9-2,0, с интеркаляцией поли-N-винилкапролактама (ПВК) в структуру η-фазы осуществляют следующие стадии.

Изобретение может быть использовано в химической технологии. Для приготовления порошкообразных образцов η-фазы состава TiO2-х×nH2O, где n=0,9-2,0, с интеркаляцией поли-N-винилкапролактама (ПВК) в структуру η-фазы осуществляют следующие стадии.

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты (Ди2ЭГФК) и трибутилфосфата (ТБФ), с получением насыщенного экстрагента и рафината экстракции.

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты (Ди2ЭГФК) и трибутилфосфата (ТБФ), с получением насыщенного экстрагента и рафината экстракции.

Изобретение относится к покрытиям для поверхностей, более конкретно, к противомикробным покрытиям. Процесс получения противомикробного покрывающего раствора включает стадии: (i) смешивание хелатирующего средства с алкоксидом титана и фторуксусной кислотой; и (ii) добавление водного раствора в смесь со стадии (i).

Изобретение относится к комплексу тетрахлорида титана с N-метилформанилидом формулы: Также предложен способ получения такого комплекса. Комплекс может использоваться в качестве исходного продукта при сольвотермальном синтезе титаноксидных соединений.

Изобретение может быть использовано в пищевой, химической, фармацевтической и лакокрасочной промышленности. Способ получения пигментного диоксида титана рутильной модификации включает обработку гидратированного диоксида титана в присутствии рутилизирующей добавки.

Изобретение может быть использовано в неорганической химии. Способ получения нанодисперсных оксидов металлов включает формирование реакционной смеси путем внесения нитратов металлов и карбамида в водную среду в стехиометрическом соотношении.

Изобретение относится к области технологий получения пленок и может быть использовано в технологии получения пленок диоксида титана TiO2 на твердых подложках. Способ получения пленок диоксида титана на твердой подложке включает синтез прекурсора пленки на основе диоксида титана осаждением гидрогеля диоксида титана из водного раствора тетрахлорида титана водным раствором гидроксида аммония при постоянном рН=7.

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов.

Изобретение относится к клеевой промышленности и может быть использовано в области машиностроения и ремонта техники. Композиция для склеивания металлических изделий содержит компоненты при следующем соотношении, мас.%: анаэробный герметик АН-111 - 98,3-99,1; наполнитель: нанопорошок алюминия 70 - 0,7-1,3, нанопорошок меди 70 - 0,2-0,4.

Изобретение относится к созданию эластичной алюмооксидной наномембраны на основе анодированного алюминия. Способ включает подготовку поверхности образцов путем термообработки в течение 30 мин при температуре 450°С и анодирование в многокомпонентном электролите 50 г/л щавелевой кислоты + 100 г/л лимонной кислоты + 50 г/л борной кислоты + 100 мл/л изопропилового спирта в гальваностатическом режиме при температуре 20°С и плотности тока 25 мА/см2.

Группа изобретений относится к изделиям, содержащим субстрат и эластичную проводящую пленку. Эластичная проводящая пленка содержит множество отожженных наночастиц проводящего металла, в частности серебра, нанесенных на субстрат.

Изобретение относится к области нанотехнологии и может быть использовано для получения нанокомпозитных материалов для создания источников питания, работающих в экстремальных условиях.
Группа изобретений относится к получению спеченного инструментального материала на основе оксида алюминия. Материал состоит из зерен оксида алюминия сферической формы размером от 0,01 до 0,4 мкм с тонкой пленкой никеля на поверхности каждого зерна толщиной 0,1÷0,4 от его размера.

Использование: для генерации случайных чисел. Сущность изобретения заключается в том, что способ генерации по меньшей мере одного случайного числа включает следующие шаги: квантовое туннелирование зарядов из одного проводника в другой проводник через квантовый барьер с туннельным переходом; прием случайного сигнала, порожденного квантовым туннелированием зарядов; сопоставление случайного сигнала со случайным числом и генерацию сигнала, указывающего случайное число.

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов.

Изобретение относится к области материаловедения и может быть использовано при изготовлении наноматериалов. Однородную смесь порошков наноалмазов в количестве 20-35 вес.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: цеолит типа ZSM-5 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления.
Наверх