Гирокоординатор головки самонаведения

Предложенное изобретение относится к области управляемого вооружения, а именно к гирокоординаторам головок самонаведения, используемым в системах управления управляемых ракет. Задачей предлагаемого изобретения является уменьшение габаритов гирокоординатора при обеспечении малого времени готовности. Поставленная задача решается в гирокоординаторе головки самонаведения, содержащем корпус, ротор, установленный в основании на внутреннем кардановом подвесе, на задней торцевой поверхности которого выполнены радиально направленные выступы, цилиндрическую втулку с зацепом и с возможностью вращения на корпусе. При этом на переднем торце цилиндрической втулки с возможностью разворота вокруг радиально направленных осей установлены три подпружиненных в направлении вращения ротора поводка, на каждом из которых выполнены ограничители поворота, контактирующие с цилиндрической втулкой при положении поводка, перпендикулярном плоскости переднего торца цилиндрической втулки, на поверхностях поводков, обращенных в сторону вращения, выполнены пазы, в которые входят выступы ротора. Основание карданова подвеса неподвижно установлено в корпусе с возможностью регулирования их взаимного положения вдоль продольной оси, а радиально направленные выступы выполнены в кольце, закрепленном на задней торцевой поверхности ротора. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области управляемого вооружения, а именно к гирокоординаторам головок самонаведения, используемых в системах управления ракет.

Известен гирокоординатор головки самонаведения ракеты «Сайду-индер» (Неусыпин А.К. Гироскопические приводы. - М. «Машиностроение», 1979 г, стр. 7-8), содержащий ротор, выполненный в виде постоянного магнита, с закрепленной на нем оптической системой координатора цели и установленный на внутреннем кардановом подвесе. Ротор гиропривода одновременно является ротором двухполюсного магнитоэлектрического двигателя с автоподстройкой частоты вращающегося магнитного поля, создаваемого статорными обмотками, размещенными вокруг ротора. На том же каркасе размещены другие две обмотки, выполняющие роль электрического арретира и управляющая (коррекционная) обмотка.

Четыре статорные обмотки, размещенные со сдвигом 90°, создают вращающееся магнитное поле, взаимодействие которого с полем постоянного магнита, создает вращающий момент, обеспечивающий разгон и поддержание угловой скорости вращения ротора гиропривода.

Недостатком такого прибора является достаточно большое (порядка 2-3с) время разгона ротора до рабочих оборотов, т.е. время готовности головки самонаведения, которое не является критичным при стрельбе с неподвижного основания.

Наиболее близким к предлагаемому техническому решению является гирокоординатор головки самонаведения (патент №2234049 кл. F42B 15/01 от 19.02.2003 г. ), содержащий корпус, ротор, установленный в основании, на внутреннем кардановом подвесе, на задней торцевой поверхности которого выполнены радиально направленные выступы, цилиндрическую втулку с зацепом и с возможностью вращения на корпусе

В корпусе размещен пружинный двигатель, который разъемно соединен с ротором. Соединение пружинного двигателя с ротором осуществляется двухступенчатой цилиндрической втулкой, установленной с возможностью вращения на корпусе во внутренней полости пружинного двигателя, на ступени меньшего диаметра которой выполнен зацеп, взаимодействующий с пазом на внутреннем конце пружинного двигателя, а на передней торцевой поверхности ступени большего диаметра выполнены выступы, на наружной цилиндрической поверхности которых выполнены пазы, открытые в направлении вращения и имеющие стенку с противоположной стороны. Поверхность выступа, противолежащая открытой стороне паза, на расстоянии от оси вращения большем радиуса внутренней стенки паза, выполнена наклонной в сторону противоположную направлению вращения, на задней торцевой поверхности ротора размещены радиально направленные поводки, входящие в пазы втулки. На поверхности основания карданова подвеса, выступающей за заднюю стенку корпуса, выполнена проточка, контактирующая с ограничителем цилиндрического сечения, закрепленным на упругом элементе с регулируемым усилием поджатая, установленным на корпусе. Расстояние от оси карданова подвеса до наиболее удаленной части наклонной плоскости больше, чем до плоскости вращения поводков, на задней торцевой поверхности ротора выполнен радиальный паз, с которым взаимодействует выступ Г-образного цилиндрического фиксатора, установленного в корпусе параллельно оси вращения ротора, на боковой поверхности которого выполнен паз, с которым контактирует стопор, размещенный в проточке подвижной в осевом направлении подпружиненной втулки, взаимодействующей с пиротехническим элементом, при этом ось втулки расположена в плоскости перпендикулярной оси ротора, а величина перемещения втулки больше глубины паза.

Разарретирование гирокоординатора головки самонаведения происходит на траектории полета носителя при подаче напряжения на пиротехнический элемент. Под действием механического импульса пиротехнического элемента стопор перемещается и выходит из зацепления с пазом Г-образного фиксатора, обеспечивая свободу вращения. Ротор под действием момента пружинного двигателя начинает разгоняться. По окончанию разгона, когда момент двигателя станет равным нулю, поводки ротора, вращаясь по инерции, выходят из пазов двухступенчатой цилиндрической втулки и, взаимодействуя с наклонной плоскостью, преодолевают усилие зацепления ограничителя с проточкой основания карданова подвеса, перемещая ротор от опорной поверхности корпуса, разарретируют его. Время готовности при этом не превышает 0,1 с.

Недостатком конструкции является достаточно большая величина инерционной силы, действующей на элементы оптической системы и опоры карданова подвеса при разарретировании, что может привести к разъюстировке оптической системы, а также требует применения подшипниковых опор, способных выдерживать возникающие при этом динамические нагрузки, что увеличивает габариты прибора.

Задачей предлагаемого изобретения является уменьшение габаритов гирокоординатора при обеспечении малого времени готовности.

В предлагаемом гирокоординаторе головки самонаведения, содержащем корпус, ротор, установленный в основании, на внутреннем кардановом подвесе, на задней торцевой поверхности которого выполнены радиально направленные выступы, цилиндрическую втулку с зацепом и с возможностью вращения на корпусе, новым является то, что на переднем торце цилиндрической втулки с возможностью разворота вокруг радиально направленных осей установлены три подпружиненных в направлении вращения ротора поводка, на каждом из которых выполнены ограничители поворота, контактирующие с цилиндрической втулкой при положении поводка перпендикулярном плоскости переднего торца цилиндрической втулки, на поверхностях поводков, обращенных в сторону вращения, выполнены пазы, в которые входят выступы ротора. При этом основание карданова подвеса неподвижно установлено в корпусе с возможностью регулирования их взаимного положения вдоль продольной оси, а на задней торцевой поверхности ротора установлено кольцо, в котором выполнены радиально направленные выступы.

Предлагаемое техническое изобретение поясняется графическим материалом фиг. 1-3.

На фиг. 1-3 изображены общий вид описываемого устройства и поясняющие разрезы. Ротор 1 в кардановом подвесе, состоящем из внутренней 2 и наружной 3 рамок, размещен в основании 4, установленном в корпусе 5. В расточке корпуса размещен пружинный двигатель 6, осуществляющий импульсный за время не более 0,1 с разгон ротора 1 гирокоординатора до рабочих оборотов. Соединение ротора 1 с пружинным двигателем выполнено посредством цилиндрической втулки 7, обеспечивающей передачу крутящего момента. Для этого на цилиндрической части втулки выполнен зацеп 8, контактирующий с пазом на внутреннем конце пружинного двигателя 6, а на ее передней торцевой поверхности с возможностью поворота на угол ~ 90° размещены три поводка 9, установленные на радиально направленных осях 10. На поводках выполнены ограничители поворота 11, обеспечивающие при повороте поводков до положения перпендикулярного плоскости переднего торца втулки упор в цилиндрическую втулку 7. Упругие элементы 12 осуществляют приложение крутящего момента к поводкам для их разворота в положение параллельное плоскости переднего торца цилиндрической втулки 7, необходимое для обеспечения прокачки ротора после его разгона и разарретирования. Для ориентации оптической оси гирокоординатора 13 на передней, направленной в сторону вращения ротора, стороне поводков выполнены пазы 14, в которые входят радиально направленные выступы 15, выполненные в кольце 16, закрепленном на задней торцевой поверхности ротора 1. Для совмещения выступов 15 с пазами 14 в продольном направлении используются прокладки 17, устанавливаемые между корпусом 5 и основанием карданова подвеса 4.

Фиксация ротора 1 от вращения в заарретированном положении осуществляется за счет взаимодействия радиального паза 17, выполненного на задней торцевой поверхности ротора, с выступом Г-образного фиксатора 18, размещенного в корпусе 5 параллельно продольной оси гирокоординатора. Для разарретирования гирокоординатора используется пиротехнический элемент 19, прикладывающий усилие к втулке 20, удерживающей Г-образный фиксатор 18 от разворота.

Работает гирокоординатор следующим образом. В заарретированном положении взаимодействие зацепов ротора с пазами поводков обеспечивает ориентацию оси ротора по продольной оси носителя. Запуск гирокоординатора осуществляется на траектории после захвата цели головкой самонаведения путем подачи напряжения на пиротехнический элемент 19. Срабатывая, он перемещает втулку 20, в результате чего освобождается фиксатор 18, обеспечивая ротору 1 свободу вращения. Ротор 1 под действием момента пружинного двигателя 6, передаваемого через цилиндрическую втулку 7 и поводки 9, начинает разгоняться. После окончания разгона ротора 1, когда величина момента пружинного двигателя 6 станет равной нулю, радиально направленные выступы 15, вращаясь вместе с ротором 1 по инерции, выходят из пазов 14 поводков 9, которые под действием момента кручения упругих элементов 12 складываются, обеспечивая ротору 1 прокачку.

Отсутствие перемещения карданова подвеса при разарретировании исключает возникновение инерционного усилия при торможении, что позволяет использовать в качестве опор осей подвеса шарикоподшипники с меньшей нагрузочной способностью, т.е. подшипники с меньшими габаритами, что позволяет уменьшить габариты гирокоординатора в целом.

Проведенные испытания показали работоспособность предложенной конструкции гирокоординатора.

1. Гирокоординатор головки самонаведения, содержащий корпус, ротор, установленный в основании на внутреннем кардановом подвесе, на задней торцевой поверхности которого выполнены радиально направленные выступы, цилиндрическую втулку с зацепом и с возможностью вращения на корпусе, отличающийся тем, что на переднем торце цилиндрической втулки с возможностью разворота вокруг радиально направленных осей установлены три подпружиненных в направлении вращения ротора поводка, на каждом из которых выполнены ограничители поворота, контактирующие с цилиндрической втулкой при положении поводка, перпендикулярном плоскости переднего торца цилиндрической втулки, на поверхностях поводков, обращенных в сторону вращения, выполнены пазы, в которые входят выступы ротора.

2. Гирокоординатор по п. 1, отличающийся тем, что основание карданова подвеса неподвижно установлено в корпусе с возможностью регулирования их взаимного положения вдоль продольной оси.

3. Гирокоординатор по п. 1, отличающийся тем, что радиально направленные выступы выполнены в кольце, закрепленном на задней торцевой поверхности ротора.



 

Похожие патенты:

Изобретение относится к области управляемого артиллерийского вооружения, в частности к способам стрельбы управляемым артиллерийским снарядом, и предназначено для управления огнем минометов и ствольной артиллерии при стрельбе управляемыми боеприпасами.

Изобретение относится к методам и средствам артиллерийской разведки на основе получения и анализа фотоизображений местности с объектами из зоны прицеливания. Способ коррекции стрельбы из артиллерийских орудий основан на предварительном определении параметров стрельбы боевыми снарядами.

Группа изобретений относится к области вооружения, а именно к способу стрельбы управляемым снарядом и системам высокоточного оружия, реализующим указанный способ.

Изобретение относится к области оптики и может быть использовано для наведения высокоточного, в частности противотанкового оружия. Способ фокусировки оптики аппаратурных каналов с поэлементным формированием информационного поля включает взаимную установку лазера и объектива на расстоянии, при котором обеспечивается максимальный запас по сигналу, при этом лазер и объектив устанавливают в области отрицательной расфокусировки на расстоянии, обеспечивающем максимальное для всех возможных величин расфокусировки значение амплитуды огибающей сигнальных импульсов в точке, удаленной от максимума огибающей сигнальных импульсов на длительность элементарной сигнальной посылки.

Изобретение относится к военной технике, а именно к тренажерам для обучения расчетов использованию комплексов топопривязки и навигации в условиях боевого применения.

Изобретение относится к системам управления, в частности к ракетной технике с головками самонаведения, и может использоваться в комплексах управляемого вооружения, расположенных на воздушных носителях.

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия с лазерными полуактивными головками самонаведения (ЛПГСН).

Изобретение относится к противолодочным боеприпасам. Боеприпас содержит систему запуска и разделения, тормозной отсек, парашют, поплавок, корректируемый подводный снаряд, корпус противолодочного боеприпаса, электронный блок обработки сигналов, рулевое устройство, боевую часть, взрывательное устройство, излучающую антенну системы коррекции траектории подводного снаряда, излучающую антенну для работы дежурного канала в активном режиме, позволяющую определить параметры движения подводной цели и факт вхождения ее в зону наведения подводного снаряда, приемные антенны, используемые как для функционирования системы коррекции траектории подводного снаряда, так и для работы дежурного канала в активном режиме, позволяющем определить параметры движения подводной цели и факт вхождения ее в зону наведения снаряда на подводную цель, приемную антенну для работы дежурного канала в пассивном режиме, обеспечивающем возможность определения направления на цель и факт ее приближения к зоне наведения подводного снаряда на подводную цель, двигатель для перемещения подводного снаряда в направлении подводной цели, система коррекции траектории которого на время работы двигателя принимает отраженные от цели зондирующие импульсы или, при отсутствии таковых, эхо-сигналы дополнительного излучателя другого подводного снаряда, дополнительный излучатель эхо-сигналов, работающий в активном режиме, в случае, если подводная цель на момент излучения зондирующих импульсов находится в зоне наведения подводного снаряда, позволяющих определять направление на подводную цель для других подводных снарядов, в зоне наведения которых отсутствует подводная цель, невозвратный клапан, гибкую связь, стропы парашюта.
Способ поражения удаленной групповой цели ракетами стаи, при котором дополнительно организуют радиолинию связи между двумя ракетами, выпущенными с временным интервалом, рассчитываемым исходя из складок местности, скорости полета ракет и дальности, обеспечивающей устойчивую радиосвязь между ними, формируют общую линию связи между всеми ракетами стаи, используя радиолинии связи между парами ракет, кодируют и передают «по цепочке» на следующие позади ракеты информацию о прохождении установленных участков маршрута, выявленных средствах ПВО, начале атаки назначенной цели, наведении на нее и поражении, полученную информацию обрабатывают в бортовой системе управления каждой ракеты и при необходимости корректируют маршрут, производят перенацеливание и сообщают «по цепочке» на другие ракеты и пункт управления.

Изобретение относится к ракетной технике и может быть использовано в системах наведения телеуправляемых ракет. Технический результат - снижение потребной перегрузки ракеты, динамической ошибки наведения с обеспечением требуемых углов встречи ракеты с целью и расширение условий применения телеуправляемой ракеты.
Наверх