Способ получения нанокапсул диакамфа в гуаровой камеди

Изобретение относится к области нанотехнологии, медицины, фармакологии. Способ получения нанокапсул диакамфа в гуаровой камеди характеризуется тем, что в качестве оболочки нанокапсул используется гуаровая камедь, при этом диакамф порциями добавляют в суспензию гуаровой камеди в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф:гуаровая камедь 1:1, или 1:3, или 1:2 смесь перемешивают, затем добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат. 3 пр.

 

Изобретение относится к области нанотехнологии, фармакологии, фармацевтике и медицине.

Ранее были известны способы получения микрокапсул. Так, в пат. 2092155 МПК A61K 047/02, A61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10 Российская Федерация опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2159037 МПК A01N 25/28, A01N 25/30 Российская Федерация опубликован 20.11.2000 предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135 Описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.

Недостатком предложенного способа является сложность процесса, а отсюда низкий выход конечного продукта.

В пат. WO/2011/003805 ЕР МПК B01J 13/18; B65D 83/14; C08G 18/00 опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промыш

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул водораствормых диакамфа в гуаровой камеди, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул диакамфа, характеризующимся тем, что в качестве оболочки нанокапсул используется гуаровая камедь, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира, процесс получения осуществляется без специального оборудования.

Результатом предлагаемого метода является получение нанокапсул диакамфа в гуаровой камеди. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул диакамфа в соотношение ядро : облолочка 1:3

К 3,0 г гуаровой камеди в бутаноле добавляют 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1,0 г порошка диакамфа небольшими порциями добавляют в суспензию гуаровой камеди в бутаноле. После образования самостоятельной твердой фазы медленно добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре и сушат.

Получено 3 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул диакамфа в соотношение ядро : облолочка 1:1

К 1,0 г гуаровой камеди в бутаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1,0 г порошка диакамфа небольшими порциями добавляют в суспензию гуаровой камеди в бутаноле. После образования самостоятельной твердой фазы медленно добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул диакамфа в соотношении ядро : оболочка 1:2

К 2,0 г гуаровой камеди в бутаноле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1,0 г порошка диакамфа небольшими порциями добавляют к суспензии гуаровой камеди в бутаноле. После образования самостоятельной твердой фазы медленно добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

Способ получения нанокапсул диакамфа в гуаровой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используется гуаровая камедь, при этом диакамф порциями добавляют в суспензию гуаровой камеди в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф:гуаровая камедь 1:1, или 1:3, или 1:2 смесь перемешивают, затем добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат.



 

Похожие патенты:

Изобретение относится к устройству для получения композитной пленки из многоэлементного сплава. Устройство содержит нагревательную систему, систему подачи воздуха, систему охлаждения, вакуумную систему, вакуумную камеру, держатель, подъемный механизм, тигельный источник испарения, магнетронный источник распыления, источник катодной дуги и систему электрического управления.

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов.

Изобретение относится к нанотехнологии и горной промышленности и может быть использовано при проведении буровых работ. Винтовая силовая секция для гидравлических забойных двигателей содержит ротор и статор, содержащий металлический наружный трубчатый элемент и усиленную графеном эластомерную внутреннюю обшивку, включающую графеновые частицы, гомогенно диспергированные в резине.

Изобретение относится к клеевой промышленности и может быть использовано в области машиностроения и ремонта техники. Композиция для склеивания металлических изделий содержит компоненты при следующем соотношении, мас.%: анаэробный герметик АН-111 - 98,3-99,1; наполнитель: нанопорошок алюминия 70 - 0,7-1,3, нанопорошок меди 70 - 0,2-0,4.

Использование: для формирования диэлектрических пленок нанометровой толщины на поверхности полупроводников AIIIBV. Сущность изобретения заключается в том, что способ создания наноразмерных диэлектрических пленок на поверхности GaAs с использованием магнетронно сформированного слоя диоксида марганца включает предварительную обработку пластин GaAs концентрированной плавиковой кислотой, промывание их дистиллированной водой, высушивание на воздухе, формирование слоя МnO2 толщиной 30±1 нм, последующее термооксидирование при температуре от 450 до 550°С в течение 60 мин при скорости потока кислорода 30 л/ч, согласно изобретению, формирование слоя МnО2 производят методом магнетронного распыления мишени в аргоновой атмосфере рAr ~ 10-3 Торр.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эвкалипта характеризуется тем, что сухой экстракт эвкалипта добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, фармакологии. Способ получения нанокапсул диакамфа в альгинате натрия характеризуется тем, что в качестве ядра нанокапсул используется порошок диакамфа, в качестве оболочки нанокапсул - альгинат натрия, при этом диакамф порциями добавляют в суспензию альгината натрия в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф : альгинат натрия 1:1, или 1:3, или 1:2, смесь перемешивают, затем добавляют бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта чистотела характеризуется тем, что сухой экстракт чистотела добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 5 мл ацетона, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эхинацеи характеризуется тем, что сухой экстракт эхинацеи добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают толуол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта лопуха, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - сухой экстракт лопуха, при этом сухой экстракт лопуха добавляют в суспензию альгината натрия в петролейном эфире в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают метиленхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к медицине и предназначено для лечения рака. Используют эффективное количество фармацевтической композиции, включающей наночастицы, содержащие рапамицин и белок-носитель.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эвкалипта характеризуется тем, что сухой экстракт эвкалипта добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, фармакологии. Способ получения нанокапсул диакамфа в альгинате натрия характеризуется тем, что в качестве ядра нанокапсул используется порошок диакамфа, в качестве оболочки нанокапсул - альгинат натрия, при этом диакамф порциями добавляют в суспензию альгината натрия в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф : альгинат натрия 1:1, или 1:3, или 1:2, смесь перемешивают, затем добавляют бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта чистотела характеризуется тем, что сухой экстракт чистотела добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 5 мл ацетона, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эхинацеи характеризуется тем, что сухой экстракт эхинацеи добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают толуол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта лопуха, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - сухой экстракт лопуха, при этом сухой экстракт лопуха добавляют в суспензию альгината натрия в петролейном эфире в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают метиленхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул танина в оболочке из гуаровой камеди.

Группа изобретений относится к фармацевтике и медицине и раскрывает полимерный комплекс для молекулярно-прицельной терапии и способ получения указанного комплекса.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта дикого ямса в оболочке из гуаровой камеди.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта копеечника в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, медицины, фармакологии. Способ получения нанокапсул диакамфа в альгинате натрия характеризуется тем, что в качестве ядра нанокапсул используется порошок диакамфа, в качестве оболочки нанокапсул - альгинат натрия, при этом диакамф порциями добавляют в суспензию альгината натрия в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф : альгинат натрия 1:1, или 1:3, или 1:2, смесь перемешивают, затем добавляют бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат.
Наверх