Установка для оценки смывающей способности буферных жидкостей

Изобретение предназначено для оценки смывающей способности буферных жидкостей при проведении мероприятий по удалению глинистой корки и может быть использовано при строительстве и эксплуатации нефтяных и газовых скважин. Установка для оценки смывающей способности буферных жидкостей содержит прозрачный сосуд, заполненный исследуемым составом буферной жидкости, цилиндрический прободержатель, в нижней части которого выполнена горизонтальная выемка в форме диска, электродвигатель, ведомый и ведущий шкивы, связанные ременной передачей. В горизонтальную выемку помещен глинистый образец, имитирующий по толщине и составу глинистую корку, образованную на стенках исследуемой скважины. Ведущий шкив, расположен на выходном конце вала электродвигателя. Ведомый шкив, расположен на вертикальном приводном валу, на нижней части которого закреплен упомянутый прободержатель. Приводной вал закреплен в верхнем кронштейне и установлен соосно с прозрачным сосудом, закрепленным в нижнем кронштейне. Приводной вал и прозрачный сосуд установлены таким образом, чтобы цилиндрический прободержатель был расположен внутри прозрачного сосуда. Технический результат - повышение эффективности исследования буферных жидкостей для определения оценки их смывающей способности при проведении удаления глинистой корки. 1 ил.

 

Изобретение относится к установкам для оценки смывающей способности буферных жидкостей при проведении мероприятий по удалению глинистой корки, образовавшейся на стенках скважины и может быть использовано при строительстве и эксплуатации нефтяных и газовых скважин на нефтегазовой месторождениях.

Наиболее близким по технической сущности к предлагаемой установке является установка для исследования буферных жидкостей, содержащая вращающуюся герметичную рабочую камеру, закрепленную на вращающемся шкиве, соединенном ременной передачей с другим шкивом, фильтр, установленный в камере на неподвижной стойке, которая имеет каналы для фильтра и термодатчика и снабжена люминесцентным устройством (см. а.с. SU 989046, Е21В 33/138, опубл. 15.01.1983).

Недостатками упомянутой выше известной установки являются ее невысокие функциональные возможности, поскольку она определяет время смыва только рыхлой части глинистой корки, сформированная глинистая корка на фильтре не соответствует условиям ее формирования на стенках скважины в промысловых условиях, а также не позволяет оценить физико-химическое воздействие буферной жидкости на более плотную часть глинистой корки.

Задачей, на решение которой направлено заявленное изобретение, является создание эффективной установки для оценки смывающей способности буферных жидкостей.

Техническим результатом, на который направлено предлагаемое изобретение, является повышение эффективности исследования буферных жидкостей для определения оценки их смывающей способности при проведении удаления глинистой корки, образовавшейся на стенках скважины, что повысит надежность и долговечность крепления скважин при их строительстве и эксплуатации на месторождениях и подземных хранилищах газа.

Указанный технический результат достигается за счет того, что установка для оценки смывающей способности буферных жидкостей содержит прозрачный сосуд, заполненный исследуемым составом буферной жидкости, цилиндрический прободержатель, в нижней части которого выполнена горизонтальная выемка в форме диска, электродвигатель, ведомый и ведущий шкивы, связанные ременной передачей, а также верхний и нижний кронштейны, зафиксированные на стойке, при этом в горизонтальную выемку прободержателя помещен глинистый образец, имитирующий по толщине и составу глинистую корку, образованную на стенках исследуемой скважины, ведущий шкив расположен на выходном конце вала электродвигателя, ведомый шкив расположен на вертикальном приводном валу, на нижней части которого закреплен упомянутый прободержатель, приводной вал закреплен в верхнем кронштейне и установлен соосно с прозрачным сосудом, закрепленным в нижнем кронштейне, причем приводной вал и прозрачный сосуд установлены таким образом чтобы прободержатель был расположен внутри прозрачного сосуда.

Глинистая корка ухудшает сцепление цементного камня с породой и, оставаясь между ними, является причиной образования каналов, по которым вода прорывается в скважину через фильтры нефтяной части пласта. Конструкция заявленной установки позволяет осуществить выбор эффективного состава буферной жидкости для удаления глинистой корки со стенок скважины и обеспечить тем самым надежное сцепление цементного камня с горными породами и увеличение герметичности контакта: цементный камень - обсадная труба.

Заявленное изобретение поясняется чертежом.

На чертеже показан общий вид установки для оценки смывающей способности буферных жидкостей.

На чертеже обозначены следующие элементы установки: металлическая опора 1, электродвигатель 2, штифт 3, вал 4 рабочего колеса электродвигателя 2, ведущий шкив 5, ременная передача 6, накидная гайка 7, первая пружинная шайба 8, ведомый шкив 9, стопорное кольцо 10, подшипник 11, верхний кронштейн 12, приводной вал 13, цилиндрический прободержатель 14 с глинистым образцом 15, прозрачный сосуд 16, исследуемый состав буферной жидкости 17, нижний кронштейн 18, металлическая стойка 19, гайка 20, вторая пружинная шайба 21, первый крепежный болт 22 и второй крепежный болт 23.

Заявленная установка для оценки смывающей способности буферных жидкостей имеет узел для моделирования работы буферной жидкости при образовании в скважине глинистой корки и узел создания крутящего момента.

Узел моделирования работы буферной жидкости состоит из прозрачного сосуда 16, в который заливается исследуемый состав буферной жидкости 17, а также из цилиндрического прободержателя 14, в нижней части которого выполнена горизонтальная выемка в форме диска. В горизонтальную выемку цилиндрического прободержателя 14 помещен глинистый образец 15, имитирующий по толщине и составу глинистую корку, образованную на стенках исследуемой скважины. В верхней части цилиндрический прободержатель 14 имеет патрубок с резьбой или элементы крепления для соединения с приводным валом 13.

Прозрачный сосуд 16 установлен в нижнем кронштейне 18, который зафиксирован на металлической стойке 19 с помощью второго крепежного болта 23. Прозрачный сосуд 16 может быть выполнен из оргстекла или другого прочного и прозрачного материала.

Узел создания крутящего момента включает в себя электродвигатель 2, ведущий шкив 5 и ведомый шкив 9.

Ведомый шкив 9 ременной передачей 6 связан с ведущим шкивом 5, установленном на выходном конце вертикального вала 4 рабочего колеса электродвигателя 2.

Электродвигатель 2 установлен на металлическую опору 1 и выполнен трехскоростным с числом оборотов n=750-1500-3000 об/мин. Крепление ведущего шкива 5 на валу 4 осуществляется с помощью штифта 3.

Ведомый шкив 9 расположен на вертикальном приводном валу 13. На нижней части приводного вала 13 закреплен посредством резьбового соединения или элементов крепления цилиндрический прободержатель 14 с глинистым образцом 15.

Приводной вал 13 с закрепленным на нем подшипником 11 установлен в верхнем кронштейне 12 и зафиксирован в нем стопорным кольцом 10. Приводной вал 13 установлен соосно с прозрачным сосудом 16.

Приводной вал 13 и прозрачный сосуд 16 установлены таким образом, чтобы цилиндрический прободержатель 14 был расположен внутри прозрачного сосуда 16.

Верхний кронштейн 12 зафиксирован на боковой поверхности металлической стойки 19 с помощью первого крепежного болта 22. Сверху на металлической стойке 19 верхний кронштейн зафиксирован посредством гайки 20, закрученной сверху пружинной шайбы 21.

Установка для оценки смывающей способности буферных жидкостей работает следующим образом.

Перед началом работы установки для оценки смывающей способности буферных жидкостей осуществляют ее сборку нижеследующим образом.

На металлическую опору 1 устанавливают металлическую стойку 19, на которую сверху устанавливают нижний кронштейн 18.

Нижний кронштейн 18 фиксируют в нижней части металлической стойки посредством второго крепежного болта 23. Затем на стойке устанавливают верхний кронштейн 12, который фиксируют в верхней части металлической стойки посредством первого крепежного болта 22. Сверху верхнего кронштейна 12 на стойку надевают пружинную шайбу 21, сверху которого закручивают гайку 20.

Приводной вал 13, с установленным на нем с подшипником 11, помещают в верхний кронштейн 12 и фиксируют сверху стопорным кольцом 10.

На приводной вал 13 устанавливают ведомый шкив 9, который сверху фиксируют с помощью первой пружинной шайбы 8 и накидной гайки 7.

На вал 4 рабочего колеса электродвигателя 2 сверху помещают ведущий шкив 5, который фиксируют на валу 4 штифтом 3. После чего ведущий шкив 5 и ведомый шкив 9 соединяют ременной передачей 6.

Снизу на приводной вал 13 навинчивают цилиндрический прободержатель 14 с глинистым образцом 15.

Глинистый образец 15 формируют из глинистого раствора в установке для формирования фильтрационных корок, которую заполняют термостатирующей жидкостью, заливают в нее глинистый раствор, моделируют условия процесса образования фильтрационной корки на стенках скважины (создают заданное давление, термостатируют и т.д.) и оставляют в покое в течение времени, необходимого для формирования глинистого образца (см. установку для формирования фильтрационных корок по патенту на полезную модель RU 162266, B01J 8/22, опубл. 10.06.2016).

На нижнем кронштейне 18 соосно приводному валу 13 устанавливают прозрачный сосуд 16. С помощью нижнего кронштейна 18 обеспечивается возможность осевого и радиального перемещения прозрачного сосуда 16 и его фиксации вторым крепежным болтом 23 в заданном положении.

Приводной вал 13 и прозрачный сосуд 16 устанавливают таким образом, чтобы цилиндрический прободержатель 14 с глинистым образцом 15 был расположен внутри прозрачного сосуда 16.

Прозрачный сосуд 16 заполняют исследуемым составом буферной жидкости 17 в объеме 500 мл.

После чего установка готова для проведения исследований для оценки смывающей способности буферных жидкостей.

Оценку смывающей способности буферных жидкостей с применением заявленной установки осуществляют следующим образом.

Включают электродвигатель 2, после чего вал 4 рабочего колеса электродвигателя 2, на котором расположен ведущий шкив 5, начинает вращается.

При вращении ведущего шкива 5 крутящий момент через ременную передачу 6 передается на ведомый шкив 9, установленный на приводном вале 13.

Приводной вал 13 вращается вместе с закрепленным на нем цилиндрическим прободержателем 14 с глинистым образцом 15.

Смена числа оборотов электродвигателя и диаметров шкивов позволяет получать частоту вращения цилиндрического прободержателя от 1,5 до 100 с-1 (от 90 до 6000 об/мин).

При вращении цилиндрического прободержателя 14 с глинистым образцом 15 через прозрачные стенки сосуда 16 визуально наблюдают за разрушением глинистого образца и при заданных частотах вращения цилиндрического прободержателя 14.

Определяют потерю массы глинистого образца 15 при заданном времени испытаний.

Далее проводят обработку результатов экспериментов, которая сводится к построению зависимости величины , определяемой как доля массы глинистого образца 15, удаленная за одну минуту после воздействия на нее исследуемым составом буферной жидкости 17 от числа Рейнольдса Re при заданных скоростях вращения цилиндрического прободержателя 14.

Чем выше значение , тем эффективнее состав буферной жидкости будет удалять глинистую корку со стенок скважин и глинистую пленку с поверхности обсадных труб в процессе цементирования скважин.

Значения величин для каждой заданной скорости вращения цилиндрического прободержателя 14 с глинистым образцом 15 рассчитывают по формуле (1)

где - доля массы глинистого образца удаленной за 1 мин;

n - число испытаний;

m0 - начальная масса глинистого образца, г;

Δmi - потеря массы глинистого образца между взвешиваниями, г;

ti - время воздействия буферной жидкости на глинистый образец в каждом испытании при заданной частоте вращения цилиндрического прободержателя, мин;

i - порядковый номер взвешивания.

Число Рейнольдса для каждой заданной частоты вращения цилиндрического прободержателя 14 рассчитывается по формуле (2)

где Re - число Рейнольдса;

ω - частота вращения цилиндрического прободержателя с глинистым образцом, с-1;

r - радиус горизонтальной выемки в форме диска, м;

ν - кинематическая вязкость буферной жидкости, м2/с.

Использование заявленного изобретения для оценки смывающей способности буферных жидкостей позволит подобрать для конкретных горногеологических условий эффективный состав буферной жидкости, обеспечивающий более надежный контакт цементного камня со стенкой скважины и поверхностью обсадных труб.

Установка для оценки смывающей способности буферных жидкостей, содержащая прозрачный сосуд, заполненный исследуемым составом буферной жидкости, цилиндрический прободержатель, в нижней части которого выполнена горизонтальная выемка в форме диска, электродвигатель, ведомый и ведущий шкивы, связанные ременной передачей, а также верхний и нижний кронштейны, зафиксированные на стойке, при этом в горизонтальную выемку цилиндрического прободержателя помещен глинистый образец, имитирующий по толщине и составу глинистую корку, образованную на стенках исследуемой скважины, ведущий шкив расположен на выходном конце вала электродвигателя, ведомый шкив расположен на вертикальном приводном валу, на нижней части которого закреплен упомянутый прободержатель, приводной вал закреплен в верхнем кронштейне и установлен соосно с прозрачным сосудом, закрепленным в нижнем кронштейне, причем приводной вал и прозрачный сосуд установлены таким образом, чтобы цилиндрический прободержатель был расположен внутри прозрачного сосуда.



 

Похожие патенты:

Изобретение относится к технической эксплуатации автомобилей, а именно к технологии определения коэффициента поперечного сцепления эластичной шины автомобильного колеса с опорной поверхностью дороги в условиях эксплуатации.

Изобретение относится к способу определения температуры склеивания полимера. Способ определения температуры склеивания полимера включает стадии: добавление полимера в испытательное устройство, включающее смеситель, добавление агента индуцированной конденсации (АИК) в испытательное устройство, запуск смесителя и повышение температуры до тех пор, пока величина крутящего момента, используемого для вращения смесителя, не превысит предельного значения.

Изобретение относится к технике для определения физико-механических свойств сыпучих материалов, в частности их фрикционных характеристик. Заявленное устройство для определения фрикционных характеристик сыпучих материалов содержит корпус с приводом вращения вертикального вала регулируемой частоты, силоизмеритель, а также чашку и обойму, расположенные соосно, первая из которых соединена с валом, а вторая взаимодействует с силоизмерителем, при этом обойма свободно центрируется по чашке и выполнена с одной или несколькими неподвижными перегородками, расположенными вдоль ее оси.

Изобретение относится к технологическим процессам. Периферийное устройство для использования в системе управления технологическим процессом содержит процессор; память; функциональный блок для инициализации запланированных действий и модуль планирования.

Изобретение относится к пуленепробиваемым волокнистым композитам и касается пуленепробиваемых однонаправленных лент или изделий с жесткой структурой и низким значением глубины отпечатка и способов их изготовления.

Изобретение относится к машиностроению, а именно к устройствам для определения состояния контакта опорного валика конвейерной ленты с конвейерной лентой во время ее перемещения.

Изобретение относится к способам определения компонентного (морфологического) состава и свойств твердых коммунальных отходов (ТКО) с использованием оптико-механической сортировки и предназначено для достоверной оценки ТКО как сырья с целью последующей переработки.

Использование: механические испытания материалов, в частности определение динамического коэффициента внешнего трения. Для определения динамического коэффициента внешнего трения используются два образца, нижний из которых закрепляют на платформе, способной поворачиваться относительно горизонтальной оси подвески в вертикальной плоскости.

Трибометр // 2559798
Изобретение относится к испытательным и обкаточным стендам. Трибометр состоит из предметного стола, ограничивающей рамки, заполняемой пробой насыпного груза, навески и тягового органа для предметного стола с прибором для определения его тягового усилия.

Изобретение относится к области «Физики материального контактного взаимодействия» жесткого плоского тела с пористой материальной средой и предназначено для определения ее параметров деформируемости и прочности.

Группа изобретений относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и регулирования охвата пласта и профиля приемистости нагнетательных скважин.

Изобретение относится к нефтяной промышленности. Технический результат - исключение прорыва теплоносителя к подстилающим пластовым водам, увеличение коэффициента извлечения нефти, экономия энергетических ресурсов.

Изобретение относится к области строительства переходов трубопроводов через естественные и искусственные препятствия методом наклонно-направленного бурения в несцементированных грунтах.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям ликвидации поглощений бурового раствора при строительстве (бурении) нефтяных и газовых скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологиям предупреждения проявлений пластового флюида при строительстве нефтяных и газовых скважин, в частности к ликвидации перетоков в проявляющих пластах.

Изобретение относится к нефтяной и газовой промышленности, в частности к составам для изоляции поглощающих зон при бурении скважин различной категории, снижения приемистости интервалов пластов в процессе проведения ремонтно-изоляционных (РИР) и ремонтно-восстановительных (РВР) работ.

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и регулирования охвата пласта и профиля приемистости нагнетательных скважин.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ включает определение интервала нарушения эксплуатационной колонны, спуск насосно-компрессорных труб (НКТ) в интервал нарушения или ниже.

Изобретение оотносится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах.

Изобретение относится к нефтедобывающей промышленности, в частности к составам, используемым для изоляции притока воды в добывающие нефтяные скважины и интенсификации добычи нефти.
Наверх