Устройство для защиты космического аппарата от высокоскоростного ударного воздействия частиц космического мусора

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ). Устройство для защиты КА от высокоскоростного ударного воздействия частиц КМ состоит из двухслойного защитного экрана. Двухслойный экран выполнен из алюминиевых пластин с множеством конусообразных элементов на их поверхности. Вершины конусообразных элементов покрыты твердым сплавом. Полости между конусами заполнены углерод-углеродным материалом. Вершины конусов первого и второго слоя сдвинуты друг относительно друга. Техническим результатом изобретения является повышение эффективности защиты, снижение массы конструкции защиты. 1 ил.

 

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ) или потока микрометеороидов.

Известно защищенное патентом изобретение аналог: заявка №2003127170/11 B64G 1/56 от 08.09.2003 «Применение водяного льда в качестве защитного покрытия космических объектов от механических повреждений на орбите» (Глухих И.Н., Челяев В.Ф., Щербаков А.Н., Румынский А.Н. В качестве защитного покрытия космического корабля предложено применение покрытия из водяного льда (или водо-ледяной смеси). Технический результат реализации изобретения заключается в расширении арсенала защитных покрытий космических аппаратов, длительное время находящихся на орбите, где присутствуют мелкодисперсные механические частицы (пыль, мелкие фрагменты космического мусора и т.п.).

Данные устройства обеспечивают защиту КА от столкновения с микрометеороидами, мелкими фрагментами космического мусора, если они не обладают слишком большой скоростью и массой. Кроме того, при воздействии тепловых потоков данное покрытие не обеспечивает достаточную надежность и стойкость при механических воздействиях.

Известно защищенное патентом изобретение аналог: заявка №2011108054/11 B64G 1/56 от 27.07.2012 «Экран для защиты космического аппарата от высокоскоростного ударного воздействия метеороидов», Тулин Д.В., Клишин А.Ф., Добрица Д.Б., Чухлов В.Д. Экран содержит ячеистую конструкцию из металлической сетки. Экран выполнен сборным из ячеек, каждая из которых имеет форму правильного многоугольника и выполнена из двух слоев металлической сетки, обжатых по периметру п-образными металлическими полосками. В одном из слоев металлической сетки выполнены пуклевки, выпуклости которых контактируют с другим слоем. Ячейки сшиты между собой металлической проволокой. Достигается уменьшение веса защитного экрана. Технология изготовления экрана требует объединение ячеек (многоугольников) размером несколько десятков сантиметров каждая и наличия дополнительных точек опор со стороны защищаемой конструкции, то есть не обеспечивает достаточной эффективности применение для защиты малогабаритных элементов КА ввиду технологических сложностей и относительно большой массы экрана.

Известно защищенное патентом изобретение - аналог: заявка №2016107557 B64G 1/56 от 02.03.2016 «Экран для защиты космического аппарата от высокоскоростного ударного воздействия частиц космической среды» (Добрица Д.Б., Герасимов А.В., Пашков С.В., Христенко Ю.Ф.) Экран содержит ячеистую конструкцию из гофрированной металлической сетки. Гофры сетки расположены параллельно с шагом, в 2-3 раза большим толщины проволоки сетки. Высота гофров в 3-5 раз превышает минимальный характерный размер соударяющихся с КА частиц. Экран может быть выполнен двухслойным, с ориентацией гофров второго слоя перпендикулярно гофрам первого слоя. Технический результат изобретения состоит в повышении эффективности защиты КА от высокоскоростных частиц путем увеличения степени фрагментации этих частиц без возрастания массы экрана. Данное устройство можно использовать лишь для частиц космической среды, размер которых должен быть в 3-5 раз меньше размера гофры. Недостатком данного экрана является технологическая сложность и значительные массовые затраты на его изготовления.

Известно защищенное патентом изобретение прототип: заявка №2005138101/11 B64G 1/56 от 08.12.2005 «Устройство для защиты космических аппаратов и станций от высокоскоростного ударного воздействия частиц космической среды» (Кононенко М.М., Малкин А.И., Шумихин Т.А.)

Предлагаемое устройство содержит защитный экран ячеистой конструкции. Ячеистая конструкция защитного экрана представляет собой дискретно расположенные и закрепленные на несущей основе компактные массивные элементы. Компактные массивные элементы выполнены из плотного материала. Размер ячейки данной конструкции защитного экрана не превышает половины, а размер компактного массивного элемента - одной четверти минимального характерного размера опасной частицы. В качестве несущей основы может быть использована сетка. В этом случае компактные массивные элементы закреплены в узлах сетки. В качестве несущей основы могут быть использованы легкая ткань или нетканый материал низкой плотности. В качестве плотного материала компактных массивных элементов могут быть использованы алюминий, сталь, медь или композиционный материал, содержащий вольфрам. В качестве упомянутого композиционного материала может быть использован сплав вольфрам-никель-железо. Предлагаемое устройство позволяет обеспечить достаточную глубину проникания элементов конструкции защитного экрана в ударяющую частицу и тем самым осуществить ее разрушение. Устройство работает только для частиц определенного размера, кроме того, экран трудоемок в изготовлении и не обеспечивает достаточной надежности и стойкости к разрушению из-за неравнопрочности конструкции.

Целью предполагаемого изобретения является повышения эффективности свойств экрана для защиты от частиц космического мусора за счет направленного воздействия на ударяющую частицу с целью повышения дисперсности фрагментации системы ударник-преграда и увеличения, тем самым, угла разлета фрагментов частицы, а также снижения массовых затрат на изготовление защитного экрана.

Указанная цель достигается тем, что устройство для защиты космических аппаратов от высокоскоростного ударного воздействия частиц космической среды, выполнено в виде двухслойного защитного экрана, каждый слой выполнен в виде гребенки из алюминиевой конструкции с конусообразными элементами, на вершины конусов нанесено покрытие из твердого сплава или композиционного материала, повышающего прочность вершин конуса, полости между конусами заполнены углерод углеродным материалом для увеличения жесткости и прочности экрана.

Обоснование практической реализуемости заявляемого устройства заключается в следующем.

Качество защиты определяется, главным образом, эффективностью дробления налетающей частицы (характерным размером фрагментов разрушения) и величиной угла разлета ее фрагментов (поперечным импульсом, приобретенным фрагментами частицы в результате ее ударного разрушения).

Полная энергия облака фрагментов в системе центра масс определяется только массой разрушенной части экрана и не зависит от деталей его конструкции. Особенности конструкции, однако, оказывают существенное влияние на соотношение между интегральными величинами кинетической и внутренней энергии и на перераспределение энергии с учетом массы и направления налетающей частицы и разрушенной части экрана.

Для оценки величины импульса, переданного ударнику при столкновении с тонкой пластиной, в статье D.E. Grady, N.A. Winfree. Impact fragmentation of high -velocity compact projectiles on thin plates: a physical and statistical characterization of fragment debris. Int. J. Impact Eng. 26 (2001), 249-262 предложена простая геометрическая модель, согласно которой только нормальная к поверхности воздействующей частицы составляющая ее скорости участвует в передаче импульса, порождая ударную волну, скорость переноса которой близка к звуковой. Тангенциальная компонента скорости должна была бы порождать в ударнике сдвиговую волну. Однако амплитуда этой волны ограничена величиной предела текучести и в гидродинамическом приближении мала. Справедливость такого заключения подтверждена сравнением вычислительных расчетов с результатами натурных экспериментов.

При столкновении частицы с плоской однородной преградой практически не происходит внедрения элементов преграды в состав (тело) частицы (что способствовало бы ее разрушению) из-за низкой эффективности передачи тангенциальной составляющей импульса частицы.

В случае ячеистой конструкции преграды (фиг. 1), выполненный в виде алюминиевой конструкции с конусообразными элементами, вершины которых выполнены с повышенной твердостью (за счет покрытия образованного из твердого сплава или композиционного материала, например, на основе графита), что позволяет элементам защитного экрана проникать в частицы КМ.

В представляющем интерес диапазоне скоростей соударения, внедрение вершины конуса в частицу происходит по механизму кратерообразования. На начальном этапе в теле налетающей частицы при взаимодействии с вершиной конуса формируется канавка (кратер), вытянутая в направлении противоположном движению частицы, которая деформируясь, заполняется материалом защитного экрана. Передача импульса от внедряющейся вершины конуса передается стенкам канавки налетающей частицы, способствуя ее разлету в поперечном направлении, что происходит по сравнительно быстрому механизму. Вдоль направления канавки, перенос импульса осуществляется за счет вязкости, т.е. весьма медленно и неэффективно. Другими словами, большая часть энергии налетающей частицы расходуется на разрушение самой частицы с образованием более мелкой фракции, разлетающейся от защитного экрана. Вершины конусов первого и второго слоя сдвинуты относительно друг друга, что позволяет улучшить прочностные и защитные свойства экрана. Выбор в качестве наполнителя углерод-углеродного материала позволяет повысить эффективность защитного экрана за счет высокой ударной прочности и твердости данного материала.

На фиг. 1 показана алюминиевая конструкция с конусообразными элементами - 1, вершины которых выполнены с повышенной твердостью - 2, в качестве наполнителя используется углерод-углеродный материал - 3.

Изобретение позволяет усилить разрушающее действие на ударяющую частицу и тем самым повысить эффективность защиты, а сама конструкция защитного экрана достаточно технологична и позволяет снизить массу экрана приблизительно на 10% по сравнению со сплошным, плоским алюминиевым экраном аналогичной толщины.

Устройство для защиты космического аппарата от высокоскоростного ударного воздействия частиц космического мусора, состоящее из двухслойного ячеистого экрана, причем двухслойный экран выполнен из алюминиевых пластин с множеством конусообразных элементов на их поверхности, вершины конусообразных элементов покрыты твердым сплавом, полости между конусами заполнены углерод-углеродным материалом, а вершины конусов первого и второго слоя сдвинуты относительно друг друга.



 

Похожие патенты:
Изобретение относится к космической технике и может использоваться для защиты космического аппарата с активно сближающимся объектом. Защита космического аппарата от столкновения с активно сближающимся объектом осуществляется по регистрации непрерывной последовательности сигналов с нарастающей амплитудой в оптическом диапазоне спектра, что позволяет определить пространственную ориентацию активно сближающегося объекта.

Группа изобретений относится к космической технике. Устройство 100 для транспортировки целевого объекта в космосе включает в себя блок 110 приклеивания, предназначенный для приклеивания к целевому объекту в космическом пространстве, и приводной блок 120, предназначенный для получения движущей силы.

Изобретение относится к методам и средствам очистки орбит от космического мусора, главным образом отработанных ступеней (ОС) ракет-носителей. Способ включает выведение в область очистки космического аппарата-буксира (КАБ) (1) и автономного стыковочного модуля (АСМ) (2) на тросе (4).
Изобретение относится к способам очистки околоземного космического пространства (ОКП) от крупногабаритных объектов космического мусора (КМ). Способ включает выведение космического аппарата (КА) в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ.
Изобретение относится к сфере защиты поверхности Марса от метеорных тел. Способ включает смешивание марсианской пыли с марсианским воздухом и перемещение в виде аэрозоля в атмосферу Марса, где создают и затем поддерживают пылевую завесу.

Изобретение относится к деформируемым сплавам на основе алюминия и может быть использовано для защиты космических аппаратов от микрометеоритов и техногенных тел. Сплав на основе алюминия содержит, мас.

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и прочностью на уровне 180 ÷ 400 кгс/мм2.

Изобретение относится к средствам защиты космического аппарата (КА) от высокоскоростного ударного воздействия частиц космической среды. Экран содержит ячеистую конструкцию из гофрированной металлической сетки.

Изобретение относится к области космонавтики и касается защиты Земли от потенциально опасных космических объектов (ПОКО) естественного происхождения (астероидов, комет и болидов) путем изменения их орбит за счет внешнего на них воздействия.

Группа изобретений относится к управлению движением искусственных спутников с целью предотвращения их столкновений с фрагментами космического мусора. Бортовая система спутника определяет радиолокационными средствами вероятность таких столкновений со всех направлений внутри сфероида вокруг спутника.
Наверх