Теплоизолированный сосуд

Изобретение относится к холодильной технике. Холодильное и/или морозильное устройство содержит охлаждаемое внутреннее пространство и термоэлектрический элемент для создания холода в охлаждаемом внутреннем пространстве. Твердые тела расположены так, что отвод тепла из охлаждаемого внутреннего пространства к термоэлектрическому элементу и отвод тепла от термоэлектрического элемента происходит посредством теплопроводности с помощью твердого тела. Устройство имеет ограничивающую внутреннее пространство внутреннюю стенку, наружную оболочку и расположенную между ними вакуумную изоляцию, причем одно из твердых тел по меньшей мере частично образует наружную оболочку устройства. 6 з.п. ф-лы, 1 ил.

 

Данное изобретение относится к теплоизолированному сосуду, предпочтительно холодильному и/или морозильному устройству, содержащему по меньшей мере одно предпочтительно охлаждаемое внутреннее пространство и по меньшей мере один термоэлектрический элемент, в частности, по меньшей мере один элемент Пельтье, для поддержания постоянного температурного режима внутреннего пространства, предпочтительно для создания холода в охлаждаемом внутреннем пространстве.

Из уровня техники известны различные концепции для создания холода в холодильных, соответственно, морозильных устройствах. Во всех случаях для обеспечения возможно большего коэффициента полезного действия и тем самым хорошей энергетической эффективности необходим эффективный теплообменник как на стороне охлаждаемого пространства, так и на стороне отвода тепла, с целью удерживания возможно меньшим подлежащего преодолению температурного хода. В этой связи имеет значение соединение с зоной создания холода и с охлаждаемым пространством, а также с наружным воздухом, в который отдается отводимое тепло.

В обычных компрессионных холодильных машинах для соединения с внутренним пространством, а также с наружным воздухом применяются как статические системы, т.е. статические испарители и конденсаторы, так и динамические системы, такие как, например, испарители без замораживания (NoFrost), соответственно, вентиляторы или блочные испарители с принудительной конвекцией. В динамических системах преимущество за счет достигаемой небольшой разницы температур достигается за счет дополнительных затрат на транспортировку массы для конвекции воздуха.

Существенным параметром при требуемой холодильной мощности холодильного, соответственно, морозильного устройства является теплоизоляция, которая окружает охлаждаемое внутреннее пространство. При улучшении теплоизоляции уменьшается потребность в холодильной мощности. При небольшой потребности в холоде это может обеспечиваться с помощью более простых средств, чем компрессорные холодильные машины, а именно, с помощью термоэлектрических элементов. Например, известно использование элементов Пельтье. Так, например, для небольшого теплоизолированного с помощью вакуумной изоляции холодильного устройства требуется охладительная мощность лишь 3-4 Вт, которая может обеспечиваться, например, с помощью термоэлектрического элемента.

При использовании элементов Пельтье особенность состоит в том, что создаваемая холодильная мощность и отводимое тепло возникают в непосредственной пространственной близости друг от друга, охлаждающее средство в качестве носителя тепла отсутствует. В этом случае перенос тепла в охлаждаемое внутреннее пространство, а также в наружный воздух, в который отдается тепло, имеет особое значение. Из уровня техники известно улучшение этого переноса тепла в охладителях Пельтье, таких как небольшие переносные холодильники, с помощью реберных теплообменников и с помощью создаваемого с помощью вентиляторов воздушного потока. Их потребляемая мощность сравнима с потребляемой элементом Пельтье мощностью.

Однако эти соображения не ограничиваются лишь холодильными и/или морозильными устройствами, а справедливы вообще для теплоизолированных сосудов.

Теплоизолированный сосуд имеет по меньшей мере одно внутреннее пространство с поддерживаемой постоянной температурой, при этом он может охлаждаться или нагреваться, так что во внутреннем пространстве имеется температура ниже или выше окружающей температуры, равной, например, 21°С.

В основу изобретения положена задача дальнейшего усовершенствования теплоизолированного сосуда, предпочтительно холодильного и/или морозильного устройства указанного вначале вида так, что улучшается перенос тепла по сравнению с известными сосудами, предпочтительно устройствами.

Эта задача решена с помощью теплоизолированного сосуда, в частности холодильного и/или морозильного устройства, с признаками пункта 1 формулы изобретения. В соответствии с этим, имеется по меньшей мере одно твердое тело, которое расположено так, что перенос тепла к термоэлектрическому элементу, в частности, отвод тепла из охлаждаемого внутреннего пространства к термоэлектрическому элементу и/или отвод тепла от термоэлектрического элемента происходит посредством теплопроводности с помощью твердого тела.

Таким образом, твердое тело выполнено и расположено так, что с помощью твердого тела происходит перенос тепла к термоэлектрическому элементу, в частности, отвод тепла из охлаждаемого внутреннего пространства к термоэлектрическому элементу и/или отвод тепла от термоэлектрического элемента предпочтительно к отводу тепла и предпочтительно в окружающую сосуд, предпочтительно устройство, атмосферу. Предпочтительно перенос тепла происходит исключительно за счет теплопроводности через твердое тело.

В другом известном варианте выполнения изобретения предусмотрен по меньшей мере один жидкостный теплообменник и/или по меньшей мере одна тепловая труба, которые расположены так, что они направляют тепло к термоэлектрическому элементу, в частности, из охлаждаемого внутреннего пространства к термоэлектрическому элементу, и/или отводят тепло от термоэлектрического элемента.

Под жидкостным теплообменником понимается теплообменник, который работает с жидкой теплообменной средой. По сравнению с воздушными теплообменниками обеспечивается преимущество более высокой теплоемкости, а также меньшей потери потока. Тепловая труба является наполненным охлаждающим средством трубчатым телом, на теплом конце которого охлаждающее средство испаряется, а не его холодном конце конденсируется, за счет чего отдается энтальпия испарения.

В этом варианте выполнения изобретения предусмотрено, что перенос тепла, в частности, перенос отходящего тепла из охлаждаемого внутреннего пространства осуществляется с помощью по меньшей мере одного жидкостного теплообменника и/или с помощью по меньшей мере одной тепловой трубы.

С помощью механизмов переноса тепла, согласно изобретению, обеспечивается возможность распределения небольших тепловых потоков с минимальной разницей температуры в окружение.

Возможно, что твердое тело, соответственно, жидкостный теплообменник или тепловая труба, при хорошем термическом соединении переносят тепло от внутренней стенки предпочтительно охлаждаемого внутреннего пространства к термоэлектрическому элементу и/или от термоэлектрического элемента к наружной оболочке сосуда, предпочтительно устройства.

Предпочтительно, перенос тепла происходит из предпочтительно охлаждаемого внутреннего пространства к внутренней стенке и/или перенос тепла к наружной оболочке, предпочтительно от наружной оболочки в окружение сосуда, предпочтительно устройства, статически, т.е. без принудительной конвекции.

Возможно также комбинирование обеих указанных выше концепций, т.е. что, в частности или лишь в зоне наибольших плотностей теплового потока у термоэлектрического элемента происходит поддержание теплопроводности твердого тела посредством переноса тепла с помощью тепловой трубы и/или жидкостного теплообменника или, наоборот, поддержание переноса тепла с помощью тепловой трубы и/или жидкостного теплообменника за счет теплопроводности твердого тела.

Таким образом, сосуд, в частности, холодильное и/или морозильное устройство, согласно пункту 1 формулы изобретения, может быть выполнен с признаками пункта 2 формулы изобретения.

В предпочтительном варианте выполнения изобретения предусмотрено, что твердое тело находится в соединении с возможностью переноса тепла с наружной оболочкой сосуда, предпочтительно устройства, или с внутренней стенкой сосуда, предпочтительно устройства, или частично или полностью образует наружную оболочку и/или внутреннюю стенку, которая ограничивает охлаждаемое внутреннее пространство.

Твердое тело предпочтительно имеет металл или состоит из металла, при этом предпочтительно металл является алюминием.

Возможно, тепло направляется от термоэлектрического элемента через алюминиевую или другую металлическую структуру на наружную поверхность корпуса и/или от внутренней поверхности, которая ограничивает охлаждаемое внутреннее пространство, через алюминиевую или другую металлическую структуру к термоэлектрическому элементу. При этом форма металлической структуры предпочтительно выбрана так, что падение температуры при возникающих тепловых потоках распределяется по поверхности так, что оно между местом теплового насоса, т.е. термоэлектрического элемента, и соответствующей поверхностью составляет лишь несколько Кельвин.

Предпочтительно, металлическая структура, т.е. указанное твердое тело, образует частично или полностью наружную оболочку и/или внутреннюю стенку сосуда, соответственно, устройства.

Предпочтительно предусмотрено, что сосуд, предпочтительно холодильное и/или морозильное устройство, имеют в качестве теплоизоляции охлаждаемого внутреннего пространства исключительно или также вакуумную изоляцию. Вакуумная изоляция образует с помощью вакуумных изоляционных панелей или с помощью вакуумированных стенок корпуса, и/или с помощью вакуумированного закрывающего элемента, в частности, двери или заслонки для закрывания охлаждаемого внутреннего пространства, особенно эффективную теплоизоляцию, так что при работе достаточна сравнительно небольшая мощность, предпочтительно холодильная мощность, для получения желаемой температуры.

Особенно предпочтительным является вариант выполнения, в котором между ограничивающей внутреннее пространство внутренней стенкой и наружной оболочкой расположена теплоизоляция, которая состоит из системы полного вакуума. Под этим понимается теплоизоляция, которая исключительно или большей частью состоит из вакуумированной зоны, которая заполнена наполнительным материалом. Ограничение этой зоны может быть образовано, например, с помощью вакуумплотной пленки и предпочтительно с помощью высокобарьерной пленки. Таким образом, между внутренней стенкой сосуда, предпочтительно устройства, и наружной оболочкой сосуда, предпочтительно устройства, в качестве теплоизоляции может иметься исключительно такое пленочное тело, которое имеет окруженную вакуумплотной пленкой зону, в котором создан вакуум и в котором расположен наполнительный материал. Предпочтительно, вспенивание и/или вакуумные изоляционные панели в качестве теплоизоляции или другая теплоизоляция, кроме системы полного вакуума между внутренней стенкой и наружной стороной сосуда, соответственно устройства, не предусмотрено.

Этот предпочтительный вид теплоизоляции в виде системы полного вакуума может проходить между ограничивающей внутреннее пространство стенкой и наружной оболочкой корпуса и/или между внутренней стороной и наружной стороной закрывающего элемента, такого как, например, дверь, заслонка, крышка или т.п.

Система полного вакуума может быть получена посредством заполнения оболочки из газонепроницаемой пленки наполнительным материалом и затем вакуумплотного закрывания. В одном варианте выполнения как заполнение, так и вакуумплотное закрывание оболочки происходит при нормальном, соответственно, окружающем давлении. Вакуумирование осуществляется затем посредством соединения подходящего заделанного в оболочку места сопряжения, например, вакуумирующего патрубка, который может иметь клапан, с вакуумным насосом. Предпочтительно при вакуумировании снаружи оболочки имеется обычное, соответственно, окружающее давление. В этом варианте выполнения предпочтительно ни в какой момент времени изготовления не требуется введения оболочки в вакуумную камеру. Таким образом, в этом варианте выполнения можно отказаться от вакуумной камеры во время изготовления вакуумной изоляции.

В одном предпочтительном варианте выполнения изобретения толщина твердого тела увеличивается к термоэлектрическому элементу. В направлении от термоэлектрического элемента толщина твердого тела может уменьшаться, однако его поверхность увеличиваться.

Кроме того, может быть предусмотрено, что имеется по меньшей мере одно крепежное приспособление, предпочтительно по меньшей мере одно зажимное тело, которое фиксирует твердое тело и/или жидкостный теплообменник и/или тепловую трубу на термоэлектрическом элементе, при этом предпочтительно предусмотрено, что крепежное приспособление имеет меньшую теплопроводность, чем твердое тело. Крепежное приспособление может состоять, например, из пластмассы.

Как указывалось выше, в предпочтительном варианте выполнения изобретения твердое тело состоит из алюминия или имеет алюминий.

Для обеспечения дополнительной тепловой или холодильной мощности при загрузке теплых или холодных изделий, может быть предусмотрен по меньшей мере один латентный накопитель тепла. Он может быть расположен на обращенной к полезному пространству стороне, предпочтительно на обращенной к охлаждаемому пространству внутренней стенке. Он забирает тепло из темперируемого внутреннего пространства или отдает тепло в темперируемое внутреннее пространство и поддерживает за счет этого термоэлектрический элемент.

Темперируемое внутреннее пространство в зависимости от вида устройства (холодильник, нагревательный шкаф и т.д.) либо охлаждается, либо нагревается.

Предпочтительно предусмотрено, что латентный накопитель тепла соединен с возможностью теплопроводности с твердым телом и/или с жидкостным теплообменником и/или с тепловой трубой.

Латентный накопитель тепла может, например, состоять из парафина или иметь парафин.

В другом варианте выполнения предусмотрено, что сосуд, согласно изобретению, является холодильным и/или морозильным устройством, и что твердое тело, соответственно внутренняя стенка устройства, выполнена так, что по меньшей мере в одном положении на поверхности твердого тела, соответственно внутренней стенки, имеется меньшая температура, чем в других зонах поверхности твердого тела или внутренней стенки, и что предусмотрены средства для овода образующегося там конденсата.

В одном варианте выполнения предусмотрено, что сосуд, согласно изобретению, является холодильным и/или морозильным устройством, в частности предметом домашнего обихода, соответственно, промышленным холодильным устройством. Например, сюда входят такие устройства, которые предназначены для стационарного расположения в домашнем хозяйстве, в комнате гостиницы, в коммерческой кухне или в баре. Например, это может быть холодильник для вина. Кроме того, изобретение охватывает также холодильники или морозильники. Устройства, согласно изобретению, могут иметь место сопряжения для соединения с электрической сетью, в частности, с электрической сетью для бытовых нужд (например, штекер) и приспособления для установки, например, постановочные ножки или место сопряжения для фиксации внутри мебельной ниши. Например, устройство может быть встраиваемым устройством или же напольным устройством.

В одном варианте выполнения сосуд, соответственно устройство, выполнено так, что оно может работать с переменным напряжением, таким как, например, напряжение бытовой сети, например, 120 В с частотой 60 Гц или 230 В и с частотой 50 Гц. В альтернативном варианте выполнения сосуд, соответственно устройство, может работать с постоянным током с напряжением, например, 5 В, 12 В или 24 В. В этом варианте выполнения может быть предусмотрено, что внутри или снаружи устройство предусмотрен штекерный блок питания, через который устройство снабжается электроэнергией. Преимущество применения термоэлектрических тепловых насосов в этом варианте выполнения состоит в том, что все проблемы электромагнитной совместимости возникают лишь в блоке питания.

В частности, может быть предусмотрено, что холодильное и/или морозильное устройство выполнено в виде шкафа и имеет полезное пространство, которое является доступным для пользователя на своей передней стороне (в случае ларя на верхней стороне). Полезное пространство может быть разделено на несколько отделений, которые все работают при одинаковой или различной температуре. В качестве альтернативного решения, может быть предусмотрено лишь одно отделение. Внутри полезного пространства, соответственно отделения, могут быть предусмотрены приспособления для хранения, такие как, например, приемные карманы, выдвижные ящики или держатели для бутылок (в случае ларя также разделители пространства), с целью обеспечения оптимального хранения подлежащих охлаждению или замораживанию изделий и оптимального использования пространства.

Полезное пространство может закрываться с помощью по меньшей мере одной поворотной вокруг вертикальной оси двери. В случае ларя возможна поворотная вокруг горизонтальной оси заслонка или сдвигаемая крышка в качестве закрывающего элемента. Дверь или другой закрывающий элемент в закрытом состоянии может находится в соединении с корпусом по существу непроницаемо для воздуха с помощью окружного магнитного уплотнения. Предпочтительно, также дверь, соответственно другой закрывающий элемент, теплоизолированы, при этом теплоизоляция может достигаться с помощью вспенивания и, возможно, с помощью вакуумных изоляционных панелей, или же предпочтительно с помощью вакуумной системы и особенно предпочтительно с помощью системы полного вакуума. На внутренней стороне двери могут быть предусмотрены дверные полки, с целью хранения там охлаждаемых изделий.

В одном варианте выполнения речь может идти о небольшом устройстве. В таких устройствах полезное пространство, которое задано внутренней стенкой сосуда, имеет, например, объем меньше 0,5 м3, меньше 0,4 м3 или меньше 0,3 м3.

Наружные размеры сосуда, соответственно устройства, лежат предпочтительно в диапазон 1м относительно высоты, ширины и глубины.

Однако изобретение не ограничивается холодильными и/или морозильными устройствами, а относится вообще к устройствам с темперированным внутренним пространством, например, термостатам.

В случае сосуда, соответственно устройства, с нагреваемым внутренним пространством перенос тепла осуществляется из окружения, соответственно, с наружной оболочки сосуда с помощью твердого тела к термоэлектрическому элементу и от него с помощью твердого тела посредством переноса тепла во внутреннее пространство, соответственно, к ограничивающей внутреннее пространство внутренней стенке сосуда.

Другие подробности и преимущества изобретения поясняются на основании примера выполнения со ссылками на прилагаемый чертеж. На единственной фигуре показано поперечное сечение холодильного устройства, согласно изобретению.

На фигуре показана обозначенная позициями 10ʹ, 12ʹ состоящая из алюминия стенка корпуса, которая образует находящуюся в контакте с окружением наружную поверхность и внутреннюю поверхность охлаждаемого внутреннего пространства.

Позицией 20 обозначен элемент Пельтье, который своей холодной зоной соединен с обеспечением теплопроводности с алюминиевым твердым телом 12, а своей теплой зоной - с алюминиевым твердым телом 10.

Как показано на фигуре, толщина, т.е. прохождение тел 10, 12 перпендикулярно наружной и внутренней стороне устройства, увеличивается к элементу 20 Пельтье.

В противоположность этому, поверхностное прохождение тел 10, 12 параллельно наружной и внутренней стороне уменьшается снаружи внутрь к элементу Пельтье.

Позицией 30 обозначено зажимное приспособление, которое фиксирует тела 10, 12 на элементе 20 Пельтье.

Позицией 40 обозначено уплотнение двери, а также лабиринт в упрощенном виде. Дверь устройства не изображена.

Позицией 50 обозначена вакуумная изоляция, которая проходит между внутренней стенкой 12ʹ и наружной стенкой 10ʹ. На основании меньшего за счет вакуумной изоляции переноса тепла достаточна сравнительно небольшая тепловая мощность элемента 20 Пельтье для охлаждения внутреннего пространства 100.

В случае, когда вводится небольшое количество теплого охлаждаемого изделия, предусмотрен латентный накопитель тепла, такой как, например, парафин, который в этом случае поддерживает холодильную мощность устройства.

Кроме того, как показано на фигуре, твердые тела 10, 12, которые с возможностью переноса тепла соединены с элементом 20 Пельтье, образуют не только средства переноса тепла, но также одновременно внутреннюю стенку 12ʹ, а также наружную стенку 10ʹ устройства.

Перенос тепла к внутренней стенке 12ʹ и от наружной стенки 10ʹ происходит предпочтительно статически, т.е. без применения вентиляторов, за счет чего имеется соответствующая экономия энергии.

В показанном на фигуре примере выполнения перенос тепла происходит изнутри наружу исключительно через твердые тела 10, 12. Однако изобретение охватывает также использование одного или нескольких жидкостных теплообменников и/или тепловых труб для переноса тепла. Они могут быть предусмотрены в качестве альтернативы или дополнительно к указанному переносу тепла с помощью твердых тел.

1. Холодильное и/или морозильное устройство, содержащее по меньшей мере одно охлаждаемое внутреннее пространство и по меньшей мере один термоэлектрический элемент для создания холода в охлаждаемом внутреннем пространстве, причем имеются твердые тела, которые расположены так, что отвод тепла из охлаждаемого внутреннего пространства к термоэлектрическому элементу и отвод тепла от термоэлектрического элемента происходит посредством теплопроводности с помощью твердого тела, причем устройство имеет ограничивающую внутреннее пространство внутреннюю стенку, наружную оболочку и расположенную между ними вакуумную изоляцию, и причем одно из твердых тел по меньшей мере частично образует наружную оболочку устройства.

2. Устройство по п.1, отличающееся тем, что предусмотрен по меньшей мере один жидкостный теплообменник и/или по меньшей мере одна тепловая труба, которые расположены так, что они проводят тепло к термоэлектрическому элементу, в частности из охлаждаемого внутреннего пространства к термоэлектрическому элементу, и/или отводят тепло от термоэлектрического элемента.

3. Устройство по п. 1 или 2, отличающееся тем, что толщина твердого тела увеличивается к термоэлектрическому элементу.

4. Устройство по любому из пп. 1-3, отличающееся тем, что предусмотрено по меньшей мере одно крепежное приспособление, предпочтительно по меньшей мере одно зажимное тело, которое фиксирует твердое тело, и/или жидкостный теплообменник, и/или тепловую трубу на термоэлектрическом элементе, при этом предпочтительно предусмотрено, что крепежное приспособление имеет меньшую теплопроводность, чем твердое тело, и/или крепежное приспособление выполнено из пластмассы.

5. Устройство по любому из пп. 1-4, отличающееся тем, что твердое тело состоит из алюминия или содержит алюминий.

6. Устройство по любому из пп. 1-5, отличающееся тем, что для обеспечения теплового или холодильного резерва для термоэлектрического элемента предусмотрен по меньшей мере один латентный накопитель тепла, при этом предпочтительно предусмотрено, что латентный накопитель тепла соединен с возможностью переноса тепла с твердым телом, и/или с жидкостным теплообменником, и/или с тепловой трубой.

7. Устройство по любому из пп. 1-6, отличающееся тем, что твердое тело или, соответственно, внутренняя стенка устройства выполнена так, что по меньшей мере в одном положении на поверхности твердого тела или, соответственно, внутренней стенки имеется меньшая температура, чем в других зонах поверхности твердого тела или внутренней стенки, и причем предусмотрены средства для овода образующегося там конденсата.



 

Похожие патенты:

Изобретение относится к материалам для охлаждения и/или нагрева и является универсальным и может использоваться как материал для изготовления одежды, как укрывной, защитный материал, как материал покрытия стен, полов, потолков, как утеплитель и/или как охлаждающий материал.

Изобретение относится к материалам и устройствам для охлаждения и/или нагрева и является универсальным и может использоваться как материал для изготовления одежды, как укрывной, защитный материал, как материал покрытия стен, полов, потолков, как утеплитель и/или как охлаждающий материал.

Изобретение относится к вакуумной изоляции. Тело вакуумной изоляции содержит оболочку, включающую в себя высокобарьерную пленку или являющуюся высокобарьерной пленкой, определяющую область вакуума.

Изобретение относится к вакуумной изоляции. Тело вакуумной изоляции содержит оболочку, включающую в себя высокобарьерную пленку или являющуюся высокобарьерной пленкой, определяющую область вакуума.

Инфракрасный сенсор с переключаемым чувствительным элементом относится к устройствам для бесконтактного измерения температуры в различных системах управления и контроля.

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для трансформации тепловой энергии в электрическую, а именно для подзарядки различных гаджетов и других устройств при отсутствии источников электроснабжения.

Изобретение относится к области термоэлектричества. Сущность: термоэлектрический элемент (1) включает по меньшей мере две пленки основного материала (2) в виде углеродного материала с sp3 гибридизацией атомных связей, между которыми нанесена пленка дополнительного материала (3) в виде углеродного материала с sp2 гибридизацией связей.

Изобретение относится к области электроизмерительной техники, а именно к устройствам термопреобразователей, и может быть использовано для измерения быстроменяющихся температурных процессов, например температуры капель воды.

Изобретение относится к области термоэлектричества, а именно к технологии изготовления конструктивных элементов для термоэлектрических модулей. Сущность: способ изготовления конструктивного элемента (12) для термоэлектрического модуля (15) имеет следующие шаги: а) обеспечение по меньшей мере одной нити (1), имеющей протяженность (2), б) обеспечение трубчатого приемного элемента (13), имеющего внешнюю периферическую поверхность (14), в) нанесение термоэлектрического материала (3) по меньшей мере на одну нить (1), г) наматывание по меньшей мере одной нити (1) вокруг трубчатого приемного элемента (13), так что на внешней периферической поверхности (14) образовывается по меньшей мере один кольцеобразный конструктивный элемент (12) для термоэлектрического модуля (15).

Изобретение относится к теплоэнергетике, а именно к системам теплоснабжения зданий. Термоэлектронасос содержит подающий трубопровод (1) с термоэлектрическим блоком (3), соединенным электропроводкой с инвертором (4), аккумулятором (5) и электродвигателем насоса (6), установленным в трубопроводе (2).

Изобретение относится к вакуумной изоляции. Тело вакуумной изоляции содержит оболочку, включающую в себя высокобарьерную пленку или являющуюся высокобарьерной пленкой, определяющую область вакуума.

Изобретение относится к портативным устройствам подготовки жидкости. Устройство подготовки жидкости, предназначенное для одновременного нагрева и охлаждения жидкости, включающее емкость для неподготовленной жидкости, термоэлектрический преобразователь, блок управления, узел разделения потоков жидкости и емкость подготовки жидкости, разделенную на секцию для нагрева жидкости и секцию для охлаждения жидкости, при этом каждая секция выполнена с непроницаемой перегородкой, смежной с термоэлектрическим преобразователем, а на внешней стороне верхних стенок секции для нагрева жидкости и секции для охлаждения жидкости расположено средство контроля уровня жидкости, представляющее собой поддон, на дне которого расположен датчик уровня жидкости, и средство отвода воздуха, выполненное в виде двух отверстий, расположенных симметрично над указанными секциями, при этом блок управления включает контроллер и подключенные к нему средство контроля уровня жидкости, расположенное в емкости подготовки жидкости, и датчик измерения уровня жидкости, расположенный в емкости для неподготовленной жидкости, а к емкости для неподготовленной жидкости подключена линия подачи сжатой среды, соединенная со средством создания давления.

Изобретение относится к термоэлектрической технике. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой источником электрической энергии, обе поверхности которой находятся на некотором расстоянии (зазоре) от стенок транспортных зон с движущимися в них средами.

Изобретение относится к термоэлектрической технике. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, обе поверхности которой находятся на некотором расстоянии (зазоре) от стенок транспортных зон с движущимися в них средами.

Изобретение относится к термоэлектрической технике. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой источником электрической энергии, обе поверхности которой находятся на некотором расстоянии от стенок транспортных зон с движущимися в них средами.

Изобретение относится к медицинской технике. Термоэлектрическое полупроводниковое устройство для массажа шейно-воротниковой зоны содержит гибкое упруго-деформируемое основание с возможностью облегания шейно-воротниковой зоны.

Изобретение относится к медицинской технике. Термоэлектрическое полупроводниковое устройство для массажа шейно-воротниковой зоны содержит гибкое упруго-деформируемое основание с возможностью облегания шейно-воротниковой зоны.

Изобретение относится к медицинской технике. Термоэлектрическое полупроводниковое устройство для массажа шейно-воротниковой зоны содержит гибкое упругодеформируемое основание с возможностью облегания шейно-воротниковой зоны.

Изобретение относится к медицинской технике. Термоэлектрическое полупроводниковое устройство для массажа шейно-воротниковой зоны содержит гибкое упруго-деформируемое основание с возможностью облегания шейно-воротниковой зоны.

Изобретение относится к медицинской технике. Термоэлектрическое полупроводниковое устройство для массажа шейно-воротниковой зоны содержит гибкое упругодеформируемое основание с возможностью облегания шейно-воротниковой зоны.
Наверх