Система охлаждения многоконтурной газотурбинной установки

Изобретение относится к газотурбостроению и может быть использовано в системах охлаждения авиационных многоконтурных газотурбинных двигателей. Система охлаждения многоконтурной газотурбинной установки содержит многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке охлаждающего воздуха проточной части второго контура газотурбинной установки и состоящий из механически связанных между собой унитарных секций с каналами подвода и отвода охлаждаемого воздуха из проточной части первого контура, равномерно расположенных по площади поперечного сечения проточной части второго контура и представляющих собой пучок полых трубчатых теплообменных элементов, выполненный за одно целое, расположенный вдоль проточной части второго контура и сообщенный с каналами подвода и отвода охлаждаемого воздуха. Каждая унитарная секция выполнена в виде древовидного пучка ветвистых фрактальных теплообменных элементов, разрастающихся в части пучка, расположенной со стороны канала подвода охлаждаемого воздуха, и срастающихся в части пучка, расположенной со стороны канала отвода охлаждаемого воздуха, а полости каждого фрактального теплообменного элемента средней части пучка сообщены с полостями соседних фрактальных теплообменных элементов, причем теплообменные элементы первого порядка обеих частей пучка расположены перпендикулярно относительно потока охлаждающего воздуха в проточной части второго контура и выполнены с эллипсообразным поперечным сечением, большая ось которого ориентирована в направлении потока охлаждающего воздуха второго контура, теплообменный элемент первого порядка разрастающейся части пучка сообщен с каналом подвода охлаждаемого воздуха, а теплообменный элемент первого порядка срастающейся части пучка сообщен с каналом отвода охлаждаемого воздуха. Технический результат изобретения заключается в повышении эффективной площади теплообмена рекуперативного теплообменника и повышении эффективности системы охлаждения. 6 ил.

 

Изобретение относится к газотурбостроению и может быть использовано в системах охлаждения авиационных многоконтурных газотурбинных двигателей.

В теплообменниках систем охлаждения газотурбинных установок для передачи теплоты от одного теплоносителя к другому в основном используются трубчатые или пластинчатые теплообменные каналы, теплоноситель по которым распределяется через сварные коллекторы. При этом основными проблемами, решаемыми при проектировании, являются максимизация теплопередающих поверхностей, повышение эффективности теплообмена при минимизации потерь давления в теплообменном аппарате, а также минимизация его массы и габаритов.

При проектировании теплообменника необходимо компоновать теплообменные поверхности в некотором объеме сложной геометрической формы, в котором имеется поток теплоносителя или хладагента, в частности, во втором контуре авиационного двигателя с проходящими там трубопроводами и прочими коммуникациями. Значительную долю массы и объема таких теплообменников занимают раздающие и собирающие теплоноситель или хладагент коллекторы, в которых имеют место значительные неэффективные потери давления.

Развитие аддитивных технологий снимает технологические ограничения, накладываемые на допустимую геометрию коллекторов и теплообменных каналов.

Известна система охлаждения многоконтурной газотурбинной установки, содержащая многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке охлаждающего воздуха проточной части второго контура газотурбинной установки и состоящий из механически связанных между собой секций с каналами подвода и отвода охлаждаемого воздуха из проточной части первого контура, равномерно расположенных по площади поперечного сечения проточной части второго контура и представляющих собой пучок полых трубчатых теплообменных элементов, выполненный за одно целое, расположенный в проточной части второго контура и сообщенный с каналами подвода и отвода охлаждаемого воздуха (US 9200855, 2015 г.).

В известной системе охлаждения секции рекуперативного теплообменника расположены таким образом, что поток охлаждающего воздуха проточной части второго контура омывает пучок полых трубчатых теплообменных элементов в радиальном направлении, т.е. поток сжатого воздуха во втором контуре газотурбинной установки дважды меняет направление движения - от осевого к радиальному и от радиального снова к осевому. Поворот потока на 90° приводит к образованию застойных зон, в которых резко снижается эффективность теплообмена между охлаждающим и охлаждаемым воздухом, что негативно отражается на тепловом состоянии установки и эффективности ее работы.

Известна система охлаждения многоконтурной газотурбинной установки, содержащая рекуперативный теплообменник, размещенный в потоке охлаждающего воздуха проточной части второго контура газотурбинной установки и состоящий из унитарной секции с каналами подвода и отвода охлаждаемого воздуха из проточной части первого контура, имеющей полые трубчатые теплообменные элементы, выполненные за одно целое и расположенные в проточной части второго контура (ЕР 3054252, 2016 г.). Унитарная секция расположена вдоль потока охлаждающего воздуха, который омывает трубчатый теплообменный элемент в осевом направлении.

В известной системе охлаждения полые трубчатые теплообменные элементы унитарной секции выполнены в виде одной изогнутой в нескольких плоскостях трубки с оребрением, изготовленной с применением аддитивных технологий. Такое выполнение теплообменника приводит к снижению его эффективной площади теплообмена, т.к. весь поток охлаждаемого воздуха проходит по одному каналу без разветвления. При этом наличие развитого оребрения затрудняет его компоновку в проточной части второго контура газотурбинной установки.

Наиболее близким аналогом изобретения является система охлаждения многоконтурной газотурбинной установки, содержащая многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке охлаждающего воздуха проточной части второго контура газотурбинной установки и состоящий из механически связанных между собой унитарных секций с каналами подвода и отвода охлаждаемого воздуха из проточной части первого контура, равномерно расположенных по площади поперечного сечения проточной части второго контура и представляющих собой пучок полых трубчатых теплообменных элементов, выполненный за одно целое, расположенный вдоль проточной части второго контура и сообщенный с каналами подвода и отвода охлаждаемого воздуха (US 9752835, 2017 г.).

В известной системе охлаждения унитарная секция расположена вдоль общего потока воздуха в проточной части второго контура, но не в проточной части, а за ее пределами в отдельном канале, поэтому для охлаждения теплообменника отбирается только часть воздуха из второго контура, которая подводится к унитарным секциям в радиальном направлении, омывает полые трубчатые теплообменные элементы и отводится снова в проточную часть второго контура. При таком расположении секций теплообменника существенно снижается эффективная площадь теплообмена по сравнению с размещением теплообменника непосредственно в проточной части второго контура.

Такое расположение объясняется тем, что установить унитарную секцию непосредственно в проточной части второго контура практически невозможно из-за наличия в ней различных элементов конструкции, в частности, воздушных и гидравлических трубопроводов, приводов управления. При этом поток охлаждающего воздуха в известной системе охлаждения дважды меняет направление своего движения, что приводит к дополнительным гидродинамическим потерям и снижает эффективность теплообмена в секциях теплообменника.

Технической проблемой, решение которой обеспечивается изобретением, является обеспечение размещения унитарных секций рекуперативного теплообменника в проточной части второго контура с равномерным заполнением ее проходного сечения полыми трубчатыми теплообменными элементами.

Технический результат изобретения заключается в повышении эффективной площади теплообмена рекуперативного теплообменника и повышении эффективности системы охлаждения.

Технический результат достигается за счет того, что система охлаждения многоконтурной газотурбинной установки содержит многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке охлаждающего воздуха проточной части второго контура газотурбинной установки и состоящий из механически связанных между собой унитарных секций с каналами подвода и отвода охлаждаемого воздуха из проточной части первого контура, равномерно расположенных по площади поперечного сечения проточной части второго контура и представляющих собой пучок полых трубчатых теплообменных элементов, выполненный за одно целое, расположенный вдоль проточной части второго контура и сообщенный с каналами подвода и отвода охлаждаемого воздуха. Каждая унитарная секция выполнена в виде древовидного пучка ветвистых фрактальных теплообменных элементов, разрастающихся в части пучка, расположенной со стороны канала подвода охлаждаемого воздуха, и срастающихся в части пучка, расположенной со стороны канала отвода охлаждаемого воздуха, а полости каждого фрактального теплообменного элемента средней части пучка сообщены с полостями соседних фрактальных теплообменных элементов, причем теплообменные элементы первого порядка обеих частей пучка расположены перпендикулярно относительно потока охлаждающего воздуха в проточной части второго контура и выполнены с элипсообразным поперечным сечением, большая ось которого ориентирована в направлении потока охлаждающего воздуха второго контура, теплообменный элемент первого порядка разрастающейся части пучка сообщен с каналом подвода охлаждаемого воздуха, а теплообменный элемент первого порядка срастающейся части пучка сообщен с каналом отвода охлаждаемого воздуха.

Существенность отличительных признаков системы охлаждения многоконтурной газотурбинной установки подтверждается тем, что только совокупность всех конструктивных признаков, описывающая изобретение, позволяет обеспечить достижение технического результата изобретения -повышения эффективной площади теплообмена рекуперативного теплообменника и повышения эффективности системы охлаждения в целом.

Пример выполнения системы охлаждения многоконтурной газотурбинной установки показан на чертежах, где:

на фиг. 1 изображена упрощенная общая схема продольного сечения двухконтурной газотурбинной установки с системой охлаждения;

на фиг. 2 показано поперечное сечение А-А двухконтурной газотурбинной установки на фиг. 1;

на фиг. 3 - общий вид многосекционного кольцевого рекуперативного теплообменника в изометрии;

на фиг. 4 - общий вид пучка ветвистых фрактальных теплообменных элементов, установленного в проточной части второго контура газотурбинной установки;

на фиг. 5 - конструктивное выполнение секций теплообменника в виде пучка ветвистых фрактальных теплообменных элементов, вид сбоку;

на фиг. 6 - поперечное сечение В-В средней части пучка ветвистых фрактальных теплообменных элементов на фиг. 5.

Двухконтурная газотурбинная установка (фиг. 1) содержит впускное устройство 1 с вентилятором 2, нагнетающим воздух в проточную часть 3 первого контура и в проточную часть 4 второго контура. В проточной части 3 первого контура размещены последовательно компрессор 5 низкого давления, компрессор 6 высокого давления, камера сгорания 7, турбина 8 высокого давления, турбина 9 промежуточного давления и турбина 10 низкого давления.

В проточной части 4 второго контура, расположенной концентрично проточной части 3 первого контура, в потоке охлаждающего воздуха установлен многосекционный кольцевой рекуперативный теплообменник 11 системы охлаждения, омываемый потоком D охлаждающего воздуха из вентилятора 2.

Рекуперативный теплообменник 11 состоит из механически связанных между собой унитарных секций 12 с каналами 13 подвода охлаждаемого воздуха и каналами 14 отвода охлаждаемого воздуха из проточной части 3 первого контура, равномерно расположенных по площади поперечного сечения проточной части 4 второго контура (фиг. 2).

Каждая унитарная секция 12, представляющая собой пучок полых трубчатых теплообменных элементов, выполнена за одно целое в виде древовидного пучка ветвистых фрактальных теплообменных элементов 15, расположенных вдоль проточной части 4 второго контура, разрастающихся в части 16 пучка, расположенной со стороны канала 13 подвода охлаждаемого воздуха, и срастающихся в части 17 пучка, расположенной со стороны канала 14 отвода охлаждаемого воздуха (фиг. 3, 5).

Теплообменный элемент 18 первого порядка разрастающейся части 16 пучка сообщен с каналом 13 подвода охлаждаемого воздуха, а теплообменный элемент 19 первого порядка срастающейся части 17 пучка сообщен с каналом 14 отвода охлаждаемого воздуха (фиг. 4-6).

Теплообменные элементы 18 и 19 первого порядка обеих частей 16 и 17 пучка расположены перпендикулярно относительно потока охлаждающего воздуха D в проточной части 4 второго контура и выполнены с элипсообразным поперечным сечением, большая ось Е которого ориентирована в направлении потока D охлаждающего воздуха второго контура (сечение Б-Б на фиг. 5). Использование элипсообразных профилей теплообменных элементов 18 и 19 первого порядка позволяет не загромождать проходное сечение охлаждающего воздуха при наружном обтекании им древовидного пучка ветвистых фрактальных теплообменных элементов 15.

Теплообменные элементы 18 первого порядка делятся на несколько вторичных ветвей - теплообменных элементов 20 второго порядка, которые в свою очередь делятся на несколько теплообменных элементов 21 третьего порядка. Теплообменные элементы 20 и 21 второго и третьего порядка могут иметь как элипсообразный профиль (при коэффициенте деления 2 или 3), так и цилиндрическую форму (при коэффициенте деления 4 и более). Такое выполнение позволяет избежать резких изменений площади проходных сечений в теплообменных элементах 20 и 21 второго и третьего порядка, то есть избежать резких ускорений и замедлений потока, что существенно улучшает гидравлическое совершенство тракта и снижает гидравлические потери в нем.

Между расположенными в проточной части 4 второго контура препятствиями для размещения рекуперативного теплообменника 11 в виде приводов 22 и трубопроводов 23 находятся фрактальные теплообменные элементы 15, причем развитая средняя часть 24 пучка плотно заполняет пространство между препятствиями (фиг. 2 и 4).

В средней части 24 пучка внутренние полости 25 каждого фрактального теплообменного элемента 15 сообщены каналами 26 с полостями 25 соседних фрактальных теплообменных элементов 15, причем каналы 26 для сообщения полостей 25 могут быть расположены равномерно по длине фрактальных теплообменных элементов 15.

Проектирование древовидных ветвистых теплообменников в симметричных и несимметричных каналах, как правило, осуществляется различными путями. Основными параметрами, задаваемыми при проектировании в общем случае, являются следующие: коэффициент деления, число поколений, величина минимального зазора между границей канала течения теплоносителя или хладагента, омывающего теплообменник условно снаружи, или минимальный зазор между препятствием и ветвистым теплообменным каналом.

При проектировании теплообменника в симметричном канале процесс проектирования начинается с точки подвода охлаждаемого воздуха, от которой с определенным коэффициентом деления проектируется разрастающаяся часть ветвистых фрактальных теплообменных элементов.

При проектировании несимметричного теплообменника, обрастающего препятствие, возможно использование обратного алгоритма. На первом этапе построения геометрии такого теплообменника выбирается наиболее заполненное теплоотдающей поверхностью сечение с некими препятствиями, помехами, например, приводами 22 и трубопроводами 23, но ими не ограничено.

Профиль сечения с необходимым шагом компонуется оптимальными ветвистыми фрактальными теплообменными элементами 15 из условия максимальной компактности, минимизации потерь и максимизации поверхности теплообмена. Затем поэтапно происходит компоновка (соединение) пористых структур с некоторым коэффициентом слияния ςi:

где

ni - количество теплообменных элементов в i-ом порядке до слияния;

ni-1 - количество теплообменных элементов после слияния, т.е. в i-1 порядке.

Как правило, значение коэффициента слияния ςi находится в пределах от 2 до 4, но этими значениями не ограничивается.

В дополнение к вышесказанному важно отметить, что компактность заполнения сечения теплообменника ветвистыми фрактальными теплообменными элементами может приводить к неоднородности значения коэффициента слияния по сечению теплообменника. Вследствие этого существует вариативность проектирования теплообменных элементов соседних порядков.

Основные ограничения на геометрию коллекторов теплообменников известных систем охлаждения при проектировании связаны с технологическими ограничениями, т.к. коллекторы обычно изготавливаются сваркой листовых металлов, вальцовкой труб, а сами теплообменные поверхности - штамповкой листа, либо из труб. Развитие аддитивных технологий снимает технологические ограничения, накладываемые на допустимую геометрию коллекторов и теплообменных каналов.

При работе системы охлаждения поток охлаждающего воздуха проточной части 4 второго контура омывает фрактальные теплообменные элементы 15 каждой унитарной секции 12 рекуперативного теплообменника 11. Охлаждаемый воздух, поступающий в теплообменные элементы 18 первого порядка из компрессора 6 высокого давления по каналу 13 подвода охлаждаемого воздуха, протекает через рекуперативный теплообменник 11 внутри фрактальных теплообменных элементов 15, при этом осуществляется его рекуперативный теплообмен с омывающим фрактальные теплообменные элементы 15 снаружи охлаждающим воздухом.

В процессе протекания по разрастающейся части 16 пучка поток охлаждаемого воздуха поэтапно разделяется на малые потоки. В процессе обтекания разрастающейся части 16 пучка поток охлаждающего воздуха также поэтапно разделяется на малые потоки. Разделение потоков на малые потоки приводит к увеличению площади теплообмена и снижению эквивалентных диаметров малых каналов.

Также в полых теплообменных трубчатых каналах малого эквивалентного диаметра в сравнении с каналами большего эквивалентного диаметра уменьшается толщина стенки, необходимая для обеспечения прочностных свойств канала, соответственно, уменьшается масса конструкционных материалов необходимых для образования единицы площади теплообмена.

Наличие каналов 26 для сообщения между собой полостей 25 соседних фрактальных теплообменных элементов 15 позволяет обеспечить более равномерное распределение расхода между малыми потоками, а также интенсифицировать теплообмен в потоках охлаждаемого и охлаждающего воздуха.

После теплообмена в средней части 24 пучка фрактальных теплообменных элементов 15 малые потоки охлаждаемого воздуха попадают в срастающуюся часть пучка 17 фрактальных теплообменных элементов 15, в которых малые потоки сливаются и перемешиваются между собой в местах переходов от каналов более высокого порядка к каналам более низкого порядка.

Через срастающуюся часть 17 пучка и теплообменный элемент 19 первого порядка поток охлажденного воздуха поступает в канал 14 отвода охлаждаемого воздуха, доставляющего охлажденный воздух к теплонапряженным элементам турбины 8 высокого давления. Малые потоки охлаждающего воздуха, омывающие фрактальные теплообменные элементы 15 снаружи, также поэтапно сливаются в один поток, протекающий далее по проточной части 4 второго контура.

Таким образом, за счет разделения общих потоков охлаждаемого и охлаждающего воздуха на малые потоки и снижения эквивалентных диаметров малых каналов в описываемом рекуперативном теплообменнике увеличивается эффективная площадь теплообмена и повышается эффективность всей системы охлаждения многоконтурной газотурбинной установки.

Система охлаждения многоконтурной газотурбинной установки, содержащая многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке охлаждающего воздуха проточной части второго контура газотурбинной установки и состоящий из механически связанных между собой унитарных секций с каналами подвода и отвода охлаждаемого воздуха из проточной части первого контура, равномерно расположенных по площади поперечного сечения проточной части второго контура и представляющих собой пучок полых трубчатых теплообменных элементов, выполненный за одно целое, расположенный вдоль проточной части второго контура и сообщенный с каналами подвода и отвода охлаждаемого воздуха, отличающаяся тем, что каждая унитарная секция выполнена в виде древовидного пучка ветвистых фрактальных теплообменных элементов, разрастающихся в части пучка, расположенной со стороны канала подвода охлаждаемого воздуха, и срастающихся в части пучка, расположенной со стороны канала отвода охлаждаемого воздуха, а полости каждого фрактального теплообменного элемента средней части пучка сообщены с полостями соседних фрактальных теплообменных элементов, причем теплообменные элементы первого порядка обеих частей пучка расположены перпендикулярно относительно потока охлаждающего воздуха в проточной части второго контура и выполнены с эллипсообразным поперечным сечением, большая ось которого ориентирована в направлении потока охлаждающего воздуха второго контура, теплообменный элемент первого порядка разрастающейся части пучка сообщен с каналом подвода охлаждаемого воздуха, а теплообменный элемент первого порядка срастающейся части пучка сообщен с каналом отвода охлаждаемого воздуха.



 

Похожие патенты:

Изобретение относится к стартер-генераторным устройствам для авиационных газотурбинных двигателей и способу их запуска, может быть использовано в системах электроснабжения, применяемых в летательных аппаратах, судах, других транспортных средствах и автономных объектах.

Нерегулируемое сопло газотурбинного двигателя, содержащее четыре стенки, соединенные между собой разъемным соединением с образованием канала отвода рабочего газа.

Изобретение относится к авиационной технике, а именно к системе охлаждения подшипников турбин газотурбинного двигателя самолета. Техническим результатом предложенной системы охлаждения является обеспечение работы газотурбинного двигателя на повышенных оборотах турбин, что дает возможность повысить мощность газотурбинного двигателя.

Турбина // 2677021
Изобретение относится к турбине, содержащей неподвижные направляющие лопатки турбины из композита с керамической матрицей, прикрепленные к корпусу турбины. Турбина содержит множество неподвижных направляющих лопаток, опорный элемент и корпус.

Изобретение относится к энергетике. Энергоустановка состоит из двух контуров - внутреннего и внешнего и газоотводящего канала.

Изобретение относится к области авиадвигателестроения, в частности к элементам маслосистемы авиационного газотурбинного двигателя. Коробка приводных агрегатов содержит зубчатое колесо, патрубок, подшипники, центробежную крыльчатку с лопатками.

Изобретение относится к энергетике. Парогазовая установка состоит из двух контуров - внутреннего и внешнего и газоотводящего канала.

Изобретение относится к области авиационного двигателестроения, а именно к подводу охладителя к валу авиационного газотурбинного двигателя, и может быть использовано в транспортном машиностроении.

Изобретение относится к твердым телам, имеющим искусственные пористые структуры, и касается низкопористого ауксетического листового материала. Конструкционный материал содержит конструкцию из структур с продолговатыми порами, причем каждая из структур с продолговатыми порами включает в себя одну или более субструктур, первое множество первых структур с продолговатыми порами и второе множество вторых структур с продолговатыми порами, причем каждая из первых и вторых структур с продолговатыми порами имеет большую ось и малую ось, большие оси первых структур с продолговатыми порами перпендикулярны большим осям вторых структур с продолговатыми порами, первые и вторые множества структур с продолговатыми порами расположены в матрице рядов и столбцов, при этом каждый из рядов и каждый из столбцов выполнен чередующимся между первыми и вторыми структурами с продолговатыми порами, первые и вторые структуры с продолговатыми порами выполнены в форме двутавровых щелевых отверстий, так что пористость структур с продолговатыми порами ниже значения около 10%, и конструкция из структур с продолговатыми порами определяет элементарные ячейки, которые в качестве реакции на одноосное напряжение обеспечивают демонстрацию листовым материалом поведения с отрицательным коэффициентом Пуассона.

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и антиобледенительным устройством, двигатель с выходным валом, планетарный редуктор с механизмом переключения и стартер-генератор, расположенный в полости центрального обтекателя и выполненный в виде обратимой электрической машины, статор которой закреплен на корпусе, а ротор - через планетарный редуктор подключен к выходному валу двигателя.

В изобретении предложена камера сгорания газовой турбины и, в частности, камера сгорания, включающая в себя множество камер сгорания, предназначенных для смешивания и сжигания топлива и воздуха и соединенных между собой пламяпередающим патрубком.

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и антиобледенительным устройством, двигатель с выходным валом, планетарный редуктор с механизмом переключения и стартер-генератор, расположенный в полости центрального обтекателя и выполненный в виде обратимой электрической машины, статор которой закреплен на корпусе, а ротор - через планетарный редуктор подключен к выходному валу двигателя.

Изобретение относится к энергетике. Сборка турбины в турбинном двигателе, имеющая внешний корпус, внутренний корпус, кольцевой путь отработанного газа, определяемый между внешней и внутренней стенками пути потока, а также полость выхлопного кожуха турбины.

Изобретение относится к области блочно-модульных газотурбинных установок морского базирования. Теплоизолирующий кожух судового газотурбинного двигателя содержит судовой газотурбинный двигатель с повернутым относительно оси двигателя выхлопным конфузорным патрубком с выхлопным срезом на уровне основания выхлопной трубы, входной вентиляционный патрубок, выходной патрубок кожуха, соединенный.

Объектом изобретения является способ контроля вентиля в газотурбинном двигателе, при этом упомянутый вентиль производит переключение в ответ на команду (С), переданную в определенный момент (t0), при этом упомянутый способ содержит этап (Е2) вычисления первой формы (S1) временного сигнала (S(t)) на основании изменения переменной состояния (Р) упомянутого газотурбинного двигателя, реагирующей на переключение упомянутого вентиля, затем этап (Е6) применения теста сигнатуры переключения вентиля к второй форме (S2) упомянутого сигнала (S(t)), отличающийся тем, что содержит так называемый этап (Е5) десенсибилизации, на котором упомянутую вторую форму (S2) сигнала вычисляют на основании первой формы (S1) сигнала.

Газогенератор газотурбинного двигателя включает в себя осевой компрессор, камеру сгорания, турбину высокого давления с охлаждаемыми рабочими и диском основным с выполненными на его фланце отверстиями и несущим на себе диск покрывной с образованием между ними кольцевой полости.

Система управления температурой обоймы лопастей для использования в газотурбинном двигателе. Система управления включает в себя первый источник охлаждающего воздуха, второй источник охлаждающего воздуха, а также систему управления температурой воздуха.

Газовая турбина содержит компрессор, камеру сгорания, турбину и систему воздушного охлаждения, которая содержит, по меньшей мере, одну первую магистраль воздушного охлаждения, которая идет от первой ступени давления компрессора к турбине, и, по меньшей мере, одну вторую магистраль воздушного охлаждения, которая идет от более высокой второй ступени давления компрессора к турбине.

Изобретение относится к энергетике. Газовая турбина на базе авиационного двигателя содержит воздухозаборную камеру, компрессор, содержащий воздухозаборное устройство, сообщающееся с указанной камерой, камеру сгорания, турбину высокого давления и силовую турбину.

Двухконтурный турбореактивный двигатель содержит компрессор с думисной полостью, камеру сгорания, турбину, аппарат закрутки турбины, сообщенный и с транзитными полостями лопаток соплового аппарата турбины, и с каналами подвода воздуха высокого давления, вращающийся направляющий аппарат и каналы подвода воздуха низкого давления, сообщенные с внутренними полостями охлаждаемых рабочих лопаток турбины.
Наверх