Способ поверки ультразвукового дефектоскопа и приспособление для его реализации



Способ поверки ультразвукового дефектоскопа и приспособление для его реализации
Способ поверки ультразвукового дефектоскопа и приспособление для его реализации
Способ поверки ультразвукового дефектоскопа и приспособление для его реализации
Способ поверки ультразвукового дефектоскопа и приспособление для его реализации
G01N29/30 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2680676:

Публичное акционерное общество "Транснефть" (ПАО "Транснефть") (RU)
Акционерное общество "Транснефть - Диаскан" (АО "Транснефть - Диаскан") (RU)

Использование: для поверки ультразвукового дефектоскопа. Сущность изобретения заключается в том, что проверку каждого из пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа осуществляют с использованием приспособления, выполненного со сквозной цилиндрической полостью, при этом в сквозную цилиндрическую полость устанавливают меру и пьезоэлектрический ультразвуковой датчик с обеспечением их фиксации в приспособлении, заполняют жидкостью пространство между линзой пьезоэлектрического ультразвукового датчиком и мерой и осуществляют проверку работоспособности пьезоэлектрического ультразвукового датчика. Технический результат: повышение точности калибровки и расширение функциональных возможностей. 2 н. и 7 з.п. ф-лы, 3 ил.

 

Изобретение относится к измерительной технике, к поверке ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта.

Известен образец для настройки ультразвукового дефектоскопа (RU 95101085, МПК G01N29/04, приоритет с 25.01.1995), который относится к неразрушающим методам контроля и предназначено для настройки чувствительности ультразвуковых дефектоскопов при ультразвуковом контроле, а также для метрологического обеспечения и поверки средств ультразвуковой дефектоскопии. Образец состоит из произвольного количества отдельных призм. Призмы соединяют вместе в произвольном сочетании по боковым граням с образованием двух параллельных плоскостей для ввода ультразвуковых колебаний.

Известен способ калибровки преобразователей акустической эмиссии и устройство для его реализации (RU 2321849, МПК G01N 29/04, G01N 29/30, приоритет с 14.04.2005), который состоит в том что, с помощью оптического интерференционного измерителя линейных перемещений выполняется калибровка системы, состоящей из источника акустического сигнала и монолитного передающего блока, после чего в акустический контакт с монолитным передающим блоком вводится стандартный преобразователь акустической эмиссии, обрабатывается и запоминается сигнал от этого преобразователя акустической эмиссии, затем устанавливается калибруемый преобразователь акустической эмиссии на место стандартного, записывается и обрабатывается второй сигнал в компьютере, который сравнивается с сохраненным эталонным, производя таким образом калибровку калибруемого преобразователя акустической эмиссии. Технический результат: повышение точности калибровки и расширение функциональных возможностей системы в целом.

Известен способ динамической калибровки ультразвукового дефектоскопа (RU 2550825, МПК G01N29/04, приоритет с 19.02.2014), который заключается в том, что проводят динамическую калибровку ультразвукового дефектоскопа, содержащего рядный блок электроакустических преобразователей, первый из которых является генератором ультразвукового излучения, а последующий преобразователь или преобразователи являются приемниками ультразвукового излучения, при этом пороговый уровень срабатывания дефектоскопа задают исходя из текущего значения амплитуды опорного сигнала, излучаемого зеркально по отношению к основному зондирующему сигналу и представляющего собой остаточное ультразвуковое излучение генератора в текущем такте или принудительное ультразвуковое излучение генератора в дополнительном такте. Технический результат: повышение точности задания порогового уровня срабатывания ультразвукового дефектоскопа в процессе контроля.

Прототипов к заявляемому изобретению не найдено. Наиболее близким аналогом заявленному изобретению является образец для проверки ручной настройки чувствительности дефектоскопа при автоматизированном ультразвуковом контроле (Патент RU 140993, МПК G01N29/04, приоритете 09.01.2014) выполнен в виде кольца с цилиндрическими сквозными отверстиями, в которые введены стандартные образцы с плоскодонными искусственными отражателями, при этом рабочие поверхности стандартных образцов установлены заподлицо с рабочей поверхностью кольца, цилиндрические отверстия в кольце выполнены радиальными, их оси лежат в одной плоскости, совпадают с радиусами кольца, пересекают его внешнюю боковую поверхность с постоянным шагом между смежными осями, а отверстия на этой поверхности снабжены фасками, которые после установки стандартных образцов заполняются герметиком. Полезная модель позволяет в автоматическом режиме проверять ручную настройку чувствительности дефектоскопической аппаратуры при контроле изделий со сферическими поверхностями путем регистрации искусственных отражателей, эквивалентных дефектам, заданных по нормам дефектности изделия теми же преобразователем, акустическим блоком и манипулятором, которыми ведется автоматизированный ультразвуковой контроль куполообразных изделий со сферическими поверхностями, определить оптимальный шаг сканирования преобразователя по дугообразной траектории, перпендикулярной вращению изделия при его контроле и обеспечить метрологическую поверку плоскодонных искусственных отражателей стандартных образцов.

Недостатком указанного выше аналога является то, что образец для проверки ручной настройки чувствительности дефектоскопа при автоматизированном ультразвуковом контроле имеет специализированное промышленное применение, так как создан для обеспечения в автоматическом режиме проверки ручной настройки чувствительности дефектоскопической аппаратуры при контроле изделий со сферическими поверхностями и не пригоден для использования в других целях, а именно при поверке ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта.

Технический результат настоящего изобретения заключается в снижении трудозатрат при поверке ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта.

Технический результат достигается тем, что в способе поверки ультразвукового дефектоскопа для измерения толщины стенки трубопровода иммерсионным способом акустического контакта, включающем проверку работоспособности пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа с использованием компьютера, по результатам которой судят о работоспособности ультразвукового дефектоскопа, проверку каждого из пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа осуществляют с использованием приспособления, выполненного со сквозной цилиндрической полостью, при этом в сквозную цилиндрическую полость устанавливают меру и пьезоэлектрический ультразвуковой датчик с обеспечением их фиксации в приспособлении, заполняют жидкостью пространство между линзой пьезоэлектрического ультразвукового датчика и мерой и осуществляют проверку работоспособности пьезоэлектрического ультразвукового датчика.

Приспособление для поверки ультразвукового дефектоскопа для измерения толщины стенки трубопровода иммерсионным способом акустического контакта включает корпус со сквозной цилиндрической полостью, выполненный с возможностью установки меры в сквозную цилиндрическую полость с одного торца корпуса и пьезоэлектрического ультразвукового датчика с другого торца корпуса, крышку прижимную с отверстиями для крепления к корпусу, кольца уплотнительные для обеспечения фиксации меры и пьезоэлектрического ультразвукового датчика в сквозной цилиндрической полости корпуса, при этом в корпусе выполнены технологические отверстия для заполнения сквозной цилиндрической полости жидкостью, а на внутренних стенках корпуса выполнены проточки для установки в них колец уплотнительных.

В частном случае реализации изобретения корпус приспособления может быть выполнен цилиндрической формы.

Корпус приспособления со стороны торца, в который устанавливают меру, имеет резьбовые отверстия для крепления крышки прижимной к корпусу посредством крепежных изделий.

Приспособление дополнительно содержит набор колец проставочных для фиксации меры, выполненных в виде полых цилиндров.

Крышка прижимная может быть выполнена в виде полого цилиндра с фланцем.

Корпус приспособления и крышка прижимная могут быть выполнены из стали.

Корпус приспособления и крышка прижимная могут быть выполнены из алюминия.

Корпус приспособления и крышка прижимная могут быть выполнены из пластика, армированного металлическими втулками, с резьбовыми отверстиями для установки крепежных изделий.

Ультразвуковой дефектоскоп считается поверенным, если параметры всех пьезоэлектрических ультразвуковых датчиков, установленных на нем, находятся в установленных пределах пороговых значений, и все каналы связи ультразвукового дефектоскопа работоспособны. Толщина каждой меры в наборе соответствует одной из измеряемых толщин стенки, а набор мер соответствует комплекту образцовых ультразвуковых мер.

Заявленное изобретение используется для поверки внутритрубных ультразвуковых дефектоскопов, внутритрубных комбинированных магнитоультразвуковых дефектоскопов в части поверки ультразвуковой секции.

На фиг. 1 изображена реализация способа поверки ультразвукового дефектоскопа.

На фиг. 1 приняты следующие обозначения:

1. Приспособление для поверки ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта.

2. Мера.

3. Пьезоэлектрический ультразвуковой датчик.

4. Ультразвуковая секция.

5. Жидкость.

6. Линза пьезоэлектрического ультразвукового датчика.

На фиг.2 изображено приспособление для поверки ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта.

На фиг. 2 приняты следующие обозначения:

2. Мера из набора мер поверки ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта.

7. Корпус.

8. Крышка прижимная.

9. Кольцо проставочное.

10. Кольцо уплотнительное.

11. Сквозная цилиндрическая полость.

12. Технологические отверстия для заполнения жидкостью пространства между линзой пьезоэлектрического ультразвукового датчика и мерой.

13. Глухое резьбовое отверстие.

14. Крепежные изделия.

15. Гладкое отверстие в крышке прижимной.

На фиг. 3 изображена крышка прижимная в частных случаях реализации.

На фиг.3 приняты следующие обозначения:

8. Крышка прижимная.

15. Отверстие в крышке прижимной.

Способ поверки ультразвукового дефектоскопа для измерения толщины стенки иммерсионным способом акустического контакта включает в себя проверку работоспособности пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа с использованием компьютера, по результатам которой судят о работоспособности ультразвукового дефектоскопа, при этом проверку каждого из пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа осуществляют с использованием приспособления 1, выполненного со сквозной цилиндрической полостью 11, при этом в сквозную цилиндрическую полость 11 устанавливают меру 2 и пьезоэлектрический ультразвуковой датчик 3 с обеспечением их фиксации в приспособлении, заполняют жидкостью 5 пространство между линзой пьезоэлектрического ультразвукового датчика 3 и мерой 2 и осуществляют проверку работоспособности пьезоэлектрического ультразвукового датчика 3.

Приспособление 1 для поверки ультразвукового дефектоскопа для измерения толщины стенки трубопровода иммерсионным способом акустического контакта состоит из корпуса 7 цилиндрической формы со сквозной цилиндрической полостью 11, который выполнен с возможностью установки меры 2 в сквозную цилиндрическую полость 12 с одного торца корпуса 7 и пьезоэлектрического ультразвукового датчика с другого торца корпуса 7, при этом корпус 7 со стороны торца, в который устанавливают меру 2, имеет резьбовые отверстия 13 для крепления крышки прижимной 8 к корпусу 7 посредством крепежных изделий 14.

В состав приспособления 1 для поверки ультразвукового дефектоскопа для измерения толщины стенки трубопровода иммерсионным способом акустического контакта входят также крышка прижимная с отверстиями 15 для крепления к корпусу 7 кольца уплотнительные 10 для обеспечения фиксации меры 2 и пьезоэлектрического ультразвукового датчика 3 в сквозной цилиндрической полости 11 корпуса 8, при этом в корпусе 7 выполнены технологические отверстия 12 для заполнения сквозной цилиндрической полости 11 жидкостью 5, а на внутренних стенках корпуса 7 выполнены проточки для установки в них колец уплотнительных 10.

Приспособление 1 дополнительно содержит набор колец проставочных 9 для фиксации меры 2, выполненных в виде полых цилиндров.

Крышка прижимная 8 может быть выполнена в виде полого цилиндра с фланцем. Корпус 7 и крышка 8 могут быть выполнены из стали, алюминия или пластика, армированного металлическими втулками, с резьбовыми отверстиями 13 для установки крепежных изделий 14.

1. Способ поверки ультразвукового дефектоскопа для измерения толщины стенки трубопровода иммерсионным способом акустического контакта, включающий проверку работоспособности пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа с использованием компьютера, по результатам которой судят о работоспособности ультразвукового дефектоскопа, отличающийся тем, что:

проверку каждого из пьезоэлектрических ультразвуковых датчиков ультразвукового дефектоскопа осуществляют с использованием приспособления, выполненного со сквозной цилиндрической полостью, при этом в сквозную цилиндрическую полость устанавливают меру и пьезоэлектрический ультразвуковой датчик с обеспечением их фиксации в приспособлении, заполняют жидкостью пространство между линзой пьезоэлектрического ультразвукового датчика и мерой и осуществляют проверку работоспособности пьезоэлектрического ультразвукового датчика.

2. Приспособление для поверки ультразвукового дефектоскопа для измерения толщины стенки трубопровода иммерсионным способом акустического контакта по п. 1, включающее корпус со сквозной цилиндрической полостью, выполненный с возможностью установки меры в сквозную цилиндрическую полость с одного торца корпуса и пьезоэлектрического ультразвукового датчика с другого торца корпуса, крышку прижимную с отверстиями для крепления к корпусу, кольца уплотнительные для обеспечения фиксации меры и пьезоэлектрического ультразвукового датчика в сквозной цилиндрической полости корпуса, при этом в корпусе выполнены технологические отверстия для заполнения сквозной цилиндрической полости жидкостью, а на внутренних стенках корпуса выполнены проточки для установки в них колец уплотнительных.

3. Приспособление по п. 2, отличающееся тем, что корпус выполнен цилиндрической формы.

4. Приспособление по п. 2, отличающееся тем, что корпус со стороны торца, в который устанавливают меру, имеет резьбовые отверстия для крепления крышки прижимной к корпусу посредством крепежных изделий.

5. Приспособление по п. 2, отличающееся тем, что дополнительно содержит набор колец проставочных для фиксации меры, выполненных в виде полых цилиндров.

6. Приспособление по п. 2, отличающееся тем, что крышка прижимная выполнена в виде полого цилиндра с фланцем.

7. Приспособление по п. 2, отличающееся тем, что корпус и крышка прижимная выполнены из стали.

8. Приспособление по п. 2, отличающееся тем, что корпус и крышка прижимная выполнены из алюминия.

9. Приспособление по п. 2, отличающееся тем, что корпус и крышка прижимная выполнены из пластика, армированного металлическими втулками, с резьбовыми отверстиями для установки крепежных изделий.



 

Похожие патенты:

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещены микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием.

Изобретение относится к области анализа газовых и воздушных сред. Раскрыт химический сенсор на основе гидроксиапатита, изготовленный из пьезокварцевого резонатора ОАВ-типа с серебряными электродами с частотой колебаний 8-30 МГц, на электроды которого наносят методом УЗ-суспензирования ацетоновые взвеси нанодисперсного гидроксиапатита (Cа5(PO4)3OH) так, чтобы после удаления растворителя путем высушивания при температуре 50 °С в течение 20 минут масса фазы составляла 2-4 мкг.

Изобретение относится к технологии производства нитратов целлюлозы (НЦ), а именно к оценке качества промышленного измельчения пироксилинов на различных измельчительных аппаратах.

Использование: для ультразвуковой дефектоскопии рельсов. Сущность изобретения заключается в том, что система ультразвуковой дефектоскопии рельсов включает в себя, по меньшей мере, один ультразвуковой излучатель-приемник, установленный на держателе для присоединения к раме транспортного средства для проведения дефектоскопии рельсов.

Изобретения могут быть использованы в системах (100) водяного охлаждения с открытой циркуляцией воды для борьбы с образованием отложений. Устройство включает основную часть (1) и вспомогательную часть (2), внутри которых перемещается вода (5), при этом вспомогательная часть (2) выполнена в виде обходной линии.

Устройство (308) сконфигурировано для исследования пульсирующего потока для получения на основе исследуемого потока спектральных характеристик и для определения на основе полученных характеристик, какой один или более сердечных циклов следует выбрать в качестве репрезентативных для исследуемого потока.

Использование: для измерения акустического импеданса среды. Сущность изобретения заключается в том, что выполняют поочередное погружение акустического блока, выполненного в виде пьезопластины, возбуждающей колебания, в исследуемую и эталонную среды, расчет продольного и сдвигового акустических импедансов на основе численных значений коэффициентов для эталонной и исследуемой сред.

Использование: для акустического импедансного метода неразрушающего контроля многослойных материалов и изделий. Сущность изобретения заключается в том, что регулируемый совмещенный преобразователь импедансного дефектоскопа содержит корпус регулируемого совмещенного преобразователя, контактный элемент, контактирующий с контролируемым объектом, излучающий пьезоэлемент с уравновешивающей массой и приемный пьезоэлемент.
Изобретение относится к сфере космических исследований и технологий и может быть использовано для экспериментальной отработки технологии улучшения условий атмосферной видимости при посадке спускаемого аппарата на поверхность Марса.

Использование: для диагностики многослойных изделий из композиционных материалов. Сущность изобретения заключается в том, что для имитации дефекта непроклея в многослойных конструкциях, состоящих из сотового заполнителя и обшивок, выполняют занижение смежной грани или граней ячеек сотового заполнителя с созданием замкнутого контура, периметр которого образован гранями целых ячеек, и склеивание его с обшивками посредством клеевой пленки, предварительно удалив ее по периметру, образованному гранями целых ячеек.
Наверх