Магнезиальный тампонажный материал

Изобретение относится к нефтегазодобывающей промышленности, а именно к магнезиальным тампонажным материалам, и может быть использовано при проведении ремонтно-изоляционных работ для изоляции пластовых вод, а также для устранения негерметичности эксплуатационной колонны и цементного кольца при проведении ремонтно-восстановительных работ в нефтяных, газовых и газоконденсатных скважинах с максимальной температурой до 90°C. Магнезиальный тампонажный материал, содержащий порошок магнезитовый каустический, хлористый магний, воду и добавки, отличающийся тем, что в качестве добавок содержит серпентинитомагнезит и оксиэтилидендифосфоновую кислоту - ОЭДФК, а в качестве хлористого магния и воды - природный рассол бишофита плотностью 1300 кг/м3 при следующем соотношении ингредиентов, мас. %: порошок магнезитовый каустический 26,76-37,50, серпентинитомагнезит молотый 8,92-12,50, ОЭДФК 0,00-1,50, природный рассол бишофита плотностью 1300 кг/м3 остальное. Технический результат - получение тампонажного материала с регулируемыми сроками загустевания и схватывания и формирование цементного камня высокой прочности и высоким коэффициентом водостойкости. 2 табл.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к магнезиальным тампонажным материалам, и может быть использовано при проведении ремонтно-изоляционных работ для изоляции пластовых вод, а также для устранения негерметичности эксплуатационной колонны и цементного кольца при проведении ремонтно-восстановительных работ в нефтяных, газовых и газоконденсатных скважинах с максимальной температурой до 90°С.

Магнезиальное вяжущее и материалы на его основе обладают высокими прочностными характеристиками, приближающимися по своим значениям к природным материалам. Кроме того они имеет аномально высокие показатели по прочности на растяжение и изгиб, что связано с особенностями затвердевшего магнезита, в котором присутствуют кристаллизующиеся в виде волокон оксихлориды магния. Волокнистые кристаллы не только повышают прочность цемента, но и действуют как армирующий материал.

К достоинствам магнезиального вяжущего следует также отнести быстрый темп нарастания прочности. Обычно в возрасте одних суток прочность затвердевшего материала достигает 30-50%, а в возрасте 7 суток 60-90% от максимального значения.

Особенностью магнезиального вяжущего является то, что для его затворения используются растворы солей магния. Чаще всего для этой цели применяют водный раствор MgCl2 (обычно в виде минерала бишофита MgCl2⋅6H2O).

К основным недостаткам, сдерживающим их широкое промышленное внедрение, в том числе и в нефтегазодобывающей области, можно отнести низкую водостойкость магнезиального камня и короткое время потери подвижности растворов, особенно с повышением температуры.

Известен тампонажный материал на основе магнезиального вяжущего (патент РФ №2295554, опубл. 03.02.2006 г.), применяемый при цементировании межколонного пространства и обсадных колонн в нефтяных и газовых скважинах в температурном диапазоне 10-30°С.

Недостатком данного материала является его ограниченное применение, поскольку он предназначен для применения только в интервалах безводной части вскрытого разреза скважин в температурном диапазоне 10-30°С.

Известен также тампонажный материал, содержащий следующие ингредиенты, мас. %: каустический магнезит 48,54-53,24; хлорид магния 23,97-27,89; щелок черный моносульфитный 2,44-4,89; вода - остальное (патент РФ №2060360, опубл. 10.03.1994 г.).

Однако для данного тампонажного материала не обозначены сроки загустевания и схватывания для различных температурных условий, что затрудняет его практическое использование.

Известен тампонажный материал, содержащий магнезит каустический, хлористый магний, бентонитовую глину, тетраборат натрия и воду при следующем соотношении компонентов, мас. %: каустический магнезит 30,0-40,0, бентонитовая глина 0,1-8,0, тетраборат натрия 0,1-0,5, хлористый магний 15,0-36,0, вода - остальное. (RU №2460755, опубл. 20.10.10 г.).

Недостатками указанного состава являются узкий температурный диапазон использования до 60°С и отсутствие данных о коэффициенте водостойкости составов.

Наиболее близким по технической сущности и достигаемому результату (RU 2374293, опубл. 04.07.2008 г.), принятому за прототип, является магнезиальный тампонажный материал на основе порошка магнезитового каустического, хлористого магния, воды и добавок, обеспечивающих прочность, водостойкость и регулируемые сроки схватывания составу при следующем соотношении ингредиентов, мас. %:

- Порошок магнезитовый каустический 19,98-26,29
- Хлористый магний 17,63-19,29
- Суперфосфат двойной 1,11-1,18
- Триполифосфат натрия 0,61-0,91
- Борная кислота 0,40-0,73
- Палыгорскитовый глинопорошок 3,03-4,54
- Микрокремнезем конденсированный 11,12-11,81
- Вода остальное

Для приготовления тампонажного материала по прототипу в качестве жидкости затворения используют раствор хлорида магния в технической воде.

Недостатками являются многокомпанентность состава, что усложняет его приготовление на промысле и ограничение по температуре использования до 55°С.

Задача изобретения - расширение температурного диапазона применимости магнезиальных тампонажных материалов до 90°С, количественная оптимизация компонентов состава с сохранением необходимой прочности, водостойкости и регулируемых сроков схватывания, обеспечение технологичности приготовления в промысловых условиях.

Технический результат, достигаемый предполагаемым изобретением, заключается в получении магнезиального тампонажного материала, раствор которого характеризуется седиментационной устойчивостью, пониженными значениями плотности, приемлемыми сроками загустевания и схватывания в температурном диапазоне от 20°С до 90°С, а формирующийся цементный камень имеет высокие показатели прочности и коэффициента водостойкости.

Указанный технический результат достигается за счет того, что известный тампонажный материал, содержащий порошок магнезитовый каустический, хлористый магний, воду и добавки, содержит в качестве добавок серпентинитомагнезит и оксиэтилидендифосфоновую кислоту (ОЭДФК), а в качестве хлористого магния и воды - природный рассол бишофита плотностью 1300 кг/м3 при следующем соотношении ингредиентов, мас. %:

- Порошок магнезитовый каустический 26,76-37,50
- Серпентинитомагнезит 8,92-12,50
- ОЭДФК 0,00-1,50
- Природный рассол бишофита
плотностью 1300 кг/м3 остальное.

Анализ известных решений, отобранных в процессе поиска, показал, что в науке и технике нет объекта, обладающего заявленной совокупностью признаков и наличием вышеуказанных свойств и преимуществ, что дает основания сделать вывод о том, что предлагаемый состав обладает критериями "новизна" и "изобретательский уровень".

Достижение указанного технического результата обеспечивается за счет того, что добавка серпентинитомагнезита, в состав которого входит не менее 30% диоксида кремния (кремнезема), в сочетании с оксидом магния и хлоридом магния обеспечивает более высокую механическую прочность и высокий коэффициент водостойкости. Наличие активного тонкомолотого силикатного компонента, обладающего повышенным химическим сродством по отношению к продуктам твердения магнезиального вяжущего, обеспечивает, по-видимому, химическое взаимодействие пентаоксихлорида и триоксихлорида магния с активной кремнеземистой составляющей серпентинитомагнезита, что ведет к росту механической прочности и водостойкости магнезиальных вяжущих.

Добавка оксиэтилидендифосфоновой кислоты, являющейся фосфорорганическим комплексоном хелатного типа, препятствует зародышеобразованию в пересыщенных растворах, образуя труднорастворимые комплексные соединения на поверхности активных зерен магнезиального цемента и эффективно тормозит процесс роста кристаллов, замедляя скорость схватывания и твердения магнезиального тампонажного вяжущего.

Кроме того, с целью оптимизации количества компонентов состава и обеспечения технологичности процесса приготовления растворов на промысле, порошки каустического магнезита и серпентинитомагнезита смешивают на производственной базе в соотношении 3:1 мас. %, соответственно, и поставляют на промысел однокомпанентным порошком, а вместо кристаллического хлористого магния и технической воды для приготовления жидкости затворения, используют природный раствор хлористого магния в воде - природный рассол бишофита с плотностью 1300 кг/м3, который поставляют на промысел готовым к использованию.

Свойства тампонажного раствора регулируют соотношением жидкости затворения (рассола бишофита) к сухой смеси порошков в диапазоне 1,0-1,8, при этом образуются растворы магнезиального тампонажного материала плотностью 1750-1570 кг/м3.

Для приготовления предлагаемого магнезиального тампонажного материала используют следующие инградиенты:

- Порошок магнезитовый каустический по ГОСТ 1216-87 или по ТТ 1522-001-23879459-2013;

- Серпентинитомагнезит Халиловского месторождения по ТУ 5716-001-46754744-2005, средний химический состав которого составляет, мас. %: SiO2 не менее 30; MgO не менее 35; СаО не более 2; Fe2O3 не более 5; прочие примеси не более 18;

- Оксиэтилидендифосфоновая кислота (ОЭДФК) по ТУ 2439-363-05763441-2002;

- Водный раствор магния хлористого (рассол природного бишофита) по ТУ 2152-001-46014250-2011.

Для приготовления заявляемого магнезиального тампонажного материала в лабораторных условиях использовали порошок каустический магнезитовый марки ПМК-75, выпускаемый ООО «Глинозем», г. Новотроицк по ТТ 1522-001-23879459-2013. Он является целевым продуктом, получаемым обжигом аморфного (скрытокристаллического) магнезита Халиловского месторождения и характеризуется постоянством физико-химических свойств.

Тщательно смешанные порошки каустического магнезита и серпентинитомагнезита в соотношении 3:1 мас. %, соответственно, затворяли природным рассолом бишофита плотностью 1300 кг/м3, в котором предварительно растворяли регулятор сроков загустевания и схватывания - ОЭДФК.

Увеличение соотношения раствор затворения - сухие вещества более 1,8 приводит к потере седиментационной устойчивости раствора и к снижению прочности образующегося цементного камня, а уменьшение ниже 1,0 - к увеличению плотности и сокращению сроков загустевания раствора.

По описанному способу были приготовлены 11 составов предлагаемого тампонажного материала с различным соотношением инградиентов.

Приготовленные составы прошли лабораторные испытания. В процессе проведения испытаний полученного материала определяли значения показателей технологических характеристик раствора - плотность, растекаемость, коэффициент водоотделения, время загустевания и схватывания в диапазоне температур 20-90°С, а также прочность на сжатие сформировавшегося цементного камня и коэффициент водостойкости. Коэффициент водостойкости определяли как отношение прочности на сжатие цементного камня после выдержки в пластовой сеноманской воде в течение 30 суток к его начальной прочности.

Данные о содержании ингредиентов и свойствах известного и предлагаемых тампонажных материалов приведены в таблицах 1 и 2. Как видно из данных таблиц 1 и 2, известные тампонажные материалы (прототип) имеют короткие сроки загустевания и схватывания уже при 60°С. Предлагаемый тампонажный материал характеризуется приемлемыми сроками загустевания и схватывания в диапазоне температур 20-90°C, сохраняя при этом прочностные характеристики и водостойкость образующего цементного камня.

Выход за нижний предел содержания компонентов в тампонажном материале приводит к потере его стабильности, а также к снижению прочности цементного камня (пример 13 таблиц 1, 2).

Выход за верхний предел компонентов в тампонажном материале приводит к увеличению плотности раствора и сокращению сроков загустевания и схватывания, (пример 12 таблиц 1, 2).

Преимуществами заявляемого магнезиального тампонажного материала являются приемлемые сроки загустевания и схватывания в температурном диапазоне 20-90°С, образование прочного, стойкого к пластовым флюидам цементного камня, а также упрощенная схема приготовления его на промысле за счет снижения количества компонентов состава.

Использование предлагаемого состава позволит значительно расширить область применения магнезиальных тампонажных материалов при проведении ремонтно-изоляционных и ремонтно-восстановительных работ в нефтяных, газовых и газоконденсатных скважинах.

Магнезиальный тампонажный материал, содержащий порошок магнезитовый каустический, хлористый магний, воду и добавки, отличающийся тем, что в качестве добавок содержит серпентинитомагнезит и оксиэтилидендифосфоновую кислоту (ОЭДФК), а в качестве хлористого магния и воды - природный рассол бишофита плотностью 1300 кг/м3 при следующем соотношении ингредиентов, мас. %:

Порошок магнезитовый каустический 26,76-37,50
Серпентинитомагнезит молотый 8,92-12,50
ОЭДФК 0,00-1,50
Природный рассол бишофита
плотностью 1300 кг/м3 остальное



 

Похожие патенты:

Изобретение относится к области нефтедобычи, в частности к составам для проведения физико-химической обработки в ходе эксплуатации и освоения скважин, и может быть использовано для интенсификации притока нефти из пласта за счет химического воздействия, в т.ч.

Изобретение относится к использованию закупоривающих агентов и смесей, их содержащих, для интенсификации добычи углеводородов из подземных пластов. Способ интенсификации добычи углеводородов из подземного пласта, через который проходит ствол скважины, включающий стадии, на которых заливают смесь, содержащую растворимый закупоривающий агент и проппант, в высокопроницаемую зону трещины внутри подземного пласта вблизи ствола скважины, расклинивают в открытом состоянии по меньшей мере часть высокопроницаемой зоны проппантом смеси и блокируют по меньшей мере часть высокопроницаемой зоны закупоривающим агентом, закачивают флюид в подземный пласт и в зону пласта с более низкой проницаемостью, расположенную дальше от ствола скважины, растворяют закупоривающий агент, блокирующий по меньшей мере часть высокопроницаемой зоны вблизи ствола скважины, и добывают углеводороды из высокопроницаемой зоны и зоны с более низкой проницаемостью.

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин в условиях воздействия аномально высоких пластовых давлений и температур до 150°С.
Настоящее изобретение относится к способу извлечения битума. Способ включает стадию обработки нефтеносных песков простым гликолевым эфиром, блокированным пропиленоксидом на концах цепи.

Изобретение относится к области строительства скважин на нефть и газ, а именно к способам получения реагентов для обработки буровых растворов. Способ получения крахмального реагента для бурения заключается в модифицировании нативного крахмала.

Изобретение относится к нефтегазовой отрасли. В способе очистки призабойной зоны пласта (ПЗП) от глинистых образований удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, после чего закачивают в ПЗП очищающий реагент на водной основе и выдерживают упомянутый реагент до разрушения плотной части глинистых образований.

Изобретение относится к композициям расклинивающего агента, способам уплотнения пласта и добычи жидкостей из подземного пласта. Предложенные композиции включают (1) агрегирующие композиции, способные образовывать деформируемые частичные или полные покрытия на поверхностях пласта, поверхностях пластовых частиц, поверхностях твердой фазы скважинной жидкости и/или поверхностях расклинивающих агентов, где указанные покрытия увеличивают склонность к агрегации и/или агломерации частиц и поверхностей таким образом, что получают кластеры или столбы частиц, имеющие деформируемые покрытия, и (2) композиции, стабилизирующие и/или усиливающие агрегацию, способные изменять свойства покрытых кластеров или столбов таким образом, что получают сцементированные, стабилизированные и/или упрочненные кластеры или столбы.

Настоящее изобретение относится к обработке подземного пласта его гидравлическим разрывом – гидроразрывом. Композиция гидроразрыва пласта, содержащая супервпитывающий полимер, переводимый в расширенное состояние и выполненный с возможностью разрушения в ответ на возникновение условия разрушения, множество частиц проппанта, размещенных в супервпитывающем полимере до высвобождения множества частиц проппанта из него в ответ на его разрушение, средство обработки скважины, содержащее ингибитор осадкообразований, трейсер, рН-буферное средство или их комбинацию, и флюид для перевода супервпитывающего полимера в расширенное состояние, где ингибитор осадкообразований содержит композицию, содержащую карбоксильную, сульфоновую или фосфоновую кислоту, полимер, содержащий карбоксильную, сульфоновую или фосфоновую группу, или их комбинацию, трейсер содержит фторированную бензойную кислоту, перфторированный углеводород, спирт, кетон, органическую кислоту, галогенизированную композицию или их комбинацию и рН-буферное средство представляет собой щелочь или щелочно-земельную соль карбоната, цитрата, глюконата, фосфата или тартрата, оксид щелочно-земельного металла, органический полиэлектролит или их комбинацию.

Изобретение относится к способу добычи нефти из пласта. Способ добычи нефти из нефтеносного пласта, включающий смешивание анионогенного поверхностно-активного вещества - АПАВ, воды, полимера, бикарбоната щелочного металла и жидкого аммиака с образованием композиции для извлечения нефти, имеющей рН менее 10, измеренный при 25°C, введение полученной композиции в нефтеносный пласт, контактирование ее с нефтью в нефтеносном пласте и добычу нефти из нефтеносного пласта после введения указанной композиции.

Изобретение относится к способам предотвращения обрастания металлических труб, трубопровода или емкости в ходе добычи флюидов из подземного пласта. Предложен способ подавления вызываемого загрязнениями обрастания металлических труб, трубопровода или емкости в подземном пласте или отводимых из подземного пласта или подводимых к нему, при этом способ включает: (а) нанесение на оксид металла на поверхности металлических труб, трубопровода или емкости агента для модификации поверхности, который содержит якорный фрагмент и гидрофобный хвост, причем якорный фрагмент представляет собой металл или производное органической фосфорсодержащей кислоты, а гидрофобный хвост представляет собой кремнийорганический материал, фторированный углеводород или оба компонента – кремнийорганический материал и фторированный углеводород, (б) присоединение якорного фрагмента, по крайней мере, к части оксида металла, и (в) подавление обрастания компонентами флюида труб, трубопровода или емкости за счет воздействия гидрофобного хвоста на флюид.

Изобретение относится к области строительных материалов и может быть использовано для укрепления грунтов оснований дорог и фундаментов, жилых и гражданских сооружений в условиях переувлажнения и пучинообразования, для получения грунтобетона, пригодного для домостроения.

Изобретение относится к составам декоративно-облицовочных материалов, которые могут быть использованы в строительстве. Шихта для получения декоративно-облицовочного материала включает измельченные до прохождения через сито 008 компоненты, мас.

Сырьевая смесь для изготовления отделочных строительных материалов. .

Изобретение относится к составу магнезиального вяжущего строительного назначения из магнезита или доломита с повышенной водостойкостью и нулевыми деформациями при твердении и может быть использовано при производстве отдельных работ в жилых, административных, производственных зданиях и устройстве декоративных и специальных полов.

Изобретение относится к фасадным отделочным композиционным материалам, применяемым для обработки и укрепления внутренних и наружных поверхностей стен промышленных и гражданских сооружений.

Изобретение относится к области цементирования обсадных колонн в нефтяных, газовых и газоконденсатных скважинах, вскрывающих солевые породы и пласты с полиминеральными водами высокой минерализации.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства.

Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных и конструкционных бетонов, предназначенных для жилищного строительства.

Изобретение относится к производству строительных материалов, а именно к приготовлению сухих смесей, и может быть использовано в строительстве - монолитном домостроении для изготовления стеновых конструкций методом мокрого торкретирования.
Наверх