Устройство измерения шарнирного момента отклоняемой поверхности

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения шарнирных моментов, действующих на органы управления и взлетно-посадочную механизацию аэродинамических моделей летательных аппаратов в потоке аэродинамической трубы. Устройство содержит механизм управления отклоняемой поверхностью, построенные по двухбалочной схеме тензовесы, включающие измерительную головку и хвостовик. Тензовесы установлены на отклоняемой поверхности, измерительная головка тензовесов жестко прикреплена к отклоняемой поверхности и расположена на ее оси вращения. Хвостовик тензовесов соединен с механизмом управления отклоняемой поверхностью посредством вилки. Технический результат заключается в возможности измерения шарнирного момента на отклоняемых поверхностях аэродинамических моделей при непрерывном управлении отклонением в аэродинамическом эксперименте. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения шарнирных моментов, действующих на органы управления и взлетно-посадочную механизацию аэродинамических моделей летательных аппаратов в потоке аэродинамической трубы.

Для измерения шарнирных моментов, действующих на модели с различными углами установок органов управления (элеронов, интерцепторов, воздушных тормозов и других отклоняемых элементов моделей летательных аппаратов в потоке аэродинамической трубы применяются однокомпонентные тензовесы. Данная технология выполнения эксперимента описана в Руководстве для конструкторов (РДК-43). Том 1. Аэродинамика. Гидромеханика. Прочность. Издательство Бюро новой техники, 1943 г.Однокомпонентные тензовесы для измерения шарнирного момента, действующего на органы управления и взлетно-посадочную механизацию аэродинамических моделей в целом описаны в целом ряде изобретений: а.с. SU №142159 Аэродинамические весы МПК G01M 9/06 опубликовано 01.01.1961 г.;

а.с. SU №147823 Однокомпонентные аэродинамические весы МПК GO 1G21/10 опубликовано 01.01.1962 г.;

а.с. SU №152744 Тензодинамометрический прибор МПК G01M 9/06 G0L5/16 опубликовано 01.01.1963 г.;

Основной недостаток представленных тензовесов, состоит в том, что данные изделия из-за их конструктивных особенностей невозможно разместить внутри отклоняемой поверхности (габариты не позволяют).

Прототипом является устройство измерения шарнирного момента отклоняемой поверхности включающее в себя однокомпонентные внутримодельные тензовесы (см. рис. 7 стр. 17, статья А.В. Левицкого, С.Я. Севостьянова «Система дистанционного управления отклоняемыми поверхностями аэродинамической модели самолета для трубных испытаний», «Труды ЦАГИ», выпуск 2719, Издательский отдел ЦАГИ, Москва, 2013 г.) для измерения шарнирного момента, действующего на органы управления закрепленные на оси вращения отклоняемого органа управления и полуось (фиг. 1). На фигуре 1 показаны однокомпонентные тензовесы 3, закрепленные на полуоси вращения 4 отклоняемого органа управления 2. Хвостовик 8 закреплен на консоли крыла, измерительная головка закреплена на оси вращения 4 отклоняемого органа управления, полуось вращения 4 отклоняемого органа управления установлена в блок подшипников 5, закрепленный в платформе 6, платформа закреплена на крыле 1. Установку на требуемый угол отклонения производят ослаблением винтов головки 7 тензовесов 3 и поворотом отклоняемого органа управления 2, совместно с жестко прикрепленной к нему полуосью вращения 4 отклоняемого органа управления. Нагрузка, действующая на орган управления 2 передается через полуось 4, закрепленную в головке тензовесов 7 на элемент упругой балки 9, с наклеенными тензорезисторами (не показаны) преобразующими деформацию упругой балки в электрические сигналы.

Основной недостаток данного устройства измерения шарнирного момента отклоняемой поверхности, состоит в том, что для проведения цикла испытаний модели с различными углами установок органов управления приходиться неоднократно проводить целый ряд вспомогательных работ по подготовке трубы к каждому отдельному эксперименту (наддув, охлаждение, вакуумирование, сброс давления и т.д.), в котором устанавливается одно положение (вариант установки) рулевой поверхности из программы испытаний, испытания прерываются, необходимая перестановка тензовесов с исследуемой рулевой поверхностью на требуемый угол приводит к потерям времени и существенному затягиванию эксперимента.

Задачей и техническим результатом предлагаемого изобретения является включение тензометрических весов в состав конструкции отклоняемой поверхности как поворотной оси, что дает возможность измерения шарнирного момента на отклоняемых поверхностях аэродинамических моделей при непрерывном управлении отклонением в аэродинамическом эксперименте.

Решение задачи и технический результат достигаются тем, что в устройстве измерения шарнирного момента отклоняемой поверхности, содержащем механизм управления отклоняемой поверхностью, построенные по двухбалочной схеме тензовесы, включающие измерительную головку и хвостовик, тензовесы установлены на отклоняемой поверхности, измерительная головка тензовесов жестко прикреплена к отклоняемой поверхности и расположена на ее оси вращения, а хвостовик тензовесов соединен с механизмом управления отклоняемой поверхностью. Хвостовик тензовесов, соединен с механизмом управления отклоняемой поверхностью посредством вилки.

На фигуре 1 показаны однокомпонентные тензовесы, закрепленные на полуоси вращения отклоняемого органа управления.

На фигуре 2 показано устройство измерения шарнирного момента отклоняемой поверхности: компактные однокомпонентные тензовесы, обладающих высокой жесткостью, и механизм управления отклоняемой поверхностью.

На фигуре 3 показаны отклоняемый орган управления и закрепленные на его оси подвижные однокомпонентные тензовесы.

На фигуре 4 и 5 показаны подвижные однокомпонентные компактные тензовесы, предназначенные для измерения шарнирного момента Mz, действующего на орган управления аэродинамической модели и схема размещения тензорезисторов, расположенных на упругих балках тензовесов.

На фигуре 6 показана схема электрических соединений подвижных однокомпонентных тензовесов для измерения шарнирного момента Mz.

Устройство измерения шарнирного момента отклоняемой поверхности состоит из компактных однокомпонентных тензовесов, обладающих высокой жесткостью и механизма управления отклоняемой поверхностью. Подвижные тензометрические весы 3 конструктивно состоят из следующих элементов: измерительной головки 7 и хвостовика 8, связанных между собой системой упруго-чувствительных балок 9, на поверхность двух упруго-чувствительных балок 9 тензовесов 3 наклеены четыре электрических тензорезистора 10 (см. фиг 3, 4, 5). Деформации чувствительных элементов (балок) 9 и наклеенных на них тензорезисторов 10 преобразуются в электрический сигнал, генерируемый электрическими тензорезисторами 10, по которому отслеживается уровень деформаций балок 9. Подвижные однокомпонентные компактные тензовесы 3 (см. фиг. 3) размещены на оси вращения 17 органа управления 2. Крепление тензовесов 3 на органе управления 2 осуществляется за счет конусного соединения между тензовесами 3 и кронштейном 15, затяжка конического соединения производится посредством винта 16. Петли 11 с подшипниками 5 закреплены на консоли крыла, полуоси вращения органа управления 4 совпадают с осями подшипников 5 петель 11 (см. фиг. 2). Измерительная головка 7 тензовесов 3 жестко закреплена на оси вращения рулевой поверхности 17, совпадающая с полуосями вращения 4, орган управления 2 поворачивается в петлях 11, закрепленных на консоли крыла 1 аэродинамической модели, хвостовик же тензовесов 8, через вилку 12 крепится к передаточной тяге 13, которая, в свою очередь, связана с управляющим приводом 14. Управляющий привод 14 создает необходимые усилия для отклонения исследуемой аэродинамической поверхности 2 и передает необходимые усилия через передаточную тягу 13 на вилку 12 жестко закрепленную на хвостовике 8 тензометрических весов 3. Исследуемая аэродинамическая поверхность 2 поворачивается на требуемый угол, согласно программе испытаний (см. фиг. 2, 3). Принцип действия подвижных компактных тензовесов иллюстрируется фигурами 3-6. Под действием аэродинамических нагрузок упруго-чувствительные балки 9 тензовесов 3 деформируются. Тензорезисторы 10 (R1-R4), деформируясь вместе с упругими элементами, изменяют свое сопротивление (увеличивают при растяжении и уменьшают при сжатии). На фигурах 4, 5 показана схема наклейки тензорезисторов 10 на балки 9 тензовесов 3.

Измерение шарнирного момента Mz осуществляется относительно моментной точки тензовесов, расположенной в середине упругих балок, при помощи тензорезисторов 10 - Rl, R2, R3, R4 (см. фиг. 4-6), расположенных на внешних поверхностях измерительных балок 9. Измерительная аппаратура по изменению сопротивления тензорезисторов 10 позволяют определить деформации упругих элементов 9, а зная величину деформаций, можно определить шарнирный момент действующий на орган управления 2.

Разработанное устройство измерения шарнирного момента на отклоняемой поверхности позволяет измерять шарнирный момент, действующий на отклоняемую поверхность в любой момент времени при повороте отклоняемой поверхности на требуемый угол согласно программе испытаний

Введение в конструкцию аэродинамических моделей устройства измерения шарнирного момента отклоняемой поверхности может дать существенное сокращение временных затрат на проведение исследований. Одновременно с сокращением продолжительности эксперимента можно получить значительную экономию средств, затрачиваемых на испытания.

1. Устройство измерения шарнирного момента отклоняемой поверхности, содержащее механизм управления отклоняемой поверхностью, построенные по двухбалочной схеме тензовесы, включающие измерительную головку и хвостовик, отличающееся тем, что тензовесы установлены на отклоняемой поверхности, измерительная головка тензовесов жестко прикреплена к отклоняемой поверхности и расположена на ее оси вращения, а хвостовик тензовесов соединен с механизмом управления отклоняемой поверхностью.

2. Устройство измерения шарнирного момента отклоняемой поверхности по п. 1, отличающееся тем, что хвостовик тензовесов соединен с механизмом управления отклоняемой поверхностью посредством вилки.



 

Похожие патенты:

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на головную часть обтекателя ракеты в наземных условиях. Предложен способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий зонный нагрев обтекателя контактным нагревателем в виде электропроводящих секторов, соединенных в электрическую цепь последовательно, координаты которых заданы относительно вершины обтекателя и измерение температуры.
Изобретение относится к области тепловых испытаний летательных аппаратов и может быть использовано при наземных испытаниях антенных обтекателей ракет. Предложен способ управления нагревом при тепловых испытаниях антенных обтекателей ракет, включающий зонный нагрев поверхности обтекателя регулируемыми электрическими нагревателями и измерение в каждой зоне датчиками теплового потока величины подводимого к обтекателю теплового потока.
Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель летательного аппарата в наземных условиях. Заявленный способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов включает нагрев наружной поверхности обтекателя и измерение температуры.
Изобретение относится к области сертификационных испытаний авиационной техники и, в частности, к технологии имитации атмосферного облака, а также имитации перемежающейся облачности при испытаниях противообледенительных систем основных узлов летательного аппарата и его двигателя на наземных стендах.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах для формирования градиента скорости воздушного потока.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к испытательной технике, в частности к испытательным стендам для аэродинамических испытаний транспортных средств, а именно к покрытиям стендов.

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы.
Наверх