Устройство для определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство включает в себя источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения источника в пучок ПЭВ, образец, имеющий плоскую грань и способный направлять ПЭВ, элемент для разделения исходного пучка ПЭВ на два вторичных пучка, два фокусирующих объектива и два фотоприемника, размещенных в фокусах этих объективов и сопряженных с измерительными приборами. Элемент для разделения пучка ПЭВ выполнен в виде плоской светоделительной пластинки с известными коэффициентами отражения и пропускания данной ПЭВ, ориентированной перпендикулярно грани образца, примыкающей к ней и пересекающей исходный пучок ПЭВ. Технический результат заключается в повышении точности и упрощении процедуры измерений. 1 ил.

 

Изобретение относится к области исследования поверхности металлов и полупроводников оптическими методами, а именно - к определению спектров поглощения, как самой поверхности, так и ее переходного слоя путем измерения коэффициента затухания поверхностных электромагнитных волн (ПЭВ), направляемых этой поверхностью в инфракрасной (ИК) и терагерцовой (ТГц) областях спектра, и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в контрольно-измерительной технике нанотехнологий, в лазерной и интегральной оптике.

ПЭВ широко применяют в абсорбционной спектроскопии поверхности твердого тела и ее переходного слоя [1]. Метод абсорбционной ПЭВ-спектроскопии используют, в основном, в средней и дальней областях ИК диапазона, где длина распространения ПЭВ достигает 1000λ, (здесь λ - длина волны излучения в свободном пространстве) и может быть непосредственно измерена. Причем, так как расстояние взаимодействия зондирующего излучения с поверхностью при преобразовании его в ПЭВ многократно возрастает (по сравнению с отражательными методами изучения поверхности), то чувствительность метода абсорбционной ПЭВ-спектроскопии, соответственно, на много выше чувствительности иных абсорбционно-оптических методов контроля поверхности в ИК-диапазоне.

Для определения коэффициента затухания ПЭВ α в РЖ-диапазоне измеряют длину распространения ПЭВ L - величину обратную α и равную расстоянию, на котором интенсивность поля ПЭВ уменьшается в е раз.

Известно болометрическое устройство для определения коэффициента затухания ПЭВ за время одного импульса, содержащее импульсный источник р-поляризованного монохроматического излучения, элемент преобразования излучения источника в пучок ПЭВ, образец в виде узкого прозрачного металлического слоя на плоской подложке, снабженного двумя электродами, последовательно подключенными к слою после элемента преобразования на расстоянии не менее чем на порядок превышающем ширину слоя, источник постоянного тока, усилитель и измеритель электрического напряжения [2]. Основными недостатками такого устройства являются: 1) ограниченность класса ПЭВ, поддающихся контролю; 2) низкая точность измерений, обусловленная квазиадиабатичностью процесса передачи энергии ПЭВ образцу.

Известно устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра, содержащее перестраиваемый по частоте источник лазерного излучения, твердотельный образец с плоской поверхностью и исследуемым слоем на ней, элемент преобразования объемного излучения в ПЭВ и обратно, выполненный как одно целое в виде прозрачной плоскопараллельной пластины со скошенным торцом, причем пластина своей гранью, обращенной к образцу, расположена в поле ПЭВ параллельно поверхности образца на расстоянии не меньше 10λ от нее и имеет длину вдоль трека ПЭВ не менее длины распространения ПЭВ, фотоприемное устройство, выполненное в виде линейки фотодетекторов и размещенное на верхней грани пластины, и блок обработки результатов измерений [3]. Известное устройство имеет следующие недостатки: 1) наличие пластины в поле ПЭВ искажает ее поле и обуславливает дополнительные (радиационные) потери ПЭВ, искажая таким образом результат измерений; 2) пластина перекрывает доступ к исследуемой поверхности, что часто является неприемлемым.

Наиболее близким по технической сущности к заявляемому устройству является устройство для определения коэффициента затухания ПЭВ инфракрасного диапазона за время одного импульса излучения, содержащее источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения источника в пучок ПЭВ, образец, имеющий плоскую грань и способный направлять ПЭВ, элемент для разделения исходного пучка ПЭВ на два вторичных пучка, выполненный в виде уголкового зеркала, установленного на грани образца и ориентированного отражающими гранями перпендикулярно к ней, причем ребро этого зеркала, образованное отражающими гранями, расположено в плоскости падения, содержащей ось пучка излучения источника, два фокусирующих объектива и два фотоприемника, размещенных в фокусах этих объективов и сопряженных с измерительными приборами [4]. Основными недостатками такого устройства являются: 1) низкая точность измерений из-за небольшого соотношения сигнал/шум, что является следствием дифракции излучения источника на ребре зеркала, сопровождаемой порождением веера паразитных приповерхностных волн, засвечивающих фотоприемники [5]; 2) необходимость прецизионной юстировки устройства с целью достижения равенства интенсивностей вторичных пучков на отражающих гранях зеркала и поддержания его в процессе измерений.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности измерений и упрощение процедуры измерений.

Технический результат достигается тем, что в устройстве для определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения, содержащем источник коллимированного р-поляризованного монохроматического излучения, элемент преобразования излучения источника в пучок ПЭВ, образец, имеющий плоскую грань и способный направлять ПЭВ, элемент для разделения исходного пучка ПЭВ на два вторичных пучка, два фокусирующих объектива и два фотоприемника, размещенных в фокусах этих объективов и сопряженных с измерительными приборами, элемент для разделения пучка ПЭВ выполнен в виде плоской светоделительной пластинки с известным коэффициентом отражения и коэффициентом пропускания данной ПЭВ, ориентированной перпендикулярно грани образца, примыкающий к ней и пересекающей исходный пучок ПЭВ.

Повышение точности измерений достигается увеличением соотношения сигнал/шум, вследствие использования в качестве элемента для разделения исходного пучка ПЭВ плоской светоделительной пластинки вместо уголкового зеркала. Взаимодействие пучка ПЭВ с однородной пластинкой, пересекающей трек пучка, сопровождается порождением значительно меньшего количества паразитных приповерхностных волн, чем при его взаимодействии с ребром зеркала, сопрягающим его отражающие грани [6].

Упрощение процедуры измерений также является результатом использования светоделительной пластинки вместо уголкового зеркала, поскольку при этом исчезает необходимость прецизионной юстировки устройства с целью достижения равенства интенсивностей вторичных пучков и поддержания его в процессе измерений.

На Фиг. 1 приведена схема заявляемого устройства, где цифрами обозначены: 1 - источник коллимированного p-поляризованного монохроматического излучения; 2 - элемент преобразования излучения источника 1 в ПЭВ; 3 - плоская грань образца, способная направлять ПЭВ; 4 - плоская светоделительная пластинка с известным коэффициентом отражения и коэффициентом пропускания данной ПЭВ, ориентированная перпендикулярно грани 3, примыкающая к ней и пересекающая исходный пучок ПЭВ; 5 - фокусирующие объективы; 6 - фотоприемники, размещенные в фокусах объективов 5; 7 - измерительные приборы G1 и G2, подключенные к выходам приемников 6.

Заявляемое устройство работает следующим образом. Излучение источника 1 направляют на элемент 2, преобразующий излучение в параллельный пучок лучей ПЭВ на плоской грани 3 образца. Сформированный пучок ПЭВ достигает пластинки 4, разделяющей его на два вторичных пучка ПЭВ, энергия которых определяется коэффициентом отражения R и коэффициентом пропускания Т пластинки 4 для данной ПЭВ. Вторичные пучки распространяются по различным трекам и, пройдя соответствующие расстояния x1 и х2, достигают ребер грани 3. В результате дифракции на них 3 вторичные пучки ПЭВ практически со 100% эффективностью преобразуются в узконаправленное (в плоскости, перпендикулярной грани 4) излучение [7], направляемое объективами 5 на соответствующие приемники 6. Сигналы на выходах приемников 6, пропорциональные энергиям вторичных пучков ПЭВ на ребрах грани 3, измеряются приборами 7 и описываются выражениями: I1=Io⋅R⋅ехр(-α⋅х1) и I2=Io⋅Т⋅ехр(-α⋅х2); где I1 - сигнал, порожденный пучком ПЭВ, отраженным пластинкой 4; где I2 - сигнал, порожденный пучком ПЭВ, прошедшим через пластинку 4; Io - энергия исходного пучка ПЭВ на входе в пластинку 4. Используя измеренные значения I1, I2, x1 и х2, а также известные значения R и T, рассчитывают значение коэффициента затухания ПЭВ α по формуле, полученной путем решения системы выражений для I1 и I2 относительно α:

В качестве примера применения заявляемого устройства рассмотрим возможность определения коэффициента затухания ПЭВ, генерируемых на поверхности алюминиевого образца, размещенного в воздухе, излучением с λ=130 мкм и длительностью импульсов 3 мкс. Диаметр d поперечного сечения пучка излучения источника 1 выберем равным 1,0 см, а в качестве элемента преобразования 2 - планарную дифракционную решетку с периодом 500 мкм и амплитудой гофра 100 мкм, длина и ширина которой не меньше d. Положим, что объективами 5 являются ТРХ(полиметилпентен)-линзы с фокусным расстоянием 25 мм [8]. В качестве приемников 6 выберем электрооптические детекторы импульсного ТГц излучения ЭОД-БИК [8], а каптоновую (полиимидную) пленку толщиной 0.14 мм с R=0.5 и T=0.45 для данной ПЭВ используем для деления пучка ПЭВ вместо пластинки 4 [6]. Пусть от пленки 4 до приемников 6 пучки ПЭВ-пучки проходят расстояния x1=50 мм (отраженный пучок) и х2=150 мм (прошедший через пленку 4 пучок), при этом отношение сигналов, вырабатываемых приборами G1 и G2 (см. Фиг. 1) равно 2.17. Тогда, согласно формуле (1), получим: α=6,7⋅10-2 см-1, что соответствует длине распространения ПЭВ равной 15.0 см. Отметим, что время измерений определяется фактически временем срабатывания приемников 6, которое в рассматриваемом примере составляет до 120 фс [8].

Таким образом, применение в заявляемом устройстве плоской светоделительной пластинки вместо уголкового зеркала для разделения исходного пучка ПЭВ позволяет не только упростить процедуру измерений, вследствие исключения необходимости прецизионной юстировки устройства с целью достижения равенства интенсивностей вторичных ПЭВ-пучков и поддержания его в процессе измерений, но и повысить точность измерений в результате увеличения соотношения сигнал/шум за счет значительного уменьшения количества и интенсивности паразитных приповерхностных волн, порождаемых при разделении исходного ПЭВ-пучка на вторичные.

Источники информации, принятые во внимание при составлении заявки:

1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. - М.: Наука, 1985. - 525 с.

2. Большаков М.М., Никитин А.К., Тищенко А.А., Самодуров Ю.И. Устройство для определения коэффициента поглощения ПЭВ металлическими пленками // Автор, св. СССР №1684634. - Бюл. №38 от 15.10.1991 г.

3. Никитин А.К., Жижин Г.Н., Богомолов Г.Д., Никитин В.В., Чудинова Г.К. Устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра // Патент РФ на изобретение №2345351. - Бюл. №3 от 27.01.2009 г.

4. Жижин Г.Н., Никитин А.К., Никитин В.В., Чудинова Г.К. Способ определения коэффициента затухания поверхностной электромагнитной волны ИК диапазона за время одного импульса излучения // Патент РФ на изобретение №2400714. - Бюл. №27 от 27.09.2010 г. (прототип).

5. Герасимов В.В., Князев Б.А., Никитин А.К., Никитин В.В. Способ индикации дифракционных спутников поверхностных плазмонов терагерцового диапазона // Письма в ЖТФ, 2010, том 36, вып. 21, с. 93-101.

6. Gerasimov V.V., Knyazev В.А., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. Reflection of terahertz surface plasmons from plane mirrors and transparent plates // Proc. of 41-st Intern. Conf. on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. Copenhagen, 25-30 Sept., 2016. - P. 7758410-7758411. (http://www.irmmw-thz2016.org/)

7. Kotelnikov I.A., Gerasimov V.V., Knyazev B.A. Diffraction of surface wave on conducting rectangular wedge // Phys. Rev. (A), 2013, V. 87, 023828.

8. http://www.tvdexoptics.com/ru/products/thz_optics/thz_lens1/

Устройство для определения коэффициента затухания поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения, содержащее источник коллимированного p-поляризованного монохроматического излучения, элемент преобразования излучения источника в пучок ПЭВ, образец, имеющий плоскую грань и способный направлять ПЭВ, элемент для разделения исходного пучка ПЭВ на два вторичных пучка, два фокусирующих объектива и два фотоприемника, размещенных в фокусах этих объективов и сопряженных с измерительными приборами, отличающееся тем, что элемент для разделения пучка ПЭВ выполнен в виде плоской светоделительной пластинки с известным коэффициентом отражения и коэффициентом пропускания данной ПЭВ, ориентированной перпендикулярно грани образца, примыкающей к ней и пересекающей исходный пучок ПЭВ.



 

Похожие патенты:

Изобретение относится к области бесконтактного исследования поверхности металлов и полупроводников и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ).

Изобретение относится к измерительной технике и может быть использовано для неинвазивного анализа материала. Раскрыты способ и система для анализа материала (100).

Изобретение относится к измерительной технике и может быть использовано для неинвазивного анализа материала. Раскрыты способ и система для анализа материала (100).

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного напыления на подложку с последующим расчетом значений констант.

Изобретение относится к автомобильной промышленности. Способ и соответствующее устройство (100) для контроля шин на производственной линии обеспечивают предварительное размещение шины (200), подлежащей контролю, упругое деформирование участка боковины шины посредством приложения сжимающего усилия к внешней контактной поверхности участка боковины, при этом сжимающее усилие имеет осевое направление и ориентацию, направленную к диаметральной плоскости, освещение внутренней и/или внешней поверхности участка боковины и детектирование изображения освещенной поверхности, генерирование контрольного сигнала, соответствующего детектируемому изображению, и анализ контрольного сигнала для детектирования возможного наличия дефектов на участке боковины.

Настоящее изобретение относится к электронному курительному изделию и, в частности, к принадлежности для сбора данных о режиме курения, закрепленной к корпусу электронной сигареты.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам. Способ контроля шероховатости поверхности детали включает зондирование исследуемой поверхности потоком со струйной структурой, содержащим смесь химически взаимодействующих газов, визуализацию информативного параметра через контролируемую область поверхности по регистрируемому в оптическом диапазоне длин волн изображению яркостного контраста проекции зоны химического взаимодействия смеси газов.

Изобретение относится к контрольно-измерительной технике, в частности к оптическим методам. Способ контроля шероховатости поверхности детали включает зондирование исследуемой поверхности потоком со струйной структурой, содержащим смесь химически взаимодействующих газов, визуализацию информативного параметра через контролируемую область поверхности по регистрируемому в оптическом диапазоне длин волн изображению яркостного контраста проекции зоны химического взаимодействия смеси газов.

Изобретение относится к области оптических измерений и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ).

Группа изобретений относится к оптическим датчикам. Устройство для обнаружения сигналов рассеянного света содержит источник света (10), излучающий свет в одной зоне (15) рассеянного света, при этом падающий свет определяет ось падения (11), несколько оптических датчиков (21-30) для обнаружения рассеянного света, каждый из которых расположен под углом (W1-W10) датчика относительно оси падения (11)), при этом по меньшей мере один из нескольких оптических датчиков (21-30) является опорным датчиком рассеянного света, и оценочный блок для оценки сигналов, обнаруженных оптическими датчиками, при этом для классификации типа любой частицы, оценочный блок выполнен с возможностью соотнесения профилей сигналов других оптических датчиков (21-30) с профилем сигнала по меньшей мере одного опорного датчика.

Изобретение относится к области бесконтактного исследования поверхности металлов и полупроводников и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ).

Изобретение относится к области оптических измерений и касается компактного спектрометра. Спектрометр содержит осветительную часть, приемную часть, аппаратную часть, состоящую из блока обработки сигналов, блока управления и алгоритмического модуля.

Изобретение относится к области оптических измерений и касается устройства для измерения длины распространения инфракрасной поверхностной электромагнитной волны (ПЭВ).

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека.

Изобретение относится к области оптических измерений и касается способа определения отклонения длины оптического пути образца. Способ включает в себя облучение образца электромагнитным излучением при ряде волновых чисел, определение поглощения электромагнитной энергии в образце при ряде волновых чисел, определение первого волнового числа, связанного с первым уровнем поглощения полосы поглощения, и второго волнового числа, связанного со вторым уровнем поглощения полосы поглощения, определение разности между первым волновым числом и вторым волновым числом и определение отклонения длины оптического пути на основе полученной разности.

Способ определения присутствия или концентрации анализируемого вещества в пробе текучей среды, находящейся в контейнере, включает: (a) просвечивание контейнера вдоль первого участка, имеющего первую длину пути, для получения первого измерения интенсивности света, переданного вдоль первой длины пути, (b) определение того, что первое измерение оказалось за пределами заранее определенного динамического диапазона переданной интенсивности света, (c) перемещение пробы жидкости в указанном контейнере на другой участок с другой длиной пути, и (d) просвечивание указанного контейнера вдоль другого участка для получения другого измерения интенсивности света, переданного через другую длину пути.

Изобретение относится к области геологии и может быть использовано при поиске скоплений углеводородов. Предложен способ обнаружения углеводородов с использованием подводного аппарата, снабженного одним или несколькими измерительными компонентами.

Предлагается 3-бутил-5-окси-5-перфтороктил-4,5-дигидро-1H-пиразол-1-карботиоамид приведенной ниже формулы(1) в качестве материала стандартного образца состава для количественного определения фтора (массовая доля от 50 до 70%) и серы (массовая доля от 5 до 13%) в органических соединениях различной природы.

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП).

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП).

Изобретение относится к области спектроскопии и касается системы для абсорбционной спектроскопии с перестраиваемыми диодными лазерами с далеко отстоящими друг от друга длинами волн. Система включает в себя по меньшей мере первый и второй перестраиваемые диодные лазеры, генерирующие лазерный свет на первой и второй длинах волн, причем лазерный свет первой и второй длин волн не может эффективно совместно распространяться по одному и тому же одномодовому оптическому волокну. Излучение первого лазера проходит через первое одномодовое оптическое волокно, а излучение второго лазера проходит через второе одномодовое оптическое волокно. Оптические волокна собираются в волоконный жгут, который формируется из дальних концов первого и второго оптических волокон, зачищенных от их покрытий и размещенных с их оболочками смежно друг другу. Излучение от волоконного жгута проецируется через зону измерения с помощью одной или более подающих головок. Прошедшее через зону измерения излучение принимают с помощью одной или более захватывающих головок, расположенных поперек зоны измерения, и направляют на по меньшей мере один датчик. Технический результат заключается в расширении спектрального диапазон измерений. 3 н. и 17 з.п. ф-лы, 7 ил.
Наверх