Камера жрд

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера ЖРД, содержащая корпус, состоящий из цилиндрической части, дозвуковой и сверхзвуковой частей сопла, смесительную головку с подводными магистралями компонентов топлива и центральное тело с каналами тракта охлаждения, расположенное в дозвуковой части камеры, согласно изобретению центральное тело, установленное с помощью уплотнительных элементов в центральной части смесительной головки с расположением профилированной концевой части в районе критического сечения, соединено с поршнем регулятора критического сечения, при этом регулятор закреплен на корпусе смесительной головки, а магистраль подвода охладителя соединена с каналами тракта охлаждения на наружной поверхности внутренней стенки центрального тела, которые соединены отверстиями с его внутренней полостью и выходным коллектором охладителя на регуляторе. Изобретение обеспечивает повышение эффективности за счет увеличения удельного импульса тяги двигателя по всей траектории полета. 3 ил.

 

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя.

Использование на первых ступенях ракет сопел с неизменной степенью расширения приводит к потерям тяги: у Земли (до 20%) - за счет перерасширения продуктов сгорания, на высоте - за счет недорасширения.

К числу известных способов, позволяющих повысить эффективность работы ЖРД по траектории полета относятся:

- вдув генераторного газа в сверхзвуковую часть сопла;

- выдвижение щитков в сверхзвуковую часть сопла;

- изменение степени расширения за счет выдвижных насадков;

- использование удаляемой вставки с земным профилем сопла, описанной по авторскому свидетельству №315198;

- расположение индивидуальных камер сгорания вокруг центрального тела;

- использование камер с кольцевым критическим сечением, расположенным вокруг центрального тела.

Все перечисленные способы имеют существенные недостатки, так как не позволяют повышать удельный импульс тяги по всей траектории полета, значительно увеличивают массу и габариты двигателя. Кроме того, при удалении элементов конструкции двигателя в полете в плотных слоях атмосферы требует отчуждения большой площади земельного участка в районе их падения.

Известно регулирование тяги двигателя путем изменения расхода, изложенное в книге Г.Б. Синярев и М.В. Добровольский «Жидкостные ракетные двигатели» на стр. 150-151 «Регулирование сопла при изменении тяги двигателя путем изменения расхода» - принятое за прототип.

В описанной конструкции прототипа изменение расхода осуществляется за счет профилированной иглы (или центрального тела), перемещающегося в сопле до выходного сечения вдоль оси двигателя.

Недостатком данного прототипа является необходимость выдвижения иглы по всей длине дозвуковой и сверхзвуковой частей сопла до выходного сечения, что требует создания специального устройства, обеспечивающего выдвижение иглы на всю длину сопловой части, а также, ввиду большой консоли, приводит к большим колебаниям иглы не только в районе выходного сечения сопла, но и в районе критического сечения. Кроме того, обеспечить надежное охлаждение иглы и ее прочностные характеристики в высокотемпературном сверхзвуковом потоке ЖРД в настоящее время невозможно.

Кроме того, целесообразно с точки зрения повышения эффективности двигателя при уменьшении площади критического сечения повышать давление в камере.

Предлагаемое изобретение устраняет указанные недостатки прототипа и решает техническую задачу по повышению эффективности в виде удельного импульса тяги двигателя по всей траектории полета, не увеличивая массу двигателя.

Поставленная техническая задача решается тем, что камера ЖРД, содержащая корпус, состоящий из цилиндрической части, дозвуковой и сверхзвуковой частей сопла, смесительную головку с подводными магистралями компонентов топлива и центральное тело с каналами тракта охлаждения, расположенное в дозвуковой части камеры, согласно изобретению, центральное тело, установленное с помощью уплотнительных элементов в центральной части смесительной головки с расположением профилированной концевой части в районе критического сечения, соединено с поршнем регулятора критического сечения, при этом регулятор закреплен на корпусе смесительной головки, а магистраль подвода охладителя соединена с каналами тракта охлаждения на наружной поверхности внутренней стенки центрального тела, которые соединены отверстиями с его внутренней полостью и выходным коллектором охладителя на регуляторе.

Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1, 2 и 3.

Камера ЖРД (фиг. 1) содержит корпус 1 с трактом охлаждения и подводными магистралями 2, смесительную головку 3 с магистралью подвода 4, регулятор критического сечения 5 с подводной 6 и отводной 7 магистралями охлаждения, центральное тело 8 с внутренней стенкой 9, содержащей каналы тракта охлаждения 10 и отверстия 11, соединенные с внутренней полостью 12 и наружной стенкой 13 с отверстиями 14, поршень 15 и подводную магистраль 16 управления давлением.

На фиг. 2 показаны уплотнительные элементы 17, 18, расположенные в центральной части регулятора 5.

На фиг. 3 показаны уплотнительные элементы 19, 20, 21, расположенные в смесительной головке 3.

Камера ЖРД работает следующим образом.

По команде «Запуск» в соответствии с циклограммой работы двигателя охладитель поступает в подводную магистраль 6 регулятора критического сечения 5, а затем через отверстия 14 в наружной стенке 13 центрального тела 8 в каналы 10 внутренней стенке 9 центрального тела 8 и через отверстия 11 во внутреннюю полость 12 центрального тела 8, а затем в регулятор 5 в отводную магистраль 7.

Одновременно с поступлением охладителя в регулятор 5 и на охлаждение центрального тела 8 в соответствии с циклограммой работы двигателя поступают компоненты топлива в подводную магистраль 4, расположенную на смесительной головке 3 и в подводную магистраль 2, расположенную на корпусе 1. При поступлении компонентов топлива в смесительную головку 3 происходит их воспламенение, и двигатель выходит на расчетный режим.

При работе у Земли в плотных слоях атмосферы центральное тело 8 находится в исходном состоянии перед критическим сечением сопла. По мере удаления ракетоносителя от Земли, в соответствии с циклограммой работы двигателя и подъема ракеты, подается команда в подводную магистраль 16 управления давлением, после чего возрастает давление и приводится в движение поршень 15, соединенный с центральным телом 8. Профилированная концевая часть центрального тела 8 постепенно, в соответствии с циклограммой работы двигателя, входит в критическое сечение корпуса 1. При этом изменяется (уменьшается) площадь критического сечения и пропорционально возрастает давление в камере (при сохранении постоянного расхода продуктов сгорания).

При работе двигателя в разряженных слоях атмосферы профилированная часть центрального тела 8 будет находиться в конечном положении, при этом в камере будет достигнуто расчетное значение давления и в соответствии с этим будет увеличено давление продуктов сгорания в сверхзвуковой части сопла камеры, что приведет к повышению эффективности в виде удельного импульса тяги.

Проведенные в АО КБХА огневые испытания экспериментальной установки с центральным телом тягой 2 тс подтвердили эффективность ее работы и показали повышение удельного импульса тяги на втором режиме примерно на 6 ед.

Таким образом, использование в камере подвижного центрального тела с профилированной концевой частью повышает эффективность работы двигателя в виде повышения удельного импульса тяги по всей траектории полета, не увеличивая существенно массу двигателя.

Камера жидкостного ракетного двигателя, содержащая корпус, состоящая из цилиндрической части, дозвуковой и сверхзвуковой частей сопла, смесительную головку с подводными магистралями компонентов топлива и центральное тело с каналами тракта охлаждения, расположенное в дозвуковой части камеры, отличающаяся тем, что центральное тело, установленное с помощью уплотнительных элементов в центральной части смесительной головки с расположением профилированной концевой части в районе критического сечения, соединено с поршнем регулятора критического сечения, при этом регулятор закреплен на корпусе смесительной головки, а магистраль подвода охладителя соединена с каналами тракта охлаждения на наружной поверхности внутренней стенки центрального тела, которые соединены отверстиями с его внутренней полостью и выходным коллектором охладителя на регуляторе.



 

Похожие патенты:

Изобретение относится к области жидкостных ракетных двигателей (ЖРД), а именно к газогенераторам, генерирующим газ для привода турбонасосного агрегата. Газогенератор содержит две охлаждаемые горючим камеры сгорания, две смесительные головки, состоящие из корпуса, на торце которого закреплено огневое днище, при этом огневые днища смесительных головок расположены симметрично относительно коллектора окислителя, расположенного между корпусами смесительных головок, однокомпонентные центробежные форсунки окислителя и однокомпонентные струйно-центробежные форсунки горючего, соединяющие полости компонентов топлива смесительных головок с внутренней полостью камеры сгорания, причем вокруг каждой форсунки окислителя расположено шесть форсунок горючего, а тракт охлаждения камеры сгорания сообщается с полостью горючего смесительной головки.

Изобретение относится к области ракетного двигателестроения и, в частности, к двухзонным газогенераторам с лазерным зажиганием компонентов топлива. Двухзонный газогенератор с лазерным зажиганием компонентов топлива содержит силовую оболочку с патрубками подвода окислителя и горючего и патрубок для вывода генераторного газа, внутри которой и коаксиально с ней установлена камера сгорания.

Изобретение относится к ракетным двигателям малой тяги. Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из электропневмоклапанов горючего и окислителя, смесительной головки, включающей воспламенительное устройство со свечой зажигания, дозвуковую газовую завесу для обеспечения допустимого теплового состояния конструкции двигателя, камеры сгорания и сопла, согласно изобретению на камере сгорания установлены друг над другом два кольцевых цилиндра из жаростойкой и жаропрочной стали с коллекторами водорода и кислорода соответственно, на торцевых поверхностях которых установлены прямоугольные каналы так, чтобы каждый канал водорода пересекался с каналом кислорода.

Изобретение относится к области машиностроения, в частности к камерам сгорания прямоточных воздушно-реактивных двигателей. Камера сгорания прямоточного воздушно-реактивного двигателя из композиционных материалов состоит из наружной силовой и внутренней стенки, оформляющей газовый канал, оболочек для конструктивных форм камер, приближенных к телам вращения, или комплекта наружных и внутренних стенок, оформляющих наружный облик камеры и внутренний газовый канал, при других, например, призматических конструктивных формах камер.

Изобретение относится к ракетным двигателям малой тяги. Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из свечи зажигания топлива, смесительной головки, обеспечивающей смешение топлива и внутреннее охлаждение стенки камеры сгорания, камеры сгорания и сопла, в смесительной головке двигателя выполнены струйные форсунки типа струя в сносящем потоке кислорода, суммарные векторы потоков которых направлены в плоскости, перпендикулярной оси двигателя, навстречу друг другу.

Изобретение относится к жидкостным ракетным двигателям, работающим с дожиганием генераторного газа. Камера сгорания ЖРД, работающего с дожиганием генераторного газа, содержащая газовод, смесительную головку со смесительными элементами, корпус камеры и магистрали подвода компонентов топлива, согласно изобретению в районе минимального сечения камеры выполнен газовод тороидальной формы, полость которого с помощью оребренного тракта, выполненного на наружной стенке корпуса камеры и наружного днища головки, соединена со смесительными элементами головки.

Изобретение относится к жидкостным ракетным двигателям, работающим по безгенераторной схеме. Камера сгорания ЖРД, работающего по безгенераторной схеме, содержащая магистрали подвода горючего и окислителя, блок камеры со сверхзвуковым соплом, при этом камера сгорания выполнена кольцевой формы, параллельно блоку камеры жестко соединена наружным выпуклым и внутренним изогнутым корпусами поворотного устройства с блоком камеры и сверхзвуковым соплом, и тракт охлаждения кольцевой камеры сгорания соединяется трактом охлаждения в изогнутом внутреннем корпусе поворотного устройства с трактом охлаждения блока камеры со сверхзвуковым соплом, а трактом охлаждения в наружном выпуклом днище и магистралью тракт охлаждения кольцевой камеры соединяется с магистралью на выходе из сверхзвукового сопла.

Изобретение относится к области ракетных двигателей малой тяги (РДМТ), работающих на газообразных водороде (Н2) и кислороде (О2) в качестве исполнительных органов систем управления объектов ракетно-космической техники.

Изобретение относится к области ракетных двигателей малой тяги (РДМТ). Ракетный двигатель малой тяги, состоящий из головки двигателя, свечи зажигания топлива, системы подачи компонентов топлива в зону электроискрового разряда и в камеру сгорания с внутренним охлаждением, при этом в камере сгорания установлены центробежная форсунка водорода и не менее шести периферийных струйных форсунок кислорода с возможностью активного взаимодействия потока водорода и струй кислорода, при этом форсунки расположены равномерно по окружности на поверхности головки, и оси которых направлены под углом 35°-45° к оси двигателя.

Изобретение относится к области ракетных двигателей малой тяги. Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из головки двигателя, свечи зажигания топлива, системы подачи компонентов топлива в камеру сгорания и внутреннего охлаждения камеры сгорания, при этом для подачи окислителя в камеру сгорания применена щелевая форсунка, установленная с возможностью направления окислителя к оси двигателя.
Наверх