Способ изготовления радиопоглощающего элемента

Настоящее изобретение относится к способу изготовления радиопоглощающего элемента, который может быть использован при оснащении безэховых камер и экранированных помещений. Способ включает помещение вкладыша, образующего внешний слой радиопоглощающего элемента, в металлическую форму, приготовление смеси полиэфира с терморасширенным графитом и полиизоцианата с углеродным волокном, перемешивание упомянутых смесей для получения реакционной смеси, заполнение формы с вкладышем полученной реакционной смесью, далее герметично закрывают металлическую форму, по истечении времени, необходимого для образования радиопоглощающего материала, открывают металлическую форму, извлекают из нее вкладыш с радиопоглощающим материалом и окрашивают поверхность радиопоглощающего элемента краской с обеспечением величины диэлектрической проницаемости внешнего слоя от 1,01 до 1,1 в рабочем диапазоне частот. Изобретение обеспечивает возможность создания радиопоглощающего элемента с улучшенными радиотехническими и прочностными характеристиками при одновременном повышении технологичности и сохранении экологичности его изготовления. 3 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

 

Изобретение относится к области антенной техники, а именно, к поглотителям электромагнитных волн, и может быть использовано при оснащении безэховых камер и экранированных помещений.

Известен способ изготовления радиопоглощающего элемента пирамидальной формы из самозатухающего пенополиуретана посредством литья слитка и его последующего разрезания до достижения заданной формы (см. http://el-kor.ru/bezehovye-kamery-i-ekrankamery-radiopogloshchayushchie-materialy/frankonia-epp-32-piramidalnyy, 2017).

Недостатком известного способа является недостаточная прочность получаемого радиопоглощающего элемента, обусловленная низкой прочностью пенополиуретана, приводящая к разрушению радиопоглощающего элемента во время его транспортировки и эксплуатации, что в конечном счете сказывается на стабильности его радиотехнических характеристик.

Известен способ изготовления радиопоглощающего элемента, включающий образование (посредством прессования) его внутренней части из смеси, содержащей полиэфир, полиизоцианат и углеродное волокно, и последующее нанесение на ее поверхность внешнего слоя полиуретана (см. RU 2410777, МПК G21F 1/12, опубл. 27.01.2011).

Недостатками известного способа изготовления радиопоглощающего элемента являются его низкая технологичность, недостаточная прочность получаемого радиопоглощающего элемента и его плохие радиотехнические характеристики, обусловленные резким скачком диэлектрической проницаемости на границе радиопоглощающего элемента с воздухом, связанным с использованием полиуретана в качестве материала внешнего слоя.

Известный способ изготовления радиопоглощающего элемента принят в качестве ближайшего аналога к заявленному способу изготовления радиопоглощающего элемента.

Технической проблемой, решаемой настоящим изобретением, является создание способа изготовления радиопоглощающего элемента, лишенного указанных недостатков.

В результате достигается технический результат, заключающийся в возможности создания радиопоглощающего элемента с улучшенными радиотехническими и

прочностными характеристиками при одновременном повышении технологичности и сохранении экологичности его изготовления.

Указанный технический результат достигается путем осуществления способа изготовления радиопоглощающего элемента, в котором в металлическую форму помещают вкладыш из микрогофрокартона, образующий внешний слой радиопоглощающего элемента, приготавливают смеси полиэфира с терморасширенным графитом и полиизоцианата с углеродным волокном, перемешивают упомянутые смеси для получения реакционной смеси, включающей в себя смесь полиэфира и полиизоцианата, используемую при производстве пенополиуретана, заполняют форму с вкладышем полученной реакционной смесью, герметично закрывают металлическую форму, по истечении времени, необходимого для образования радиопоглощающего материала, открывают металлическую форму, извлекают из нее вкладыш с радиопоглощающим материалом и окрашивают поверхность радиопоглощающего элемента краской с обеспечением величины диэлектрической проницаемости внешнего слоя от 1,01 до 1,1 в рабочем диапазоне частот.

Согласно частному варианту осуществления изготавливают радиопоглощающий элемент, имеющий основную часть в форме правильной четырехгранной пирамиды и основание в форме прямоугольного параллелепипеда, одна из граней которого совпадает с основанием правильной четырехгранной пирамиды, а высота составляет от 17% до 25% от высоты основной части.

Согласно предпочтительному варианту осуществления используют краску на водной основе, в состав которой входит антипирен в количестве 25 мас. %.

Согласно еще одному частному варианту осуществления для образования радиопоглощающего материала используют смесь, включающую в себя смесь полиэфира и полиизоцианата в количестве 86,0-88,0 мас. %, терморасширенный графит в количестве 8,0-10,0 мас. % и углеродное волокно - остальное.

На фиг. 1 представлено фото радиопоглощающего элемента, полученного заявленным способом, в разрезе.

Заявленный способ реализуют следующим образом.

В подготовленной металлической форме, имеющей внутреннюю поверхность, повторяющую внешнюю боковую поверхность радиопоглощающего элемента, размещают вкладыш из микрогофрокартона, образующий внешний слой радиопоглощающего элемента.

Предварительно отдельно приготавливают смеси полиизоцианата с углеродным волокном и полиэфира с терморасширенным графитом.

Затем перемешивают упомянутые смеси для получения реакционной смеси, которая, в частности, может представлять собой смесь, включающую в себя смесь полиэфира и полиизоцианата в количестве 86,0-88,0 мас. % (например, используемую при производстве пенополиуретана, доступного под торговым наименованием «Уремикс-402»), терморасширенный графит в количестве 8,0-10,0 мас. % и углеродное волокно -остальное.

После этого заполняют реакционной смесью металлическую форму с размещенным в ней вкладышем (в объеме равном примерно одной десятой от объема металлической формы с размещенным в ней вкладышем).

Затем герметично закрывают форму и, по истечении времени, необходимого для образования радиопоглощающего материала (в соответствии с типовым технологическим процессом), открывают форму и извлекают из нее вкладыш с радиопоглощающим материалом.

Указанный материал представляет собой пенополиуретан с распределенным по его объему терморасширенным графитом и углеродным волокном, занимающий все пространство герметично закрытой формы с размещенным в ней вкладышем.

Образование пенополиуретана в ограниченном объеме металлической формы, создающим повышенное давление внутри герметичной формы, позволяет обеспечить градиентное распределение терморасширенного графита и углеродного волокна по объему радиопоглощающего элемента с концентрацией, увеличивающейся от поверхности (ограниченной вкладышем) к внутренней части радиопоглощающего материала (см. фиг. 1).

После извлечения вкладыша с радиопоглощающим материалом поверхность радиопоглощающего элемента окрашивают краской с обеспечением величины диэлектрической проницаемости внешнего слоя в рабочем диапазоне частот от 1,01 до 1,1.

В частности, используют краску на водной основе, в состав которой входит антипирен в количестве 25 мас. %. Такая краска легко проникает внутрь микрогофрокартона и снижает его горючесть.

Изготовление радиопоглощающего элемента заявленным способом позволяет уменьшить перепад диэлектрической проницаемости по траектории распространения электромагнитной волны, что, в свою очередь, позволяет уменьшить отражение от радиопоглощающего элемента и тем самым улучшить его радиотехнические характеристики.

Использование в составе реакционной смеси углеродного волокна улучшает отражательные характеристики радиопоглощающего элемента, а использование терморасширенного графита - его огнезащитные свойства.

Использование вкладыша из микрогофрокартона само по себе позволяет избежать контакта смеси с поверхностью металлической формы и, тем самым, упростить процесс извлечения радиопоглощающего элемента из формы и исключить необходимость очистки формы перед изготовлением следующего радиопоглощающего элемента.

Вместе с этим использование вкладыша позволяет за один технологический этап изготовить радиопоглощающий элемент, имеющий внешний диэлектрический слой (в качестве которого и выступает вкладыш), и, тем самым, упростить и ускорить процесс изготовления радиопоглощающего элемента при сохранении его экологичности.

В представленных ниже таблицах 1 и 2 приведены массогабаритные характеристики радиопоглощающих элементов, изготавливаемых заявленным способом, и радиотехнические характеристики радиопоглощающих структур, выполненных из них.

1. Способ изготовления радиопоглощающего элемента, включающий образование его внутренней части из смеси, содержащей полиэфир, полиизоцианат и углеродное волокно, и внешнего слоя из диэлектрического материала, отличающийся тем, что помещают вкладыш из микрогофрокартона, образующий внешний слой радиопоглощающего элемента, в металлическую форму, приготавливают смеси полиэфира с терморасширенным графитом и полиизоцианата с углеродным волокном, перемешивают упомянутые смеси для получения реакционной смеси, включающей в себя смесь полиэфира и полиизоцианата, используемую при производстве пенополиуретана, заполняют форму с вкладышем полученной реакционной смесью, герметично закрывают металлическую форму, по истечении времени, необходимого для образования радиопоглощающего материала, открывают металлическую форму, извлекают из нее вкладыш с радиопоглощающим материалом и окрашивают поверхность радиопоглощающего элемента краской с обеспечением величины диэлектрической проницаемости внешнего слоя от 1,01 до 1,1 в рабочем диапазоне частот.

2. Способ по п. 1, отличающийся тем, что изготавливают радиопоглощающий элемент, имеющий основную часть в форме правильной четырехгранной пирамиды и основание в форме прямоугольного параллелепипеда, одна из граней которого совпадает с основанием правильной четырехгранной пирамиды, а высота составляет от 17до 25% от высоты основной части.

3. Способ по п. 1 или п. 2, отличающийся тем, что используют краску на водной основе, в состав которой входит антипирен в количестве 25 мас.%.

4. Способ по п. 1 или п. 2, отличающийся тем, что для образования радиопоглощающего материала используют реакционную смесь, включающую в себя смесь полиэфира и полиизоцианата в количестве 86,0-88,0 мас.%, терморасширенный графит в количестве 8,0-10,0 мас.% и углеродное волокно - остальное.



 

Похожие патенты:
Изобретение относится к радиопоглощающим конструкционным материалам. Материал содержит 30-60 мас.% карбида кремния, 20-50 мас.% наполнителей в виде ферритов на основе ВаО и СoО и остальное керамическая связка на основе титаната марганца и оксида алюминия.

Изобретение относится к технике сверхвысоких частот и предназначено для уменьшения радиолокационной заметности объектов военной техники, например летательных аппаратов.

Изобретение относится к элементам электрического оборудования, поглощающим излученные антенной электромагнитные волны с целью уменьшения отражений при калибровке радиоизмерительных или радиолокационных устройств.

Изобретение относится к маскировочным радиопоглощающим покрытиям, снижающим заметность объектов техники, а более конкретно к устройствам для поглощения излучаемых электромагнитных волн, выполненных из композитных пористых материалов на основе вспененных высокомолекулярных соединений, содержащих распределенные электропроводящие элементы.Композитное радиопоглощающее покрытие содержит основу из пенополиуретана, в объеме которого распределены функциональные электропроводящие частицы.Новым является то, что функциональные частицы выполнены в виде фрагментов микропровода длиной 0,3-3,0 мм и диаметром 3-40 мкм из аморфного кобальта, помещенного внутри стеклянной оболочки.Предложенное техническое решение обеспечило расширение функциональных возможностей маскирующего покрытия высококонтрастных объектов за счет кратного повышения магнитных свойств покрытия..

Изобретение относится к технологии изготовления керамических изделий для электронной и радиотехнической промышленности и может быть использовано при производстве поглотителей электромагнитного излучения, например в мощных генераторах, усилителях, лампах бегущей волны, клистронах и антенно-фидерных системах.
Изобретение относится к радиотехнике, а конкретно к формированию покрытий, уменьшающих заметность объектов при их обнаружении радаром, и может быть использовано при создании противорадиолокационных покрытий, материалов и устройств, изменяющих фоно-целевые образы транспортных средств и других объектов путем нанесения или накрытия защищаемого объекта противорадиолокационным покрытием, изготовленным в соответствии с предложенным способом.
Изобретение относится к области высокотемпературных широкополосных конструкционных радиопоглощающих материалов, которое может быть использовано для эффективного снижения уровня отраженного электромагнитного излучения в диапазоне 1-18 ГГц.

Изобретение относится к технологии изготовления и применения композиционных материалов, состав и структура которых обеспечивает эффективное поглощение электромагнитной энергии в определенном диапазоне длин радиоволн.

Изобретение относится к материалам для поглощения электромагнитного излучения и может быть использовано для обеспечения электромагнитной совместимости радиоэлектронных устройств, защиты биологических объектов от электромагнитного излучения, а также для снижения радиозаметности объектов военного и гражданского назначения.

Изобретение относится к области вспомогательных средств радиоэлектронного оборудования и, дополнительно, может быть использовано в качестве низкопотенциального источника тепловой энергии.

Изобретение относится к радиационно-защитным материалам (РЗМ) и может быть использовано для изготовления коллективных и индивидуальных средств защиты людей и оборудования от гамма- и рентгеновского излучений.

Группа изобретений относится к области синтеза радиационно-защитных материалов для атомной и радиотехнической промышленности. Полимерный композит для защиты от ионизирующего излучения включает полимерную матрицу, свинецсодержащий наполнитель и дополнительно содержит полиимидный лак.

Изобретение относится к области защиты электронных блоков и приборов от излучений естественных радиационных поясов Земли, радиации Солнца и космического пространства.

Изобретение относится к области приборостроения. Радиационно-защитное покрытие содержит переходный металл шестого периода Периодической системы химических элементов, постпереходный металл шестого периода Периодической системы химических элементов и/или лантаноид и поглощающее вещество, содержащее химический элемент с атомным номером меньшим, чем у упомянутых химических элементов.
Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных сред.
Изобретение относится к строительному материалу на основе гипса с более высоким удельным весом и/или функцией по защите от радиоактивного излучения с сохранением технологических свойств.

Изобретение относится к устройствам для защиты от излучения и соответствующим способам их изготовления. .

Изобретение относится к изделиям, включающим в себя полотна (ткани), компаунды и пленки (пленочные слои), которые могут обеспечить защиту от вредных воздействий, представляющих угрозу жизни (радиация, химические вещества, биологические агенты, огонь, металлические метательные снаряды).

Изобретение относится к области рентгенозащитных материалов. .
Изобретение относится к области изготовления рентгенозащитных материалов. .

Настоящее изобретение относится к водной дисперсии полиуретан-полимочевина (PD) для приготовления пигментированного грунтовочного материала, а также к способу получения водной дисперсии полиуретан-полимочевина, пигментированному водному грунтовочному материалу, способу получения многослойной красочной системы, многослойной красочной системе и к применению дисперсии.
Наверх