Излучатель лазера

Излучатель лазера содержит установленные на основание блок резонаторных зеркал, уголковый отражатель, блок лазерного вещества, регулятор расходимости излучения, содержащий как минимум одну линзу, и первый двухзеркальный отражатель, на котором установлен второй двухзеркальный отражатель. Зеркала первого и второго двухзеркальных отражателей взаимно перпендикулярны и обращены в одну сторону. Между блоком резонаторных зеркал и уголковым отражателем с одной стороны и вторым двухзеркальным отражателем с другой стороны размещены блок лазерного вещества и регулятор расходимости излучения. Резонаторные зеркала оптически связаны с уголковым отражателем через двухзеркальные отражатели. В основании выполнены каналы для прохода излучения, соединенные с соответствующими каналами в корпусах блока резонаторных зеркал, уголкового отражателя и первого двухзеркального отражателя с образованием замкнутого объема. Резонаторные зеркала, зеркала первого и второго двухзеркальных отражателей и минимум два зеркала уголкового отражателя установлены на корпус в юстировочных оправах. Технический результат - уменьшение габаритов и массы, а также повышение стабильности работы излучателя лазера. 3 з.п. ф-лы, 8 ил.

 

Изобретение относится к лазерной технике, в частности к излучателям лазера, основой которых является многозеркальный оптический резонатор с уголковым отражателем. Изобретение может быть использовано при создании изделий и приборов, например, твердотельных и газовых лазеров, способных работать в различных условиях эксплуатации, в том числе при внешних термических и механических воздействиях.

Известно изобретение под названием «Лазер с системой быстрой осевой циркуляции газа» (п. США №4709372, H01S 3/22, опубл. 1987 г. ), в котором описан излучатель лазера, который состоит из блока лазерного вещества (БЛВ) и многозеркального оптического резонатора. БЛВ представляет несущую конструкцию, систему подготовки и подачи лазерного вещества - газа, и грубы внутри которых лазерное вещество циркулирует внутри резонатора. Резонатор состоит из расположенных друг напротив друга блока резонаторных зеркал (БРЗ) и уголкового отражателя (УО), установленных непосредственно на несущую конструкцию БЛВ. БРЗ состоит из корпуса и двух зеркал, каждое из которых установлено в угловую котировочную подвижку, снабженную неподвижным центром и регулировочными винтами. УО содержит корпус с установленными непосредственно на нем тремя зеркалами, рабочие поверхности которых взаимно перпендикулярны. УО обеспечивает оптическую связь между резонаторными зеркалами и складывает оптическую ось резонатора с образованием двух параллельных отрезков, проходящих внутри труб БЛВ. Трубы БЛВ соединены с корпусами БРЗ и УО.

Применение УО позволило создать относительно компактную конструкцию резонатора за счет складывания оптической оси резонатора. За счет свойства УО возвращать отраженный луч параллельно падающему лучу и благодаря расположению зеркал БРЗ и УО на монолитых корпусах повышается стабильность работы излучателя лазера.

Однако, наличие непосредственной связи между корпусами БРЗ и УО с элементами БЛВ, а также применение угловых котировочных подвижек в БРЗ. содержащих большое число промежуточных элементов между зеркалами и корпусом, может привести к разъюстировке резонатора при механических и тепловых воздействиях на элементы резонатора. Помимо этого зеркала УО лишены возможности котировки, а точность их установки зависит от точности изготовления корпуса УО, что повышает требования к его изготовлению, либо потребует доводки поверхностей корпуса при сборке резонатора. В противном случае, неточность установки скажется на правильности работы УО, что снизит стабильность работы излучателя.

В ряде случаев, сложение оптической оси резонатора с образованием двух параллельных отрезков не достаточно для создания компактной и жесткой конструкции, так как длина излучателя лазера все равно будет значительно превышать ширину и высоту. Кроме того, в данной конструкции затруднено размещение каких-либо внутрирезонаториых элементов, кроме БЛВ, а конфигурация резонатора может меняться в основном за счет формы зеркал и свойств лазерного вещества.

Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является излучатель лазера, описанный в изобретении под названием «Поляризующий уголковый отражатель» (п .ЕПВ №0285397, H01S 3/07, 3/08, 3/105, опубл. 1988 г. ). Излучатель состоит из основания в виде плиты, БЛВ и многозеркального оптического резонатора. БЛВ устанавливается на основание и представляет собой конструкцию из несущих элементов и труб, внутри которых циркулирует лазерное вещество в виде газа. Оптический резонатор состоит из расположенных друг напротив друга и установленных па основание БРЗ и УО. БРЗ состоит из корпуса с внутренними каналами и двух зеркал, каждое из которых установлено в угловую юстировочную подвижку, снабженную неподвижным центром и регулировочными винтами. УО содержит корпус с внутренними каналами и с установленными непосредственно на нем тремя зеркалами, рабочие поверхности которых взаимно перпендикулярны. УО обеспечивает оптическую связь между резонаторными зеркалами и складывает оптическую ось резонатора с образованием двух параллельных отрезков, проходящих внутри труб БЛВ.

Наличие собственного несущего основания, независимого от системы подготовки и подачи газа, повышает стабильность работы излучателя и его устойчивость при воздействии внешних факторов, а также делает данное техническое решение более универсальным и создаст возможность использования его в излучателях различных типов.

В целом же данное техническое решение обладает теми же достоинствами и недостатками, что и приведенное выше.

Технический результат, полученный при использовании предлагаемого техническою решения, - уменьшение габаритов и массы, а также повышение стабильности работы излучателя лазера.

Указанный технический результат достигается тем. что излучатель лазера, содержащий установленные на основание блок резонаторных зеркал (БРЗ) и уголковый отражатель (УО), в корпусах которых выполнены каналы для прохода излучения, и блок лазерного вещества (БЛВ), резонаторные зеркала оптически связаны между собой при помощи уголкового отражателя, согласно изобретению снабжен установленными на основании регулятором расходимости излучения (РРИ), содержащим как минимум одну линзу, и первым двухзеркальным отражателем (ДО), на котором установлен второй двухзеркальный отражатель, в корпусах двухзеркальных отражателей выполнены каналы для прохода излучения, резонаторные зеркала установлены на корпус в котировочных оправах, зеркала каждого из первого и второго двухзеркальных отражателей установлены на корпус в котировочных оправах и расположены таким образом, что их рабочие поверхности взаимно перпендикулярны и обращены в одну сторону, в основании выполнены каналы для прохода излучения, соединенные с соответствующими каналами в корпусах блока резонаторных зеркал, уголкового отражателя и первого двухзеркального отражателя, с образованием замкнутого объема, между блоком резонаторных зеркал и уголковым отражателем с одной стороны и вторым двухзеркальным отражателем с другой стороны разметен блок лазерного вещества и регулятор расходимости излучения, резонаторные зеркала оптически связаны с уголковым отражателем через двухзеркальные отражатели, зеркала уголкового отражателя установлены на корпус, при этом минимум два из них установлены в котировочных оправах.

Кроме того, для увеличения жесткости конструкции возможно изготовление корпусов первого и второго ДО в виде одной детали, корпусов БРЗ и УО в виде одной детали, а также возможно изготовление любого из корпусов БРЗ, УО, первого ДО в виде единой с основанием детали.

РРИ, содержащий как минимум одну линзу, и два независимых ДО, а также наличие замкнутой области, состоящей из каналов основания и корпусов БРЗ, УО, первого ДО позволили получить резонатор с минимально возможной в данных условиях длиной оптической оси. Использование для обеспечения оптической связи между резонаторными зеркалами и УО первого и второго ДО и наличие каналов основания, корпусов БРЗ, УО, ДО а также расположение их зеркал и расположение БЛВ позволяет реализовать наиболее компактный вариант конструкции резонатора. Это, наряду с использованным типом крепления зеркал БРЗ, УО, ДО, обеспечивает высокую жесткость и стабильность конструкции, что в свою очередь повышает стабильность работы излучателя. Установка как минимум двух зеркал УО в котировочных оправах, помимо этого, позволяет проводить точную юстировку зеркал, что особенно важно для стабильной работы резонатора при деформации основания, вызванной тепловыми и механическими и воздействиями.

Все перечисленное выше позволило уменьшить габариты и массу, а также повысить стабильность работы излучателя лазера.

При анализе уровня техники не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. А также не выявлено факта известности влияния признаков, включенных в формулу, на технический результат заявляемого технического решения. Следовательно, заявленное изобретение соответствует условиям «новизна» и «изобретательский уровень».

На фиг. 1 представлена упрощенная модель излучателя лазера.

На фиг. 2 представлено основание излучателя лазера.

На фиг. 3 представлена оптическая схема излучателя лазера.

На фиг. 4 представлен блок резонаторных зеркал (БРЗ).

На фиг. 5 представлен уголковый отражатель (УО).

На фиг. 6 представлены первый и второй двухзеркальные отражатели (ДО).

На фиг. 7 представлен регулятор расходимости излучения (РРИ).

На фиг. 8 представлен задающий генератор, созданный на основе данного технического решения.

Излучатель лазера (фиг. 1) состоит из основания 1 в виде плиты и расположенных на ней одного или нескольких блоков лазерного вещества (БЛВ) 2, РРИ 3 и многозеркального оптического резонатора, состоящего из БРЗ 4, УО 5 и двух (первого и второго) ДО 6, 7. Под БЛВ понимается часть конструкции излучателя, служащая для размещения лазерного вещества, например, квантрон для твердотельного лазера, кювета с газом для газового лазера и т.п. Помимо этого на основании могут быть расположены и другие оптические элементы (на фигурах не показаны). Внутри основания 1 (фиг. 2) выполнены два (первый и второй) сквозных канала 1а и 1б.

БРЗ 4 (фиг. 3) содержит: корпус 8, две юстировочные оправы 9, крепежные элементы - винты 10, резонаторные (заднее и выходное) зеркала 11 и 12, рабочие поверхности 11а и 12а которых обращены в одну сторону. Каждое резонаторное зеркало крепится в котировочной оправе 9. Каждая из оправ 9 устанавливается на поверхность корпуса 8 тремя выступами 9а и прижимается винтами 10. Корпус 8 представляет собой единую деталь и содержит внутренний канал 8а для прохода излучения, соединенный с каналом 16 основания 1.

УО 5 (фиг. 4) содержи т: корпус 13, две юстировочные оправы 9 с выступами 9а, винты 10, пластину 14, три зеркала 15 с плоскими рабочими поверхностями 15а. Одно из зеркал 15 крепится непосредственно в корпусе, а два других в котировочных оправах 9, закрепленных на корпусе 13 аналогично зеркалам БРЗ. Возможен вариант, когда все три зеркала 15 крепятся в юстировочных оправах. Зеркала в УО 5 расположены таким образом, что их рабочие поверхности 15а перпендикулярны друг другу. Корпус 13 представляет собой единую деталь и содержит внутренний канал 13а для прохода излучения, который одним концом соединен с каналом 1а основания, а с другого конца закрыт пластиной 14, изготовленной из материала прозрачного для лазерного излучения.

Каждый ДО 6, 7 (фиг. 5) содержит: корпус 16 (17), две юстировочные оправы 9 с выступами 9а, винты 10, два зеркала 15 с плоскими рабочими поверхностями 15а. Каждое зеркало 15 крепится в котировочной оправе 9. Каждая из оправ 9 устанавливается на поверхность корпуса 16 аналогично зеркалам БРЗ. Зеркала в ДО расположены таким образом, что их рабочие поверхности 15а перпендикулярны друг другу. Каждый корпус 16 (17) представляют собой деталь с внутренним каналом 16а (17а) для прохода излучения. Второй ДО 7 установлен на первый ДО 6 гак, что рабочие поверхности 15а их зеркал попарно параллельны. С основанием 1 контактирует только корпус 16 первого ДО 6, при этом его канал 16а соединен одним концом с каналом 1а, а другим с каналом 1б корпуса 1.

В ряде случаев, если не требуется перемещения второго ДО относительно первого в процессе настройки и эксплуатации излучателя, их корпуса 16, 17 можно выполнить в виде единой детали.

Для увеличения жесткости конструкции и при наличии технологической возможности корпуса 8 и 13 можно изготовить в виде единой детали. Помимо этого любой из корпусов 8, 13, 16, 17 можно изготовить в виде единой с основанием 1 детали.

Оптическая связь заднего и выходного зеркал резонатора осуществляется с помощью зеркал УО, первого и второго ДО, которые обеспечивают сложение оптической оси резонатора с образованием четырех параллельных отрезков 18а, 18б, 18в, 18г (фиг. 6). Оптическая ось резонатора от заднего зеркала 11 (по нормали к его рабочей поверхности 11а) проходит до первого ДО 6 (отрезок 18а). затем, после отражения со смешением (отрезок 18д) в плоскости, параллельной основанию, проходит до УО 5 (отрезок 18б), затем, после отражения со смещением (отрезки 18е) в плоскости, перпендикулярной основанию, проходит до второго ДО 7 (отрезок 18в), затем, после отражения со смешением (отрезок 18ж) в плоскости, параллельной основанию проходит (отрезок 18г) до выходного резонаторного зеркала 12 (по нормали к его рабочей поверхности 12а). БЛВ 2 расположен на поверхности основания 1 между БРЗ 4 и УО 5 с одной стороны и вторым ДО 7 с друзой стороны так, что отрезки оптической оси 18в и (или) 18г проходят через лазерное вещество 2а.

Вокруг части оптической оси образован замкнутый пылезащитный объем 19, состоящий из каналов основания и каналов корпусов БРЗ, УО, первого ДО. Замкнутый объем начинается от прозрачной пластины 14 в УО 5, далее следует канал 13а корпуса УО, который соединяется с первым каналом 1а основания, первый канал la основания соединяется с каналом 16а корпуса первого ДО, который соединяется со вторым каналом 1б основания, канал основания соединяется с каналом 8а корпуса БРЗ, который соединяется с задним резонаторным зеркалом 11. Защита объема 19 от пыли осуществлена следующим образом: зеркала 15 УО 5, первого ДО 6 и заднее резонаторное зеркало 11 вклеиваются в юстировочные оправы 9, корпуса 8, 13, 16 устанавливаются на основание 1 без зазора, прозрачная пластина 14 вклеивается в корпус 13. Уплотнение юстировочных оправ 9 происходит за счет размещения уплотнительных элементов (в простейшем случае кольцевых резиновых прокладок) 20 между корпусами 8, 13, 16 и нерабочей поверхностью 9б котировочной оправы.

РРИ 3 (фиг. 7) может быть расположен (в зависимости от схемы) на любом из отрезков 18а, 18б, 18в, 18г и в простейшем случае представляет из себя линзу 21, установленную на основании при помощи элемента крепления 22, в качестве которого может выступать стойка, которая при необходимости позволяет регулировать положение линзы. 13 более сложном случае РРИ 3 состоит из собирающей линзы 21 и рассеивающей линзы 23. Линзы 21, 23 могут быть расположены в каналах 1а и 1б основания, при этом в качестве элементов фиксации могут выступать прижимы или клей.

При работе излучателя энергия накачки в БЛВ преобразуется в излучение, которое распространяется вдоль оптической оси резонатора и выводится через выходное зеркало. Для уменьшения длины оптической оси, при сохранении требуемого качества излучения, используется конфигурация, эквивалентная полуконфокальной, которая обеспечивается при помощи РРИ. Для обеспечения компактности конструкции оптическая ось сложена при помощи УО, а также первого и второго ДО, при этом часть отрезков оси проходит в каналах, выполненных внутри деталей резонатора. Расположение БЛВ и других габаритных оптических элементов лазерного излучателя при этом возможно только па основании. Применение УО повышает стабильность и надежность работы лазерного излучателя, что объясняется его свойством возвращать отраженный луч параллельно падающему. При этом правильность работы УО напрямую зависит от точности расположения ею зеркал, поэтому минимум два его зеркала юстируются. Юстировка углового положения зеркал УО, а также БРЗ и первою, второго ДО осуществляется путем удаления части материала выступов котировочных оправ. При этом следят за тем, чтобы рабочие поверхности трех выступов каждой оправы лежали в одной плоскости, что наряду с отсутствием каких-либо элементов (угловых котировочных подвижек, пружинящих или эластичных элементов, котировочных винтов) между котировочной оправой и корпусами БРЗ, УО, ДО обеспечивает стабильное угловое положение зеркал даже в условиях воздействия механических и термических нагрузок. На оптической оси в промежутке от РРИ до области перетяжки (горловины) луча, расположенной вблизи заднего резонаторного зеркала, плотность оптической энергии может возрасти настолько, что случайно попавшие частицы пыли будут вызывать оптический пробой и как следствие ухудшение работы излучателя и повреждение оптических элементов. Для предупреждения этого каналы деталей резонатора в области повышенной плотности энергии формируют герметичный объем, предотвращающий попадание пыли.

Описанное здесь техническое решение использовано при создании задающего генератора (фиг. 8) мощного импульсного твердотельного лазера с диодной накачкой и полностью подтвердило свою состоятельность. В качестве БЛВ использованы два квантрона, а в качестве РРИ собирающая и рассеивающая линзы. Параметры задающего генератора: диаметр выходного пучка - 2 мм, длина оптической оси резонатора - 900 мм. Габаритные размеры задающего генератора - 230×105×75 мм3. Масса - 2,2 кг. Задающий излучатель в составе лазера выдержал перевозку на расстояние более 1000 км и в процессе работы показал стабильность выходной энергии ± 1%.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в оптико-механической промышленности при изготовлении оптических излучателей лазеров;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».

1. Излучатель лазера содержит установленные на основание блок резонаторных зеркал и уголковый отражатель, в корпусах которых выполнены каналы для прохода излучения, и блок лазерного вещества, резонаторные зеркала оптически связаны между собой при помощи уголкового отражателя, отличающийся тем, что снабжен установленными на основании регулятором расходимости излучения, содержащим как минимум одну линзу, и первым двухзеркальным отражателем, на котором установлен второй двухзеркальный отражатель, в корпусах которых выполнены каналы для прохода излучения, резонаторные зеркала установлены на корпус в юстировочных оправах, зеркала каждого из первого и второго двухзеркальных отражателей установлены на корпус в юстировочных оправах и расположены таким образом, что их рабочие поверхности взаимно перпендикулярны и обращены в одну сторону, в основании выполнены каналы для прохода излучения, соединенные с соответствующими каналами в корпусах блока резонаторных зеркал, уголкового отражателя и первого двухзеркального отражателя с образованием замкнутого объема, между блоком резонаторных зеркал и уголковым отражателем с одной стороны и вторым двухзеркальным отражателем с другой стороны размещены блок лазерного вещества и регулятор расходимости излучения, резонаторные зеркала оптически связаны с уголковым отражателем через двухзеркальные отражатели, зеркала уголкового отражателя установлены на корпус, при этом минимум два из них установлены в юстировочных оправах.

2. Излучатель лазера по п. 1, отличающийся тем, что корпуса первого и второго двухзеркальных отражателей выполнены в виде единой детали.

3. Излучатель лазера по п. 1, отличающийся тем, что корпуса блока резонаторных зеркал и уголкового отражателя выполнены в виде единой детали.

4. Излучатель лазера по п. 1, отличающийся тем, что как минимум один из корпусов блока резонаторных зеркал, первого двухзеркального отражателя, уголкового отражателя выполнен в виде единой с основанием детали.



 

Похожие патенты:

Изобретение относится к лазерной технике. Способ создания импульсного повторяющегося разряда в газе заключается в выполнении следующих действий: размещают в электроразрядной камере две пары электродов так, что катод и анод в каждой паре находятся на противоположных поверхностях электроразрядной камеры, а угол пересечения линий, соединяющих центры симметрии рабочих поверхностей обеих пар электродов, составляет от 45 до 135°.

Способ относится к области передачи информации и касается способа модуляции лазерного луча кварцевым резонатором с уголковыми отражателями. Способ включает в себя использование расположенного в одной плоскости набора прямоугольных тетраэдров с взаимно перпендикулярными зеркальными отражающими плоскостями.

Группа изобретений относится к активным волоконным световодам с полностью волоконными вводом излучения накачки в первую оболочку. Волоконный световод-конус для усиления оптического излучения содержит сердцевину из кварцевого стекла, легированного ионами редкоземельных элементов и дополнительными легирующими добавками (например, Ge, Al, Р, F, В), взятыми вместе или по отдельности, при этом диаметр сердцевины увеличивается по длине световода.

Изобретение относится к лазерной технике. Волоконный лазер, генерирующий сверхкороткие импульсы, содержит волоконный усилитель, вытянутый в свободном пространстве и характеризующийся наличием многомодовой (ММ) светонесущей легированной сердцевины, которая направляет импульсы субнаносекундной длительности одномодового (ОМ) линейно-поляризованного сигнального светового пучка в направлении распространения.

Изобретение относится к лазерной технике. Азотный лазер, возбуждаемый продольным электрическим разрядом, содержит цилиндрическую секционированную разрядную трубку с азотом, включающую электроды для зажигания продольного электрического разряда, зарядный и разрядный контуры для импульсного питания разряда и резонатор для формирования лазерного пучка.

Изобретение относится к лазерной технике. Активный элемент твердотельного лазера выполнен из прозрачного материала в виде полого тонкостенного цилиндра, высота которого много меньше его внутреннего и внешнего диаметров.

Изобретение относится к лазерной технике. Способ стабилизации длины волны узкополосного волоконного лазера заключается в том, что подавляют возникающий модовый перескок, выравнивая скорости изменения собственной частоты кольцевого резонатора узкополосного волоконного лазера и центральной частоты отражения волоконной брегговской решетки, термостатируя основание узкополосного волоконного лазера нагревательным элементом при температуре основания кольцевого волоконного лазера выше температуры окружающей среды, при этом нагрев основания осуществляют неравномерно с уменьшением температуры от центра к периферии основания, определяя распределение температуры по поверхности основания 1 из математического соотношения, а охлаждение основания узкополосного волоконного лазера производят через радиатор с воздушным охлаждением.

Изобретение относится к лазерной технике, а именно к способам настройки оптических резонаторов, содержащих выходное и заднее зеркала с плоскими либо со сферическими рабочими поверхностями и уголковый отражатель, и может быть использовано при создании лазерной техники и оптических приборов, сохраняющих свою работоспособность при воздействии механических и термических нагрузок.

Изобретение относится к лазерной технике. СО2-лазер включает неустойчивый лазерный резонатор в виде первого оптического резонатора, имеющего полупрозрачное выходное зеркало, лазерную среду в неустойчивом резонаторе лазера, и средство для возбуждения лазерной среды.

Способ формирования пакетов лазерных импульсов заключается в повторяющемся разделении лазерного импульса на два импульса, которые задерживаются во времени друг относительно друга и затем объединяются обратно.

Изобретение относится к лазерной технике. Лазер с модуляцией добротности и синхронизацией мод содержит в первом плече оптического резонатора последовательно расположенные первое концевое зеркало, акустооптический модулятор, активный элемент и первое вспомогательное зеркало, а в другом плече вторые вспомогательное и концевое зеркала, между которыми устанавливается нелинейный элемент.

Изобретение относится к лазерной технике. Многопроходное импульсное лазерное устройство включает импульсный задающий генератор, фокусирующую линзу, пространственный фильтр, состоящий из двух линз и размещенного между ними диафрагменного узла с несколькими отверстиями, одно из которых является первым и предназначено для заведения луча от задающего генератора, а другие отверстия предназначены для заведения отраженных лучей, заводящее зеркало, размещенное перед первым отверстием диафрагменного узла, отражатель лазерных лучей в виде первого глухого торцевого зеркала, которое установлено в фокальной плоскости линзы пространственного фильтра со стороны заводящего зеркала.

Изобретение относится к лазерной технике. .

Изобретение относится к области квантовой электроники и лазерной физики и может найти свое применение при разработке твердотельных лазеров, в научных исследованиях, в медицине и технике.

Изобретение относится к области лазерной физики и может быть использовано при получении импульсов лазерного излучения длительностью 0,01-1нс. .

Изобретение относится к квантовой электронике и может быть использовано в создании лазерных систем наведения, навигации и пеленгации. .

Изобретение относится к лазерной технике. .

Изобретение относится к квантовой электронике, а именно к отпаянным (герметичным) моноблочным газовым лазерам, в которых возбуждается продольный электрический разряд в длинном складном резонаторе и которые обладают высокой надежностью, стабильными параметрами выходного излучения в сложных условиях эксплуатации (при перепадах температуры окружающей среды, ударных нагрузках, вибрации) и вместе с тем имеют относительно простую конструкцию малых размеров и массы, технологичную и нетрудоемкую в изготовлении.

Резонатор // 2025008
Изобретение относится к электродинамике, лазерной оптике и может быть использовано, например, в волноводных лазерах с селективной накачкой. .
Наверх