Система диагностики цепи и способ диагностики скребковых конвейеров

Данное изобретение представляет собой систему диагностики неисправностей цепных скребковых конвейеров, содержащую розетку тензодатчиков, прикрепленных к верхней торцевой поверхности зубцов звездочки скребкового конвейера. Розетка тензодатчиков соединена с блоком сбора сигналов, закрепленным на валу скребкового конвейера, с помощью экранированного проводника; блок сбора сигналов отправляет собранные сигналы на беспроводное приемное устройство по беспроводному каналу, а беспроводное приемное устройство передает собранные полученные сигналы на промышленный управляющий компьютер через интерфейс USB. Способ диагностики состоит из трех этапов: определение неисправностей сдвига/пропуска цепи, определение обрыва цепи и определение неисправности заедания цепи. Изобретение обеспечивает техническую поддержку всестороннего мониторинга состояния цепи скребкового конвейера путем измерения величины натяжения зубцов звездочки в разных направлениях в режиме реального времени, передачи собранных сигналов на промышленный управляющий компьютер по беспроводной сети и динамическую диагностику неисправностей заедания, смещения, проскальзывания и обрыва цепи скребкового конвейера на основе полученных данных о натяжении. 2 н. и 2 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к области мониторинга состояния и обеспечения работы скребковых конвейеров, в частности к системе диагностики и способу диагностики цепи скребкового конвейера.

Технологические принципы

Скребковый конвейер является важным производственным и транспортным оборудованием полностью механизированного угольного шахтного комбайна, он играет важную роль при транспортировке угля, обеспечивая опорную точку для движения гидравлического упора и обеспечивая проходной трек угледобывающей машины, надежность его напрямую влияет на безопасную и эффективную работу современной угольной шахты. Цепь скребка - это механизм скребкового конвейера, наиболее подверженный повреждениям. Неисправности цепи скребка составляют примерно 40% от общего количества неисправностей скребкового конвейера. В случае смещения цепи скребкового конвейера скребок становится наклонно, что приводит к повреждению цепи или в тяжелых случаях к повреждению скребкового конвейера. Как только происходит обрыв цепи или другие неисправности, то для технического обслуживания требуется длительное время, что значительно ограничивает эффективность производства крупных китайских угольных шахт.

Натяжение цепи скребкового конвейера в Китае и других странах получают в основном косвенным путем: изменяя давление масляного цилиндра, изменяя цепную подвеску, изменяя мощность и т.д. Когда скребковый конвейер работает, цепь качается, так что трудно точно измерить цепную подвеску. Изменением давления масляного цилиндра можно получить только общее натяжение двух цепей скребкового конвейера и трудно обнаружить неисправности, такие как обрыв цепи. Существующие способы обнаружения состояния скребкового транспортера в основном фокусируются на неисправности обрыва цепи, и не могут отслеживать неисправности, связанные с перекосом, пропусками и заеданием цепи. Например, в патенте на изобретение ZL 201410503491.1, обнаружение неисправности обрыва цепи реализуется путем установки датчика напряжения на поверхности зубца звездочки, контактирующего с цепью. Так как датчик контактирует с цепью и проскальзывает относительно нее, то существует вероятность его истирания и отказа, поэтому сложно обнаружить неисправности, связанные с заеданием, смещением и пропуском цепи. В патенте на изобретение ZL 201110052986.3, неисправность обрыва цепи, вызванная наклоном цепи скребкового конвейера, может быть предсказана и обнаружена с помощью принципа электромагнитной индукции. Результат обнаружения сильно затруднен условиями работы, а неисправности, связанные с заеданием и смещением цепи, не могут быть диагностированы.

Описание изобретения

Данное изобретение направлено на преодоление недостатков существующей технологии, обеспечение системы диагностики и способа диагностики цепи скребкового конвейера и решение проблемы, связанной с трудностями обнаружения в реальном времени неисправностей, связанных с заеданием, обрывом, смещением и пропуском цепи скребкового конвейера.

Для достижения вышеуказанной цели в изобретении используется следующая техническая схема: система диагностики неисправности цепи скребкового конвейера, содержащего вал скребкового конвейера и две звездочки, которые, как двухрядные шестерни, расположены с интервалами на валу скребкового конвейера, на каждой из которых установлена цепь; система диагностики содержит розетку тензодатчиков, закрепленных на верхней торцевой поверхности зубцов звездочки скребкового конвейера, причем розетка тензодатчиков соединена с блоком сбора сигналов, закрепленном на валу скребкового конвейера с помощью экранированного проводника, модуль беспроводной передачи блока сбора сигналов отправляет собранные сигналы на беспроводное приемное устройство по беспроводной линии передачи, а беспроводное приемное устройство передает полученные собранные сигналы на промышленный управляющий компьютер через интерфейс USB.

Розетка тензодатчиков содержит 90°-ый тензодатчик, расположенный параллельно центральной оси звездочек и 0°-ый тензодатчик, расположенный вертикально 90°-му тензодатчику.

Предпочтительно блок сбора сигналов содержит модуль электропитания, который соединен со схемой формирования сигнала, MCU чипом микроконтроллера и модулем беспроводной передачи соответственно, причем MCU чип микроконтроллера подключен к схеме формирования сигнала, модулю хранения и модулю беспроводной передачи соответственно.

Предпочтительно, как 0°-ый тензодатчик, так и 90°-ый тензодатчик являются резистивными с температурной компенсацией.

Способ диагностики неисправности цепи скребкового конвейера, основанный на вышеуказанной диагностической системе, включает три этапа на которых проводят: определение неисправности смещения/пропуска цепи, определение неисправности обрыва и заедания цепи:

для определения неисправности смещения/пропуска цепи: рассчитывают разность между результатами измерений 90°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на одной звездочке; если , и это верно для множества зубцов звездочки, считается, что скребок наклонен; при наклоне скребка, далее вычисляется разность между результатами измерения 0°-ых тензодатчиков на поверхностях верхнего конца двух зубцов звездочки в одном и том же положении на двух звездочках на той же оси вала; если , считается, что происходит неисправность смещения/пропуска цепи; и

Для определения неисправности обрыва цепи: рассчитывают разность между результатами измерений 0°-ых тензодатчиков на верхних торцевых поверхностях зубцов звездочки в одном и том же положении на обоих звездочках на той же оси вала; если внезапно увеличивается и превышает установленное пороговое значение J3, и это справедливо для множества непрерывных зубцов звездочки, считается, что возникла неисправность обрыва цепи; причем установленное пороговое значение J3 может составлять .

определение неисправности заедания цепи: когда результаты измерений 0°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на обоих звездочках внезапно увеличиваются и превышают установленное пороговое значение J4, если результаты измерения 0°-ых тензодатчиков не имеют периодических и чередующихся изменений, считается, что возникла неисправность заедания цепи; причем установленное пороговое значение J4 не более чем в 1,5 раза превышает результат измерения соответствующего 0°-го тензодатчика в нормальном состоянии.

Преимущество изобретения, заключающееся в том, что транспортировка угля осуществляется с помощью вращающейся звездочки скребкового конвейера, которая приводит в движение цепь, и рабочее состояние цепи непосредственно связано с деформацией звездочки. Например, в случае обрыва цепи разность деформаций двух зубцов звездочки в направлении движения цепи увеличивается; в случае неисправности заедания цепи, деформации двух зубцов звездочки в направлении движения цепи внезапно увеличиваются; в случае неисправности сдвига/пропуска цепи, два зубца звездочки сильно деформируются как в направлении движения цепи, так и в направлении оси вала скребкового конвейера. В соответствии с изобретением на основе вышеприведенного принципа обеспечивается техническая поддержка всестороннего мониторинга состояния цепи скребкового конвейера путем измерения величины деформации в разных направлениях зубцов звездочки в режиме реального времени, передачи собранных сигналов на промышленный управляющий компьютер по беспроводной линии передачи и динамическая диагностика неисправностей заедания, смещения, пропуска и обрыва цепи скребкового конвейера на основе полученных данных о напряжениях.

Краткое описание фигур

На фиг. 1 показана структурная схема системы согласно изобретению;

На фиг. 2 показана структурная схема блока сбора сигналов согласно изобретению.

Обозначения на фигурах: 1 - розетка тензодатчиков, 2 - экранированный проводник, 3 - блок сбора сигналов, 4 - беспроводное приемное устройство и 5 - промышленный управляющий компьютер.

Конкретная реализация

Изобретение будет дополнительно объяснено в сочетании с прилагаемыми чертежами.

Как показано на фиг. 1 и 2, в системе диагностики повреждения цепи скребкового конвейера согласно изобретению. Скребковый конвейер, содержащий вал скребкового конвейера и две звездочки, которые, как двухрядные шестерни, расположены с интервалами на валу скребкового конвейера на каждой из которых установлена цепь; система диагностики содержит розетку тензодатчиков 1, прикрепленных к верхней торцевой поверхности зубцов звездочки скребкового конвейера, причем розетка тензодатчиков 1 соединена с блоком 3 сбора сигналов, закрепленного на валу скребкового конвейера экранированным проводником 2, модуль беспроводной передачи блока сбора сигналов 3 отправляет собранный сигнал на беспроводное приемное устройство 4 по беспроводной линии передачи, а беспроводное приемное устройство 4 передает полученный собранный сигнал, на промышленный управляющий компьютер 5 через интерфейс USB.

Розетка тензодатчиков содержит 90°-ый тензодатчик, расположенный параллельно центральной оси звездочек и 0°-ый тензодатчик, расположенный вертикально 90°-му тензодатчику. Как 0°-ый тензодатчик так и 90°-ый тензодатчик являются резистивными с температурной компенсацией. 0°-ый тензодатчик измеряет деформацию зубцов звездочки в направлении движения цепи; а 90°-ый тензодатчик измеряет деформацию зубцов звездочки в направлении, вертикальном по направлению движения цепи.

Блок 3 сбора сигналов содержит модуль электропитания, который соединен со схемой формирования сигнала, MCU чипом микроконтроллера и модулем беспроводной передачи соответственно, причем MCU чип микроконтроллера подключен к схеме формирования сигнала, модулю хранения и модулю беспроводной линии передачи, соответственно.

Способ диагностики неисправности цепи скребкового конвейера, основанный на вышеуказанной диагностической системе, состоит из трех этапов на которых проводят: определение неисправности смещения/пропуска цепи, определение неисправности обрыва цепи и определение неисправности заедания цепи:

Определение неисправность смещения/пропуска цепи: во время нормальной работы натяжения обоих цепей скребкового конвейера в основном одинаковы, и деформация верхних торцевых поверхностей двух зубцов звездочки в одном и том же положении на одной и той же звездочке в направлении, вертикальном по отношению к цепи одинаковы; рассчитывается разность между результатами измерений 90°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на одной звездочке; если и это верно для множества зубцов звездочки, то считается, что скребок наклонен; если скребок наклонен, далее вычисляется разность между результатами измерений 0°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на двух звездочках на одной и той же оси вала; если , то считается, что произошел обрыв/пропуск цепи;

и

Определение неисправности обрыва цепи: в случае обрыва цепи деформация зуба звездочки при обрыве цепи внезапно уменьшается, а деформация зуба звездочки, у не оборванной цепи внезапно возрастает разность между результатами измерений 0°-ых тензодатчиков на верхних торцевых поверхностях зубцов звездочки в одном и том же положении на двух звездочках на той же оси вала; если внезапно увеличивается и превышает установленное пороговое значение J3, и это справедливо для множества непрерывных зубцов звездочки, считается, что возникла неисправность обрыва цепи; пороговое значение J3 может составлять

Определение неисправности заедания цепи: в случае неисправности заедания цепи напряжение обоих цепей внезапно увеличивается, и не происходит последовательного периодического чередующегося изменения; когда результаты измерений 0°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на двух звездочках одновременно увеличиваются и превышают установленное пороговое значение J4, если результаты измерения 0°-ых тензодатчиков не имеют периодических и чередующихся изменений, считается, что произошла неисправность заедания цепи; причем установленное пороговое значение J4 не более чем в 1,5 раза превышает результат измерения соответствующего 0°-го тензодатчика в нормальном состоянии.

Вышеприведенное описание является предпочтительным вариантом осуществления изобретения. Следует отметить, что специалистом в этой технической области могут быть сделаны многочисленные улучшения и модификации без отхода от принципа изобретения, которые также следует рассматривать как подпадающие под объем защиты изобретения.

1. Система диагностики неисправности цепи скребкового конвейера, содержащего вал скребкового конвейера и две звездочки, которые представляют собой двухрядные шестерни, расположенные с интервалами на валу скребкового конвейера, на каждой из которых установлена цепь, отличающаяся тем, что эта система диагностики содержит розетку (1) тензодатчиков, закрепленных на верхней торцевой поверхности зубцов звездочки скребкового конвейера, причем розетка (1) тензодатчиков соединена с блоком сбора сигналов (3), закрепленным на валу скребкового конвейера с помощью экранированного проводника (2), модуль беспроводной передачи блока сбора сигналов (3) отправляет собранные сигналы в беспроводное приемное устройство (4) через беспроводную линию передачи, а беспроводное приемное устройство (4) передает полученные собранные сигналы промышленному управляющему компьютеру (5) через интерфейс USB; причем розетка тензодатчиков содержит 90°-ый тензодатчик, расположенный параллельно центральной оси звездочек, и 0°-ый тензодатчик, расположенный вертикально 90°-му тензодатчику.

2. Система диагностики неисправности цепи скребкового конвейера по п. 1, отличающаяся тем, что блок (3) сбора сигналов содержит модуль электропитания, который соединен со схемой формирования сигнала, MCU чипом микроконтроллера и модулем беспроводной передачи соответственно, в котором MCU чип микроконтроллера подключен к схеме формирования сигнала, модулю хранения и модулю беспроводной передачи соответственно.

3. Система диагностики неисправности цепи скребкового конвейера по п. 1, отличающаяся тем, что как 0°-ый тензодатчик, так и 90°-ый тензодатчик представляют собой резистивные тензодатчики с температурной компенсацией.

4. Способ диагностики цепной неисправности скребкового конвейера на основе системы диагностики по п. 1, отличающийся тем, что способ состоит из трех этапов: определение неисправности смещения/пропуска цепи, определение неисправности обрыва цепи и определение неисправности заедания цепи, на которых проводят:

определение смещения/пропуска цепи: рассчитывается разность между результатами измерений 90°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на одной звездочке; если , и условие верно для множества зубцов звездочки, считается, что скребок наклонен; если скребок наклонен, то далее вычисляется разность между результатами измерения 0°-ых тензодатчиков на верхних торцевых поверхностях обоих зубцов звездочки в одном и том же положении на обеих звездочках на той же оси вала; если, считается, что возникает неисправность смещения/пропуска цепи; если и

определение неисправности обрыва цепи: определяется разница между результатами измерений 0°-ых тензодатчиков на верхних торцевых поверхностях зубцов звездочки в одном и том же положении на обеих звездочках на той же оси вала; если внезапно увеличивается и превышает установленное пороговое значение J3, причем это справедливо для множества непрерывных зубцов звездочки, считается, что возникает неисправность обрыва цепи; причем установленное пороговое значение J3 может составлять

определение неисправности заедания цепи: если результаты измерений 0°-ых тензодатчиков на верхних торцевых поверхностях двух зубцов звездочки в одном и том же положении на двух звездочках внезапно увеличиваются и превышают установленное пороговое значение J4 и если результаты измерения 0°-ых тензодатчиков не имеют периодических и чередующихся изменений, считается, что возникает неисправность заедания цепи; причем установленное пороговое значение J4 в 1,5 раза превышает результат измерения соответствующего 0°-ого тензодатчика в нормальном состоянии.



 

Похожие патенты:

Изобретение относится к железнодорожной автоматике на сортировочных станциях для контроля заполнения пути. Устройство содержит две волоконно-оптические линии, на контролируемом участке вдоль рельсовой линии на ее противоположных сторонах, одна из линий подключена к источнику монохроматического излучения и состоит из последовательно соединенных оптических Y-разветвителей, при этом выход каждого из них соединен с последующим через оптический усилитель, другая линия подключена к фотоприемнику и состоит из последовательно соединенных оптических Y-объединителей, каждый из которых расположен напротив соответствующего Y-разветвителя, при этом второй выход Y-разветвителя, вход которого подключен к источнику монохроматического излучения, соединен со вторым входом Y-объединителя, подключенного выходом к фотоприемнику, второй выход каждого последующего Y-разветвителя соединен посредством установленного под рельсовой линией датчика на основе брэгговской решетки со вторым входом расположенного напротив него Y-объединителя, а первый выход последнего в линии Y-разветвителя соединен посредством установленного под рельсовой линией датчика на основе брэгговской решетки с первым входом расположенного напротив него Y-объединителя.

Изобретение относится к способам измерения механических свойств материалов, в том числе механических напряжений, с использованием оптических приборов для анализа напряжений.

Устройство относится к измерительной технике, в частности к измерениям вместимостей замкнутых герметизированных объемов в различных сложных системах и установках, имеющих отношение к вакуумной технике, с возможностью размещения внутри их объемов пористых материалов и/или элементов конструкций из них.
Изобретение относится к контрольно-измерительной технике, в частности к области диагностики напряженно-деформированного состояния упругих объектов, в частности рельсовых плетей бесстыкового пути.

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик измерения механических деформаций содержит прямоугольную пластину, выполненную с поперечными разрезами, обеспечивающими возможность ее растяжения в продольном направлении, в посадочном месте прямоугольной пластины размещен дополнительно введенный миниатюрный соленоид, подключенный к третьей паре контактных площадок, внутри которого размещен магниточувствительный элемент, при этом миниатюрный соленоид соединен через третью пару контактных площадок с источником постоянного тока, источник переменного тока соединен через первую пару контактных площадок с аморфным ферромагнитным микропроводом и выполнен в виде генератора переменного тока частоты f, усилитель сигналов дифференциальной измерительной катушки усиливает сигналы частоты 2f.

Изобретение относится к измерительной технике, в частности к измерению температуры и давления. Способ измерения давления и температуры тензомостом включает подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+.

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик конструктивно объединяет магниточувствительный элемент и электронное измерительное устройство.

Группа изобретений относится к медицине. Хирургическая консоль содержит: нажимную пластину; и модуль датчика давления, содержащий датчик усилия; при этом нажимная пластина выполнена с возможностью перемещения относительно модуля датчика давления; и модуль датчика давления выполнен с возможностью измерения усилия, приложенного к модулю датчика давления эластичным контейнером, расположенным между модулем датчика давления и нажимной пластиной, причем указанное усилие используется для определения давления, связанного с эластичным контейнером.

Изобретение относится к измерениям в скважине в процессе бурения. Техническим результатом является увеличение срока службы забойного двигателя за счет снижения нагрузок на эластомерный статор.

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Использование: для измерения и регистрации сил взаимодействия между колесом и рельсом. Сущность изобретения заключается в том, что устройство сбора информации результатов взаимодействия между колесом и рельсом содержит железнодорожную колесную пару с криволинейным S-образным диском, тензометрические датчики, включенные в полумостовые схемы и размещенные на двух концентрических окружностях 398,2 мм и 586,6 мм на внутренней стороне диска колеса в местах пересечения с осями, которые проходят через их центр и смещены друг относительно друга на угол 22,5°, оборудование сбора и беспроводной передачи данных, связанное через маршрутизатор с модулем приемки сигналов и бортовым компьютером по протоколу IEEE 802.11g «Wi-Fi».

Изобретение относится к способам измерения осевых и радиальных сил, воздействующих на работающий подшипник качения, и может найти применение во всех узлах, имеющих подшипники качения.

Использование: для создания тензорезисторных датчиков деформации и давления. Сущность изобретения заключается в том, что биполярный датчик содержит тонкую пленку толщиной 0,05-0,5 мкм из композиционного наноматериала в составе бычьего сывороточного альбумина или микрокристаллической целлюлозы и многостенных углеродных нанотрубок.

Использование: для создания тензометрических средств измерения давления контактного типа. Сущность изобретения заключается в том, что способ тензоэлектрического преобразования напряженно-деформированного состояния тензочувствительной консоли заключается в измерении мостовым методом изменения электрического сопротивления тонкой металлической пленки, нанесенной на упругий диэлектрический слой, при этом одновременно измеряют изменение электрической емкости, образованной между смежными тонкими металлическими пленками, планарно свободными относительно друг друга и разделенными диэлектрическими слоями.

Данное изобретение относится к измерительной технике и может быть использовано для измерения силы. Датчик, содержащий стержневое тело деформации, а также по меньшей мере четыре экстензометра, которые установлены на теле деформации и предназначены для измерения поперечного и продольного удлинения тела деформации.

Изобретение относится к измерительной технике, в частности к измерению температуры и давления. Способ измерения давления и температуры тензомостом включает подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+.

Изобретение относится к измерительной технике, в частности к измерению температуры и давления. Способ измерения давления и температуры тензомостом включает подачу тока на диагональ питания тензомоста и измерение напряжения на измерительной диагонали U+.

Изобретение относится к области измерительной техники и может быть использовано для весовых измерений в части измерений сигналов с первичных преобразователей силы (тензодатчиков).

Изобретение относится к измерительной технике и может быть использовано для регистрации нагрузок, в частности осевого усилия от вращающихся деталей, таких как валы или цапфы турбомашин.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия между колесом и рельсом. Техническим результатом является повышение точности измерения сил взаимодействия колеса с рельсом за счет уменьшения влияния на измерения вертикальных сил, поперечного смещения колеса относительно рельса и расширения частотного диапазона измеряемых вертикальных и боковых (горизонтальных) сил, возникающих при контакте колеса с рельсом при прохождении по геометрическим, стыковым неровностям пути и волнообразным неровностям на поверхности катания рельса.

Конвейерное устройство содержит бесконечно замкнутую ленту (1), к которой прикреплены ковши (2), взаимодействующие с барабанами. По всей длине ленты по ломаной линии между ковшами расположены бесконечно замкнутые стальные тросы (3).
Наверх