Компенсационный стабилизатор напряжения

Изобретение относится к области вторичных источников электропитания и может быть использовано в структуре систем на кристалле (СнК). Технический результат: уменьшение амплитуды «провалов» и «всплесков» выходного напряжения компенсационного стабилизатора напряжения (КСН) при импульсных токах нагрузки, для случая, когда численные значения емкостей применяемых конденсаторов сравнительно малы. Это позволяет размещать КСН на подложке СнК, а также уменьшить время переходного процесса в КСН при коммутации источника опорного напряжения с помощью цифровой системы управления. Компенсационный стабилизатор напряжения содержит входную (1) шину питания, выход (2) устройства, к которому подключена цепь нагрузки (3), регулирующий элемент (4), токовый выход которого (5) соединен с выходом устройства (2), низкоомный вход (6) регулирующего элемента (4) связан с входной (1) шиной питания, а управляющий вход (7) - подключен к выходу токового зеркала (8), согласованного с входной (1) шиной питания, а также к первому (9) корректирующему конденсатору и первому (10) токовому выходу дифференциального усилителя сигнала рассогласования (11), вход токового зеркала (8), связанный со вторым (12) токовым выходом дифференциального усилителя сигнала рассогласования (11), первый (13) токостабилизирующий двухполюсник, включенный между объединенной эмиттерной цепью транзисторов (14) дифференциального усилителя сигнала рассогласования (11) и общей шиной источника питания (15), причем первый (16) вход дифференциального усилителя сигнала рассогласования (11) подключен к источнику опорного напряжения (17), а выход (2) устройства связан со вторым (18) входом дифференциального усилителя сигнала рассогласования (11). В схему введен дополнительный транзистор (19), база которого связана со вторым (18) входом дифференциального усилителя сигнала рассогласования (11), коллектор подключен к общей шине источника питания (15), а эмиттер соединен с входной (1) шиной питания через второй (20) токостабилизирующий двухполюсник, причем эмиттер первого (19) дополнительного транзистора связан с объединенной эмиттерной цепью транзисторов (14) дифференциального усилителя сигнала рассогласования (11) через второй (21) корректирующий конденсатор. 3 з.п. ф-лы, 9 ил.

 

Изобретение относится к области вторичных источников электропитания (ВИЭП) и может быть использовано в структуре систем на кристалле (СнК), не допускающих применение (с целью уменьшения уровня «всплесков» и «провалов» выходного напряжения под действием импульсных токов нагрузки) конденсаторов большой емкости и, как следствие, больших габаритов.

В современной микроэлектронике, в задачах космического приборостроения и низкотемпературных интерфейсах широко применяются компенсационные стабилизаторы напряжения (КСН), имеющие классическую архитектуру [1-20] (источник опорного напряжения, дифференциальный усилитель сигнала рассогласования и регулирующий элемент с токовым выходом).

Наиболее близким по технической сущности к заявляемому устройству является компенсационный стабилизатор напряжения, представленный в патенте US 7.847.645, fig. 9, 2010 г. Он содержит входную 1 шину питания, выход 2 устройства, к которому подключена цепь нагрузки 3, регулирующий элемент 4, токовый выход которого 5 соединен с выходом устройства 2, низкоомный вход 6 регулирующего элемента 4 связан с входной 1 шиной питания, а управляющий вход 7 - подключен к выходу токового зеркала 8, согласованного с входной 1 шиной питания, а также к первому 9 корректирующему конденсатору и первому 10 токовому выходу дифференциального усилителя сигнала рассогласования 11, вход токового зеркала 8, связанный со вторым 12 токовым выходом дифференциального усилителя сигнала рассогласования 11, первый 13 токостабилизирующий двухполюсник, включенный между объединенной эмиттерной цепью транзисторов 14 дифференциального усилителя сигнала рассогласования 11 и общей шиной источника питания 15, причем первый 16 вход дифференциального усилителя сигнала рассогласования 11 подключен к источнику опорного напряжения 17, а выход 2 устройства связан со вторым 18 входом дифференциального усилителя сигнала рассогласования 11. Различные модификации данного КСН приведены в [1-20]. Во многих практических схемах КСН [1-20] роль первого 9 корректирующего конденсатора выполняет специально включаемый в высокоимпедансный узел 7 элемент частотной коррекции, обеспечивающий устойчивость КСН по петле отрицательной обратной связи. В частных случаях функции первого 9 корректирующего конденсатора может выполнять выходная емкость токового зеркала 8, входная емкость регулирующего элемента 4 и выходная емкость по первому 10 токовому выходу дифференциального усилителя сигнала рассогласования 11.

Особенность схемы КСН-прототипа состоит в том, что его источник опорного напряжения 17 выполнен по схеме с коммутацией уровня выходного напряжения, которая обеспечивается транзисторными ключами. При таком схемотехническом решении дифференциальный усилитель сигнала рассогласования 11 в КСН-прототипе не обеспечивает высокие динамические параметры при переключении с одного уровня выходного напряжения на другой с помощью цифровой системы управления.

Существенный недостаток известного КСН состоит в том, что при его реализации в составе систем на кристалле (СнК), когда невозможно применять на выходе КСН конденсаторы большой емкости (более 70-100пФ), наблюдаются значительные «провалы» и «всплески» выходного напряжения при импульсных токах нагрузки. Это не позволяет создавать на основе известного КСН модули электропитания СнК, реализуемые по многим перспективным технологическим процессам. Кроме этого, КСН-прототип не позволяет обеспечить быстрый переход с одного уровня выходного напряжения на другой за счет коммутации источника опорного напряжения 17.

Основная задача предполагаемого изобретения состоит в уменьшении амплитуды «провалов» и «всплесков» выходного напряжения КСН при импульсных токах нагрузки, для случая, когда численные значения емкостей применяемых конденсаторов сравнительно малы. Это позволяет размещать КСН на подложке СнК. Дополнительная задача предполагаемого изобретения – уменьшение времени переходного процесса в КСН при коммутации источника опорного напряжения с помощью цифровой системы управления.

Поставленные задачи решаются тем, что в стабилизаторе напряжения фиг. 1, содержащем входную 1 шину питания, выход 2 устройства, к которому подключена цепь нагрузки 3, регулирующий элемент 4, токовый выход которого 5 соединен с выходом устройства 2, низкоомный вход 6 регулирующего элемента 4 связан с входной 1 шиной питания, а управляющий вход 7 - подключен к выходу токового зеркала 8, согласованного с входной 1 шиной питания, а также к первому 9 корректирующему конденсатору и первому 10 токовому выходу дифференциального усилителя сигнала рассогласования 11, вход токового зеркала 8, связанный со вторым 12 токовым выходом дифференциального усилителя сигнала рассогласования 11, первый 13 токостабилизирующий двухполюсник, включенный между объединенной эмиттерной цепью транзисторов 14 дифференциального усилителя сигнала рассогласования 11 и общей шиной источника питания 15, причем первый 16 вход дифференциального усилителя сигнала рассогласования 11 подключен к источнику опорного напряжения 17, а выход 2 устройства связан со вторым 18 входом дифференциального усилителя сигнала рассогласования 11, предусмотрены новые элементы и связи – в схему введен дополнительный транзистор 19, база которого связана со вторым 18 входом дифференциального усилителя сигнала рассогласования 11, коллектор подключен к общей шине источника питания 15, а эмиттер соединен с входной 1 шиной питания через второй 20 токостабилизирующий двухполюсник, причем эмиттер первого 19 дополнительного транзистора связан с объединенной эмиттерной цепью транзисторов 14 дифференциального усилителя сигнала рассогласования 11 через второй 21 корректирующий конденсатор.

На чертеже фиг.1 показана схема КСН-прототипа. Здесь и далее источник тока ΔIн моделирует импульсное изменение тока нагрузки 3.

На чертеже фиг. 2 представлена схема заявляемого устройства в соответствии с п. 1 формулы изобретения, а на чертеже фиг. 3 – в соответствии с п. 2 формулы изобретения.

На чертеже фиг. 4 приведена схема заявляемого устройства в соответствии с п. 3 и п. 4 формулы изобретения.

На чертеже фиг.5 показана схема заявляемого устройства фиг. 3 в среде компьютерного моделирования LTSpice на моделях транзисторов АБМК 2.2-1.

На чертеже фиг. 6 представлена зависимость выходного напряжения заявляемого стабилизатора фиг. 5 от статического тока нагрузки при I3=10 мкА, R1=RН=2 кОм, С3ВЫХ=80 пФ, UОП=V3 =3В для разных токов I1=I2=I0 .

На чертеже фиг. 7 приведена зависимость выходного напряжения стабилизатора фиг. 5 от импульсов тока нагрузки ΔIн=5 мА при I1= I2=50 мкА, I3=10 мкА, R1=RН=2 кОм, C3ВЫХ= 80 пФ, UОП=V3=3В для разных значений емкости второго 21 корректирующего конденсатора С212: а) С212=0.02 пФ, б) С212 =20 пФ.

На чертеже фиг. 8 показана схема предлагаемого стабилизатора напряжения фиг. 2 для КМОП (XFAB) технологического процесса в среде моделирования Cadence.

На чертеже фиг. 9 представлена зависимость амплитуды «всплесков – провалов» выходного напряжения КСН фиг. 8  (полный размах колебаний, В) от емкости второго 21 корректирующего конденсатора С213.

Компенсационный стабилизатор напряжения фиг. 2 содержит входную 1 шину питания, выход 2 устройства, к которому подключена цепь нагрузки 3, регулирующий элемент 4, токовый выход которого 5 соединен с выходом устройства 2, низкоомный вход 6 регулирующего элемента 4 связан с входной 1 шиной питания, а управляющий вход 7 - подключен к выходу токового зеркала 8, согласованного с входной 1 шиной питания, а также к первому 9 корректирующему конденсатору и первому 10 токовому выходу дифференциального усилителя сигнала рассогласования 11, вход токового зеркала 8, связанный со вторым 12 токовым выходом дифференциального усилителя сигнала рассогласования 11, первый 13 токостабилизирующий двухполюсник, включенный между объединенной эмиттерной цепью транзисторов 14 дифференциального усилителя сигнала рассогласования 11 и общей шиной источника питания 15, причем первый 16 вход дифференциального усилителя сигнала рассогласования 11 подключен к источнику опорного напряжения 17, а выход 2 устройства связан со вторым 18 входом дифференциального усилителя сигнала рассогласования 11. В схему введен дополнительный транзистор 19 (фиг. 2), база которого связана со вторым 18 входом дифференциального усилителя сигнала рассогласования 11, коллектор подключен к общей шине источника питания 15, а эмиттер соединен с входной 1 шиной питания через второй 20 токостабилизирующий двухполюсник, причем эмиттер первого 19 дополнительного транзистора связан с объединенной эмиттерной цепью транзисторов 14 дифференциального усилителя сигнала рассогласования 11 через второй 21 корректирующий конденсатор.

На чертеже фиг. 3, в соответствии с п.2 формулы изобретения, в схему введен второй 22 дополнительный транзистор, база которого подключена к первому 16 входу дифференциального усилителя сигнала рассогласования 11, коллектор – к общей шине источника питания 15, а эмиттер соединен с эмиттером первого 19 дополнительного транзистора.

На чертеже фиг. 4, в соответствии с п.3 формулы изобретения, выход устройства 2 связан со вторым 18 входом дифференциального усилителя сигнала рассогласования 11 через первый 23 дополнительный резистор, причем второй 18 вход дифференциального усилителя сигнала рассогласования 11 соединен с общей шиной источника питания 15 через второй 24 дополнительный резистор.

На чертеже фиг. 4, в соответствии с п.4 формулы изобретения, параллельно первому 23 дополнительному резистору включен третий 25 корректирующий конденсатор.

В схемах фиг. 1, фиг. 2, фиг. 3 и фиг. 4 дифференциальный усилитель сигнала рассогласования 11 реализован, в частном случае, на биполярных транзисторах 26 и 27. Возможно также применение в схемах фиг.2 – фиг. 4 КМОП полевых транзисторов, у которых затвор соответствует базе, сток – коллектору, а исток – эмиттеру биполярного транзистора. Для повышения петлевого усиления КСН в качестве дифференциального усилителя сигнала рассогласования 11 могут использоваться каскодные структуры.

Рассмотрим в сравнении работу КСН фиг. 1 и фиг. 2.

Источник опорного напряжения 17 в КСН фиг. 1 – фиг. 4, реализуется по классическим схемам Видлара или в виде традиционного стабилитрона. При этом выходное напряжение КСН в схеме фиг. 2, за счет влияния отрицательной обратной связи, при малых статических ошибках дифференциального усилителя сигнала рассогласования 11, равно опорному напряжению.

В схеме КСН-прототипе фиг. 1 импульсное увеличение тока нагрузки приводит к «запиранию» биполярного транзистора 27 и перераспределению тока первого 13 токостабилизирующего двухполюсника в эмиттер биполярного транзистора 26. В этом случае первый 9 корректирующий конденсатор перезаряжается током , что вызывает медленное изменение потенциала на управляющем входе 7 регулирующего элемента 4. Как следствие, токовый выход 5 регулирующего элемента 4 медленно реагирует на данное возмущающее воздействие, что является одной из причин провалов выходного напряжения известного КСН (см. фиг. 7а).

В заявляемом устройстве фиг. 2 импульсное изменение тока нагрузки ΔIн передается в эмиттер дополнительного транзистора 19, что приводит к формированию достаточно большого импульса тока через второй 21 корректирующий конденсатор, который передается в эмиттер, а далее в коллектор биполярного транзистора 26. В результате, первый 9 корректирующий конденсатор в схеме фиг. 2 перезаряжается достаточно большим током , что способствует более быстрому изменению тока на выходе 5 регулирующего элемента 4 и уменьшению амплитуды «провала» выходного напряжения (см. фиг. 7б).

Для подавления как «провалов», так и «всплесков» выходного напряжения, в соответствии с п. 2 формулы изобретения, в схему фиг. 2 вводится второй 22 дополнительный транзистор (фиг. 3). Таким образом, схема КСН фиг. 3 реагирует как на «провалы», так и на «всплески» выходного напряжения существенно уменьшая их численные значения. (см. фиг. 7, фиг. 9). Кроме этого, схема фиг. 3 имеет более высокое быстродействие при переходе с одного уровня выходного напряжения на другой за счет коммутации с помощью транзисторных ключей источников опорного напряжения.

Аналогично работает схема КСН фиг. 4, которая содержит первый 23 и второй 24 дополнительные резисторы. Введение данных резисторов позволяет получить более высокие численные значения выходного напряжения КСН в сравнении с опорным (Uоп=U17).

Для уменьшения динамических погрешностей в схеме фиг. 4 предусмотрен третий 25 корректирующий конденсатор, ускоряющий передачу импульсных сигналов с выхода устройства 2 на второй 18 вход дифференциального усилителя сигнала рассогласования 11.

В заявляемой схеме фиг. 3 обеспечивается подавление как «всплесков», так и «провалов» выходного напряжения при малых значениях емкостей (10-100 пф) применяемых первого 9, второго 21 и третьего 25 корректирующих конденсаторов, а также емкости конденсатора на выходе 2 устройства.

Данные выводы подтверждаются результатами компьютерного моделирования КСН для разных технологических процессов, представленными на чертежах фиг. 7, фиг. 9.

При коммутации источника опорного напряжения 17 с помощью цифровой системы управления (как это осуществлено в КСН-прототипе) в заявляемом устройстве фиг. 3 обеспечивается более быстрый переход с одного уровня выходного напряжения КСН на другой. Так, если источник опорного напряжения 11 получает положительное приращение, то в работу включаются биполярный транзистор 26 и дополнительный транзистор 19, что создает большой импульс тока через второй 21 корректирующий конденсатор и способствует более быстрому перезаряду первого 9 корректирующего конденсатора. Если источник опорного напряжения 11 получает отрицательное приращение, то в работу включаются второй 22 дополнительный транзистор и биполярный транзистор 27, а также токовое зеркало 8. Это создает большой импульс тока через второй 21 корректирующий конденсатор и способствует более быстрому перезаряду первого 9 корректирующего конденсатора. В конечном итоге время установления переходного процесса в данном режиме работы КСН существенно уменьшается.

Таким образом, предлагаемый КСН обладает сравнительно малым уровнем динамической нестабильностью выходного напряжения при малых значениях емкостей применяемых конденсаторов, которые могут быть реализованы в виде интегрального элемента «системы на кристалле» и/или «системы в корпусе».

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 7.847.645, fig. 9, 2010 г.

2. Патент WO 2010/028430 A1, fig. 2, 2010 г.

3. Патентная заявка US 2007/0188228, fig. 4, 2007 г.

4. Патент US № 5.929.623, 1999 г.

5. Патент US 3.399.338, 1965 г.

6. Патент US 5.625.278, 1997 г.

7. Патент US 6.965.218, 2005 г.

8. Патент US 4.254.372, 1981 г.

9. Патент US 6.897.637, 2005 г.

10. Патент US 5.861.736, 1999 г.

11. Патент US 6.285.246, 2001 г.

12. Патент US 5.677.558, 1997 г.

13. Патент US 7.402.987, fig. 2, 2008 г.

14. Патент US 7.301.315, fig. 1, 2007 г.

15. Патент US 7.173.405, fig. 1, 2007 г.

16. Патентная заявка US 6.710.583, 2003 г.

17. Патентная заявка de 10322863, 2004 г.

18. Патентная заявка US 2008/0224679, fig. 2, 2008 г.

19. Патентная заявка US 2007/0024351, fig. 2, 2007 г.

20.Патентная заявка US 2007/0024263, 2007 г.

1. Компенсационный стабилизатор напряжения, содержащий входную (1) шину питания, выход (2) устройства, к которому подключена цепь нагрузки (3), регулирующий элемент (4), токовый выход которого (5) соединен с выходом устройства (2), низкоомный вход (6) регулирующего элемента (4) связан с входной (1) шиной питания, а управляющий вход (7) - подключен к выходу токового зеркала (8), согласованного с входной (1) шиной питания, а также к первому (9) корректирующему конденсатору и первому (10) токовому выходу дифференциального усилителя сигнала рассогласования (11), вход токового зеркала (8), связанный со вторым (12) токовым выходом дифференциального усилителя сигнала рассогласования (11), первый (13) токостабилизирующий двухполюсник, включенный между объединенной эмиттерной цепью транзисторов (14) дифференциального усилителя сигнала рассогласования (11) и общей шиной источника питания (15), причем первый (16) вход дифференциального усилителя сигнала рассогласования (11) подключен к источнику опорного напряжения (17), а выход (2) устройства связан со вторым (18) входом дифференциального усилителя сигнала рассогласования (11), отличающийся тем, что в схему введен дополнительный транзистор (19), база которого связана со вторым (18) входом дифференциального усилителя сигнала рассогласования (11), коллектор подключен к общей шине источника питания (15), а эмиттер соединен с входной (1) шиной питания через второй (20) токостабилизирующий двухполюсник, причем эмиттер первого (19) дополнительного транзистора связан с объединенной эмиттерной цепью транзисторов (14) дифференциального усилителя сигнала рассогласования (11) через второй (21) корректирующий конденсатор.

2. Компенсационный стабилизатор напряжения по п. 1, отличающийся тем, что в схему введен второй (22) дополнительный транзистор, база которого подключена к первому (16) входу дифференциального усилителя сигнала рассогласования (11), коллектор – к общей шине источника питания (15), а эмиттер соединен с эмиттером первого (19) дополнительного транзистора.

3. Компенсационный стабилизатор напряжения по п. 2, отличающийся тем, что выход устройства (2) связан со вторым (18) входом дифференциального усилителя сигнала рассогласования (11) через первый (23) дополнительный резистор, причем второй (18) вход дифференциального усилителя сигнала рассогласования (11) соединен с общей шиной источника питания (15) через второй (24) дополнительный резистор.

4. Компенсационный стабилизатор напряжения по п. 3, отличающийся тем, что параллельно первому (23) дополнительному резистору включен третий (25) корректирующий конденсатор.



 

Похожие патенты:

Изобретение относится к области электротехники. Устройство управления преобразователем постоянного напряжения в постоянный ток содержит операционный усилитель (1), узел обратной связи (40) и источник постоянного смещения (4, 7), на одном из входов операционного усилителя обеспечивается разделение "напряжения смещения" и "напряжения обратной связи" друг от друга, за счет чего снижается мощность электроэнергии, потребляемая преобразователем постоянного напряжения в постоянный ток.

Изобретение относится к области электротехники и может быть использовано для создания средств электропитания, обеспечивающих получение неизменяемой величины постоянного тока.

Изобретение относится к области электротехники и может быть использовано в комбинированных теплоэлектроагрегатах коммунального назначения. Техническим результатом является обеспечение стратегии регулятора, которая минимизирует риск механических нарушений.

Изобретение относится к электротехнике и может использоваться в аппаратуре электропитания посадочного радиолокатора. Целью изобретения является повышение КПД стабилизатора напряжения из состава аппаратуры электропитания посадочного радиолокатора.

Изобретение относится к области электротехники. Схема управления электропитанием генерирует опорное напряжение и распределяет его на множество независимо работающих схем регулятора опорного напряжения, каждая из которых генерирует заданное напряжение для регулятора напряжения.

Изобретение относится к технологии переключения подачи электропитания и может быть использовано для оптимизации диапазона входного напряжения интегральной микросхемы.

Изобретение относится к области электротехники и может быть использовано в многофазных импульсных преобразователях питания. Техническим результатом является снижение потерь энергии и улучшение качества напряжения.

Изобретение относится к области электротехники и может быть использовано для управления электропитанием. Технический результат - обеспечение корректного пуска импульсного выпрямителя по напряжению и/или по току согласно требованиям питаемого объекта и в соответствии с внешней средой импульсного выпрямителя.

Изобретение относится к области автоматического управления и предназначено для импульсных преобразователей напряжения, может найти широкое применение в управлении электроприводами и регулируемыми вторичными источниками питания.

Устройство для управления количеством энергии, сохраняемой в накопительном устройстве, содержит блок управления, который выполнен с возможностью регулировки мощности, принимаемой через вход устройства для управления, основываясь на количестве энергии, сохраняемой в текущий момент времени в накопительном устройстве, и который дополнительно выполнен с возможностью вывода отрегулированной мощности через выход устройства для управления на накопительное устройство.
Наверх