Способ получения катализатора для эпоксидирования олефинов

Изобретение относится к способу получения растворимого в углеводородах молибденового катализатора для эпоксидирования олефиновых углеводородов органическими гидропероксидами. Способ получения молибденового катализатора эпоксидирования олефинов ведут растворением при 30-50°С металлического порошкообразного молибдена в сточной воде с концентрацией пероксидов 0,25-1,10 мол./л, образующейся при совместном производстве стирола и оксида пропилена на стадии водной отмывки оксидата этилбензола при массовом соотношении сточная вода : молибден 1:(0,006-0,025), соответственно. После растворения молибдена в сточной воде молибден осаждают 8-оксихинолином при массовом соотношении молибден : 8-оксихинолин 1:2, соответственно. Осаждение молибдена ведут при перемешивании в течение 30 минут и температуре 50°С. Изобретение позволяет упростить способ получения молибденсодержащего катализатора эпоксидирования олефинов с использованием сточных вод промышленного производства стирола и оксида пропилена, так как не требует стадии обезвоживания и дальнейшего растворения катализатора в углеводородном растворителе перед процессом эпоксидирования. 2 табл., 5 пр.

 

Изобретение относится к способу получения растворимого в углеводородах молибденового катализатора для эпоксидирования олефиновых углеводородов органическими гидропероксидами.

Известен способ приготовления растворимого молибденового катализатора эпоксидирования олефинов, в котором металлический молибден реагирует при 25-120°С с пероксидным соединением, например гидропероксидом этилбензола, в присутствии органической двухосновной кислоты с 2-18 атомами углерода (щавелевая, малоновая, фталевая кислоты) и одноатомного спирта, например этилового спирта, или многоатомного спирта, пропиленгликоля, см. US Патент №4590172, МПК B01J 23/28, 1986.

Недостатком данного способа является невысокая растворимость молибденового катализатора в реакционной среде и низкая его стабильность при хранении, потери молибдена как на стадии получения катализатора из-за его невысокой конверсии, так и на стадии длительного хранения из-за выпадения молибдена в осадок.

Известен способ получения молибденового катализатора эпоксидирования олефинов путем растворения порошкообразного металлического молибдена в среде, содержащей этанол и концентрированный гидропероксид этилбензола (ГПЭБ) в окисленном этилбензоле, взятых в массовом соотношении 1:1, см. Карпенко Л.П., Серебряков Б.Р., Галантерник Р.Е., Кочаров В.Г. "Синтез катализаторов эпоксидирования на основе металлического молибдена", журнал "Прикладная химия", 1975, вып. 8, стр. 1706-1709.

Недостатками данного способа являются невысокая концентрация растворенного молибдена и недостаточная стабильность катализатора при хранении. Снижение концентрации молибдена происходит в результате выпадения молибденсодержащего шлама при хранении, что уменьшает его активность и селективность и приводит к повышенному расходу молибдена на приготовление катализатора.

Наиболее близким по технической сущности является способ получения молибденового катализатора эпоксидирования олефинов растворением при нагревании порошкообразного металлического молибдена в среде, содержащей пероксидные соединения, в котором в качестве среды, содержащей пероксидные соединения, используют сточные воды, образующиеся при совместном производстве стирола и оксида пропилена на стадии водной отмывки оксидата этилбензола с концентрацией пероксидов в сточной воде 0,25-1,10 мол./л, при массовом соотношении сточная вода : молибден 1:(0,006-0,025), соответственно, процесс ведут при температуре 30-50°С в течение 10-30 минут, затем молибденовый катализатор обезвоживают и для эпоксидирования олефинов катализатор растворяют в углеводородном растворителе, см. RU Патент №2556002, МПК C07D 301/19 (2006.01), B01J 37/00 (2006.01), B01J 23/28 (2006.01), 2015.

Технической проблемой является то, что полученный молибденовый катализатор, полученный по вышеуказанному способу, перед растворением в углеводородном растворителе необходимо подвергнуть обезвоживанию, что усложняет технологический процесс, так как наличие воды в каталитическом растворе оказывает ингибирующее действие в процессе эпоксидирования олефиновых углеводородов.

Техническая проблема решается способом получения молибденового катализатора эпоксидирования олефинов растворением при 30-50°С металлического порошкообразного молибдена в сточной воде с концентрацией пероксидов 0,25-1,10 мол./л, образующейся при совместном производстве стирола и оксида пропилена на стадии водной отмывки оксидата этилбензола, при массовом соотношении сточная вода:молибден 1:(0,006-0,025), соответственно, согласно изобретению после растворения молибдена в сточной воде молибден осаждают 8-оксихинолином при массовом соотношении молибден : 8-оксихинолин 1:2, соответственно, при перемешивании в течение 30 минут и температуре 50°С.

Полученный молибденовый катализатор в процессе эпоксидирования олефинов органическими гидропероксидами хорошо растворим в реакционной среде.

Решение технической задачи позволяет упростить способ получения молибденсодержащего катализатора эпоксидирования олефинов с использованием сточных вод промышленного производства стирола и оксида пропилена, так как не требует стадии обезвоживания и дальнейшего растворения катализатора в углеводородном растворителе перед процессом эпоксидирования.

Пример по прототипу

В трехгорлую колбу, снабженную мешалкой, термометром и водяным холодильником, помещенную в водяную баню с температурой 30°С, загружают 0,4 г металлического молибдена, 50 мл сточной воды, содержащей 0,8 мол./л пероксидов и перемешивают содержимое колбы в течение 30 минут (для достижения высоких конверсий молибдена). Далее ведут фильтрование для отделения нерастворившегося молибдена. Водный раствор катализатора подвергают упариванию при комнатной температуре до постоянного веса. Содержание молибдена в сухом катализаторе составляет 25,0 мас. %. Для эпоксидирования олефинов катализатор растворяют в этиловом спирте, доводя концентрацию молибдена до 0,9-1,1 мас. %.

Пример 1. Получение катализатора по заявляемому способу

В трехгорлую колбу, снабженную мешалкой, термометром и водяным холодильником, помещенную в водяную баню с температурой 50°С, загружают 0,4 г металлического молибдена, 50 мл сточной воды, содержащей 0,8 мол./л пероксидов и перемешивают содержимое колбы в течение 30 минут. Далее ведут осаждение молибдена, добавляя к раствору 8-оксихинолин при массовом соотношении молибден : 8-оксихинолин 1:2. Смесь перемешивают в течение 30 минут при температуре 50°С. Полученный осадок отфильтровывают и сушат при комнатной температуре до постоянного веса. Содержание молибдена в сухом катализаторе составляет 25,0 мас. %.

Пример 2. Катализатор готовят так же, как описано в примере 1, поддерживая температуру растворения металлического порошкообразного молибдена в сточной воде 30°С. Содержание молибдена в сухом катализаторе составляет 24,6 мас. %.

Примеры 3-5. Катализатор готовят так же, как описано в примере 1, изменяя массовое соотношение сточная вода : молибден. Данные по примерам конкретного выполнения приведены в таблице 1.

Эпоксидирование октена-1 в присутствии катализатора, полученного по заявленному способу, осуществляют 26%-ным гидропероксидом этилбензола (ГПЭБ) в стеклянном реакторе, снабженном обратным холодильником и магнитной мешалкой, поддерживая постоянную температуру с помощью термостата. Процесс эпоксидирования осуществляют в следующих условиях:

- мольное соотношение:

октен-1 : ГПЭБ составляет 6:1, соответственно;

Мо : ГПЭБ составляет 0,0005:1, в расчете на молибден, соответственно;

- температура эпоксидирования - 110°С;

- время эпоксидирования - 90 минут.

В качестве катализатора используют сухой осадок, полученный после растворения молибдена в сточной воде, образующейся при совместном производстве стирола и оксида пропилена на стадии водной отмывки оксидата этилбензола, с последующим осаждением молибдена 8-оксихинолином при массовом соотношении молибден : 8-оксихинолин 1:2, соответственно, при перемешивании в течение 30 минут и температуре 50°С.

Эпоксидирование пропилена ведут аналогично, что и эпоксидирование октена-1, в присутствии катализатора, полученного по заявленному способу. Эпоксидирование осуществляют 26%-ным гидропероксидом этилбензола (ГПЭБ) в окисленном этилбензоле в реакторе периодического действия, выполненном из нержавеющей стали, объемом 2 литра, снабженном мешалкой с герметичным приводом и теплообменной рубашкой, обогреваемой теплоносителем с помощью термостата осуществляют в следующих условиях:

- мольное соотношение:

пропилен : ГПЭБ составляет 6:1, соответственно;

Мо : ГПЭБ составляет 0,00035:1, в расчете на молибден, соответственно;

- температура эпоксидирования - 110°С;

- время эпоксидирования - 60 минут.

Результаты эпоксидирования олефинов - октена-1 и пропилена с использованием катализатора, полученного по заявленному способу, представлены в таблице 2.

Таблица 2 Результаты испытаний катализаторов в процессе эпоксидирования олефинов.

Полученный молибденовый катализатор для эпоксидирования олефинов с использованием сточных вод промышленного производства стирола и оксида пропилена не требует обезвоживания и дальнейшего растворения катализатора в углеводородной среде перед процессом эпоксидирования, что значительно упрощает способ получения молибденсодержащего катализатора. Результаты эпоксидирования олефинов - октена-1 и пропилена с использованием катализатора, полученного по заявленному способу, показали, что он по своим технологическим характеристикам на уровне прототипа.

Способ получения молибденового катализатора эпоксидирования олефинов растворением при температуре 30-50°С металлического порошкообразного молибдена в сточной воде с концентрацией пероксидов 0,25-1,10 мол./л, образующейся при совместном производстве стирола и оксида пропилена на стадии водной отмывки оксидата этилбензола, при массовом соотношении сточная вода : Мо 1:(0,006-0,025) соответственно, отличающийся тем, что после растворения молибдена в сточной воде молибден осаждают 8-оксихинолином при массовом соотношении молибден : 8-оксихинолин 1:2, соответственно, при перемешивании в течение 30 минут и температуре 50°С.



 

Похожие патенты:

Изобретение относится к способу получения катализаторов полимеризации этилена и сополимеризации этилена с α-олефинами, более конкретно к нанесенным катализаторам циглеровского типа, содержащим в своем составе соединение переходного металла на магнийсодержащем носителе.

Объектом изобретения является способ ограничения выброса пыли из зерен катализаторов. Этот способ содержит две следующие последовательные стадии.

Изобретение относится к способу получения катализатора процесса деструкции нефтепродуктов, включающему перемешивание сухой массы каталитически активного материала и бентонита, добавку воды до получения пластичной массы перемешиванием, формирование гранул, сушку естественным путем, обжиг.

Изобретение относится к непрерывному способу получения пропиленоксида. Предложенный способ включает: (i) предоставление жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, необязательно пропан и, по меньшей мере, одну растворенную калиевую соль оксикислоты фосфора; (ii) подачу жидкого потока поступающего материала, предоставленного на стадии (i), в реактор эпоксидирования, содержащий катализатор, содержащий титановый цеолит структурного типа MWW, содержащий цинк, и воздействие на жидкий поток поступающего материала условий реакции эпоксидирования в реакторе эпоксидирования с получением реакционной смеси, содержащей пропиленоксид, ацетонитрил, воду, по меньшей мере, одну растворенную калиевую соль оксикислоты фосфора, необязательно пропен и необязательно пропан; (iii) удаление отходящего потока из реактора эпоксидирования, причем отходящий поток содержит пропиленоксид, ацетонитрил, воду, по меньшей мере, часть, по меньшей мере, одной растворенной калиевой соли оксикислоты фосфора, необязательно пропен и необязательно пропан.
Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что подложку из оксида алюминия пропитывают раствором, содержащим от 14% вес.
Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что вначале получают никельсодержащую подложку, сформованную экструзией смеси оксида алюминия и от 0,1 до 5 вес.% порошка никеля, с последующими сушкой и прокаливанием.

Изобретение относится к устройству и способу повышения точности нанесения покрытия на керамический или металлический сотовый элемент, обычно используемый в качестве каталитического нейтрализатора в автомобильной системе выпуска отработавших газов.

Изобретение относится к области электрохимической энергетики, а именно к способу изготовления катализатора для топливных элементов, и может быть использовано для получения биметаллических катализаторов, применяемых в химических источниках тока, в частности, в низкотемпературных топливных элементах.

Изобретение относится к области каталитического синтеза бензиновых фракций из синтез-газа и процессов превращения углеводородов в среде синтез-газа, в частности к способам приготовления универсального бифункционального катализатора (БФК) для упомянутых процессов, и может быть использовано в нефтехимической и газоперерабатывающей промышленности.

Изобретение относится к способу получения катализатора на подложке, содержащего сплав платины и палладия, который пригоден для использования в качестве катализаторов окисления в каталитических конвертерах, установленных на транспортных средствах с дизельным двигателем.

Изобретение относится к способу получения катализатора на подложке, содержащего сплав платины и палладия, который пригоден для использования в качестве катализаторов окисления в каталитических конвертерах, установленных на транспортных средствах с дизельным двигателем.

Изобретение относится к способу получения катализатора на подложке, содержащего сплав платины и палладия, который пригоден для использования в качестве катализаторов окисления в каталитических конвертерах, установленных на транспортных средствах с дизельным двигателем.

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu+2 в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку.

Изобретение относится к способам получения полупроводниковых материалов, фотоактивных в видимой области спектра солнечного излучения. Способ включает обработку титаната калия со слоистой структурой водным раствором соли марганца при отношении концентрации переходного металла в водном растворе в моль/г (С) к дозе обрабатываемого титаната калия в моль/г (Д), лежащей в пределах 10-5≤С/Д≤5⋅10-3.

Изобретение относится к катализатору гидрирования олефинов в процессе получения синтетической нефти. Заявляется катализатор, содержащий 41-60 мас.% никеля от массы прокаленного катализатора и носитель, представляющий собой мезопористый оксид алюминия со средним размером частиц 3-7 нм, общим объемом пор не менее 0,85 см3/г, долей мезопор не менее 90% и удельной площадью поверхности не менее 280 м2/г.

Предложен способ приготовления катализатора для гидропереработки нефтяного сырья, включающий смешение основного карбоната никеля, вольфрамовой кислоты и носителя, последующее экструдирование полученной массы, сушку экструдатов и прокаливание.
Настоящее изобретение относится к способу приготовления катализатора изомеризации парафинов на основе байерита, который получается путем осаждения из раствора алюмината натрия и азотной кислоты.
Настоящее изобретение относится к способу приготовления катализатора изомеризации парафинов на основе байерита, который получается путем осаждения из раствора алюмината натрия и азотной кислоты.

Настоящее изобретение относится к каталитической композиции для использования при аммоксидировании ненасыщенного углеводорода в соответствующий ненасыщенный нитрил, содержащей комплекс оксидов металлов, причем относительные отношения перечисленных элементов в указанном катализаторе представлены следующей формулой: Mom Bia Feb Ac Dd Ee Ff Gg Ceh Nii Coj Mnk Mgl 0#, где А представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из натрия, калия, рубидия и цезия; и D представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из цинка, кальция, стронция, кадмия и бария; Е представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из хрома, вольфрама, бора, алюминия, галлия, индия, фосфора, мышьяка, сурьмы, ванадия и теллура; F представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из лантана, празеодима, неодима, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, скандия, иттрия, титана, циркония, гафния, ниобия, тантала, алюминия, галлия, индия, таллия, кремния, германия и менее чем приблизительно 10 частей на миллион свинца; G представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из серебра, золота, рутения, родия, палладия, осмия, иридия, платины и ртути; и где а составляет от 0,05 до 7, b составляет от 0,1 до 7, с составляет от 0,01 до 5, d составляет 0 или от 0,1 до 12, е составляет от 0 до 5, f составляет от 0 до 5, g составляет от 0 до 0,2, h составляет от 0,01 до 5, i составляет от 0,1 до 12, j составляет 0 или от 0,1 до 12, k составляет 0 или от 0,1 до 12, l составляет 0 или от 0,1 до 12, m составляет от 10 до 15, # представляет собой число атомов кислорода, требуемое для удовлетворения валентных требований других присутствующих составляющих элементов; причем z=d+i+j+k+l; и причем 0,45≤a/h<1,5, и 0,3≤(a+h)/z, и 0,8≤h/b≤5; причем 0,2<i/(i+j+k+l).

Изобретение относится к катализатору реформинга углеводородов и диоксида углерода, включающему оксидный носитель, который содержит гексаалюминат в форме β''-алюмината и частицы металлического никеля.

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии:растворитель 1:2-1:4, концентрата отработанного катализатора, содержащего распределенные ультрадисперсные частицы MoS2; окисление концентрата катализатора водным раствором смеси азотной и серной кислот при 25-100°С; нейтрализацию суспензии катализатора до рН>6 водным раствором аммиака с последующим разделением на водный раствор, представляющий собой прекурсор катализатора, и твердый остаток, содержащий соединения ванадия и никеля, в качестве растворителя используют толуол, или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга.
Наверх