Способ изготовления композитного порошкового материала из алюмооксидных углеродных нанотрубок

В настоящем изобретении раскрывается способ изготовления композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок. Способ получения включает следующие этапы: (1) предварительная подготовка алюмооксидного порошка путем сушки и просеивания с последующим помещением подготовленного порошка в камеру для химического осаждения из паровой фазы, вакуумированием при 5-20 Па, а также предварительным нагревом до температуры реакции; (2) вращение камеры для химического осаждения из паровой фазы со скоростью вращения от 15 до 60 об/мин; (3) использование органометаллического прекурсора в качестве сырья и его нагрев в испарителе до 100-200°С для получения газовой смеси из сырья, причем массовое отношение органометаллического прекурсора к алюмооксидному порошку составляет от 1 до 3:5; (4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы, а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью осаждения металлических наночастиц на алюмооксидном порошке; (5) подача углеродсодержащего газа при выполнении этапа (4) во вращающуюся камеру для химического осаждения из паровой фазы для обеспечения дополнительного источника углерода и генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления углеродсодержащего газа, при котором углеродная нанотрубка распределяется по поверхности оксида алюминия и металлическим частицам для получения плакированного порошка; (6) остановка вращения камеры для химического осаждения из паровой фазы по завершении реакции, закрытие клапана испарителя, охлаждение до комнатной температуры и извлечение плакированного порошка; и (7) просеивание порошка, полученного на этапе (6). Настоящий метод характеризуется простотой и коротким периодом получения, а получаемая углеродная нанотрубка из наночастиц оксида алюминия и металла равномерно распределена и обладает перспективой применения во множестве областей техники, таких как проводящая керамика и каталитические материалы. 7 з.п. ф-лы, 2 ил., 4 пр.

 

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

В частности, настоящее изобретение относится к методу генерирования углеродных нанотрубок в керамическом порошке из оксида алюминия и относится к области проектирования обработки материалов.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Такие керамические материалы, как оксид алюминия и диоксид циркония, широко используются в настоящее время. Они обладают характеристиками коррозиестойкости, окислительной стойкости, а также большой удельной площадью поверхности, и их можно использовать в качестве абсорбента, носителей катализаторов, активного наполнителя композитного материала, быстрорежущих инструментов, медицинских материалов и износостойких частей. Углеродная нанотрубка обладает множеством преимуществ: большой удельной площадью поверхности, ультравысоким модулем упругости, высокой интенсивностью и хорошей проводимостью. Она обладает большой перспективой применения во множестве областей техники, включая высокопроизводительные композитные материалы, медицинские материалы и приборы с автоэлектронной эмиссией; обладает большой перспективой применения, а также может быть использована в качестве активного наполнителя оксида алюминия для улучшения свойств алюминия, таких как проводимость, каталитическая активность и т.д. При этом ввиду того, что углеродная нанотрубка имеет характеристики одномерной наноструктуры, отношение длины к диаметру велико. В то же время, ввиду большой силы Ван-дер-Ваальса и обширной удельной площади между углеродными нанотрубками, такая трубка легко может существовать в виде сложного наполнителя. Способ получения и распределения углеродных нанотрубок в алюмооксидном порошке становится ключевым фактором достижения блестящей производительности углеродной нанотрубки.

В настоящее время существует большое количество способов получения углеродных нанотрубок, включая метод каталитического расщепления, метод химического осаждения из паровой фазы, метод образцов или подобные им. При получении композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, металлические наночастицы (катализатор) сначала в целом смешиваются с оксидом алюминия, а затем подаются углеродсодержащие газы, такие как метан и ацетилен, для образования углеродной нанотрубки посредством пиролиза. В работе Ли и соавт. путем подачи оксида алюминия в углеродную нанотрубку и ее покрытия на поверхности оксида алюминия методом химического осаждения из паровой фазы были получены алюмооксидные нанопровода и углеродные нанотрубки [Lee J et al, Journal of Crystal Growth, 2003, 254(4):443-448]. Некоторые исследователи получали или приобретали углеродную нанотрубку, после чего непосредственно смешивали эту трубку с оксидом алюминия для получения композитного порошка. Например, в работе Ahma et al была получена промышленная нанотрубка, после чего данная многослойная углеродная нанотрубка была химически модифицирована с помощью раствора из смеси кислот H2SO4-HNO3, а также было добавлено ПАВ и Аl2O3 для ультразвуковой дисперсии, после чего смесь была высушена для хранения (Ahma et al, Характеристики материалов, 2015, 99:210-219). В патенте, опубликованном У Си Ван и соавт. (номер публикации патента Китая: CN 103979942 А), углеродная нанотрубка и алюмооксидный порошок добавлялись в плавкий термопластичный полимер, расплавленный для перемешивания и получения смеси. Настоящая смесь добавлялась в двухшнековый или одношнековый экструдер для выдавливания и дисперсии до стабилизации. Экструдированный материал обезжиривался при высокой температуре для удаления полимерных материалов и получения порошкообразного композитного материала в виде алюмооксидных углеродных трубок. Метод получения в реакционной смеси обладает преимуществом в простоте и удобстве получения, а также низкой стоимостью, и он произвел ажиотаж. Чжан Синхун и соавт. изобрел метод синтезирования модифицированного сверхвысокотемпературного гибридного порошка из углеродных нанотрубок в реакционной смеси (номер публикации патента Китая: CN 104016685 В), при котором сначала катализатор в достаточном объеме распределялся по органическому полимерному прекурсору для получения смешанного порошка. Затем полученный смешанный порошок помещался в квадратную форму, верхняя часть которой была открыта, нагревался в трубчатой печи для расщепления до температуры полной ситаллизации органического полимерного прекурсора 1 450-1 550°С, а затем выполнялось теплое консервирование в течение 0,5-2 часов. После этого порошок естественным образом охлаждался до 20-25°С, и таким образом получался модифицированный сверхвысокотемпературный керамический гибридный порошок из углеродных нанотрубок. При этом настоящий метод имеет недостатки в виде усложненных этапов и высокой температуры обработки и т.д.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Цель настоящего изобретения - предоставление метода получения композитного порошкообразного материала в виде алюмооксидных углеродных трубок, представляющего собой метод помещения углеродной нанотрубки на поверхность керамического порошка оксида алюминия, вследствие чего на поверхности керамического порошка из оксида алюминия генерируются никель, железо, кобальт и другие металлические наночастицы (катализаторы) посредством расщепления органометаллического прекурсора, вследствие чего углерод в органометаллическом прекурсоре и углеродсодержащих газах, например, метане, расщепляется и катализируется для генерирования углеродной нанотрубки, и длина, диаметр и микроструктура углеродной нанотрубки контролируются посредством изменения нескольких факторов, включая объем подачи сырья, скорость вращения и температуру реакции, что сокращает период получения и снижает затраты, так как последующий этап получения углеродной нанотрубки опускается, а также улучшает однородность дисперсии и эффективность углеродной нанотрубки.

Для достижения технических целей в настоящем изобретении предлагается способ получения композитного порошкообразного материала, включающий следующие этапы:

(1) предварительная подготовка алюмооксидного порошка путем сушки и просеивания с последующим помещением подготовленного порошка в камеру для химического осаждения из паровой фазы, вакуумированием при 5-20 Па, а также предварительным нагревом до температуры реакции;

(2) вращение камеры для химического осаждения из паровой фазы, отличающееся тем, что скорость вращения составляет от 15 до 60 об/мин;

(3) использование органометаллического прекурсора в качестве сырья и его нагрев в испарителе до 100-200°С для получения газовой смеси из сырья, причем массовое отношение органолептического прекурсора к алюмооксидному порошку составляет от 1 до 3:5;

(4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы, а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью осаждения металлических наночастиц на алюмооксидном порошке;

(5) подача углеродсодержащих газов при выполнении этапа (4) во вращающуюся камеру для химического осаждения из паровой фазы для обеспечения дополнительного источника углерода и генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления углеродсодержащих газов, при котором углеродная нанотрубка распределяется по поверхности оксида алюминия и металлическим частицам для получения плакированного порошка;

(6) остановка вращения камеры для химического осаждения из паровой фазы по завершении реакции, закрытие клапана испарителя, охлаждение до комнатной температуры и извлечение плакированного порошка; и

(7) просеивание порошка, полученного на этапе (6).

В частности, на этапе (1) температура повышается путем предварительного нагрева до значения от 400 до 800°С.

Предпочтительно, на этапе (1) средний размер частиц алюмооксидного порошка составляет от 0,1 до 100 мкм, а чистота порошка составляет более 95%.

На этапе (3) в качестве органометаллического прекурсора используется любое из следующих веществ: изокаприлат никеля, никелоцен, ферроцен и ацетат железа.

Предпочтительно, на этапе (5) углеродсодержащим газом является любой из следующих газов: метан или ацетилен или смесь из двух.

Предпочтительно, на этапах (1) и (6) порошок просеивается 3-4 раза через сито с размером ячеек 50-200 меш.

На этапе (4) расход газообразного аргона составляет 50-100 см3/мин.

На этапе (5) расход углеродсодержащего газа составляет 10-100 см3/мин.

Настоящее изобретение имеет следующие положительные эффекты: в настоящем изобретении предлагается метод получения материала в виде алюмооксидных углеродных нанотрубок, в котором используется технология химического осаждения из паровой фазы для катализации наночастиц с помощью металла и обеспечения прямого осаждения наночастиц на подложку из Al2O3; в то же время, углеродные нанотрубки могут генерироваться с помощью углеродной цепи, расщепляемой органометаллическим прекурсором, и расщепления углеродсодержащих газов, таких как метан. Размер частиц и микроструктура полученного композитного материала контролируется посредством изменения экспериментальных параметров реакции между органическим сырьем и метаном, чтобы углеродные нанотрубки и металлические частицы равномерно распределялись по подложке из оксида алюминия, что существенно улучшает коэффициент использования материалов и надежность изделий. Кроме того, период получения является коротким, а также в данном методе получения не используется раствор, таким образом, исключая проблему обработки отработанного раствора. Настоящий метод экологически безвреден и значительно снижает затраты на производство. По этой причине, композитный материал обладает прекрасной перспективой для промышленного использования.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг 1 представляет собой изображение композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок на просвечивающем электронном микроскопе, полученное при экспериментальных параметрах по варианту осуществления 1.

Фиг. 2 представляет собой дифракционную рентгенограмму композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, полученную при экспериментальных параметрах по варианту осуществления 1.

ПОДРОБНОЕ ОПИСАНИЕ

Представленное далее - просто предпочтительные варианты осуществления настоящего изобретения исключительно для наглядного представления о нем, но не для его ограничения, и усовершенствования, выполняемые по настоящему описанию, включены в объем правовой охраны, как приводится в прилагаемой формуле изобретения.

Вариант осуществления 1

Данный вариант осуществления предусматривает способ получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, включающий следующие этапы получения:

(1) сушка алюмооксидного порошка (средний диаметр пор составил 10 мкм, а чистота порошка - более 95%); трехкратное просеивание порошка через сито с ячейками размером 200 меш для разбивания твердого агломерата, образующегося в результате длительного хранения порошка; помещение 5 г подготовленного порошка в камеру для химического осаждения из паровой фазы; вакуумирование при 5 Па и нагрев до 600°С;

(2) вращение камеры для химического осаждения из паровой фазы, отличающееся тем, что скорость вращения составила 15 об/мин;

(3) использование 1 г органометаллического прекурсора никелоцена (Ni(C5H5)2) в качестве сырья и его нагрев до 150°С в испарителе для получения газовой смеси из сырья;

(4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы на этапе (3), а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью получения металлических наночастиц на алюмооксидном порошке, причем расход газообразного аргона составил 100 н.см3/мин, а время осаждения -2 ч;

(5) подача метана при выполнении этапа (4) во вращающуюся камеру для химического осаждения из паровой фазы для генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления метана, а также для распределения углеродной нанотрубки по поверхности оксида алюминия и металлическим частицам, при котором расход метана составил 30 н.см3/мин.

(6) остановка вращения камеры для химического осаждения из паровой фазы по завершении реакции, закрытие клапана испарителя, охлаждение до комнатной температуры и извлечение плакированного порошка; и

(7) просеивание порошка, полученного на этапе (6).

Полученный композитный порошкообразный материал в виде алюмооксидных углеродных нанотрубок подвергся анализу и наблюдению.

Результаты показаны на фиг. 1 и фиг. 2. На фиг. 1 показана углеродная нанотрубка диаметром около 50 нм и длиной около 1-2 мкм, выращенная в вертикальном положении на поверхности порошка Al2O3 посредством катализа наночастиц Ni. Вместе с тем характеристический пик сгенерированных наночастиц Ni обозначен на фиг. 2. Ввиду того, что углеродная нанотрубка была бесформенной, рентгеновский характеристический пик углерода не проявился.

Вариант осуществления 2

Данный вариант осуществления предусматривает способ получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, включающий следующие этапы получения:

(1) сушка алюмооксидного порошка (средний диаметр пор составил 0,1 мкм, а чистота порошка - более 95%); трехкратное просеивание порошка через сито с ячейками размером 200 меш для разбивания твердого агломерата, образующегося в результате длительного хранения порошка; помещение 5 г подготовленного порошка в камеру для химического осаждения из паровой фазы; вакуумирование при 5 Па и нагрев до 400°С;

(2) вращение камеры для химического осаждения из паровой фазы, отличающееся тем, что скорость вращения составила 30 об/мин;

(3) (1) использование 2 г органометаллического прекурсора ацетата никеля (Ni(СН3СОС)2) в качестве сырья и его нагрев в испарителе до 100°С;

(4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы, а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью получения металлических наночастиц на алюмооксидном порошке, причем расход газообразного аргона составил 100 н.см3/мин, а время осаждения -1 ч;

(5) подача метана при выполнении этапа (4) во вращающуюся камеру для химического осаждения из паровой фазы для генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления метана, а также для распределения углеродной нанотрубки по поверхности оксида алюминия и металлическим частицам, при котором расход метана составил 10 см /мин.

(6) остановка вращения камеры для химического осаждения из паровой фазы по завершении реакции, закрытие клапана испарителя, охлаждение до комнатной температуры и извлечение плакированного порошка; и

(7) трехкратное просеивание порошка на этапе (6) через сито с ячейками размером 200 меш для получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок.

Вариант осуществления 3

Данный вариант осуществления предусматривает способ получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, включающий следующие этапы получения:

(1) сушка алюмооксидного порошка (диаметр пор составил 100 мкм); трехкратное просеивание порошка через сито с ячейками размером 200 меш для разбивания твердого агломерата, образующегося в результате длительного хранения порошка; помещение 5 г подготовленного порошка в камеру для химического осаждения из паровой фазы; вакуумирование при 20 Па и подогрев до 800°С;

(2) Приведение в действие вращающегося реактора при скорости 60 об/мин;

(3) использование 1,7 г органометаллического прекурсора ферроцена (Fe(C5H5)2) в качестве сырья и его нагрев в испарителе до 200°С;

(4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы, а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью получения металлических наночастиц на алюмооксидном порошке, причем расход газообразного аргона составил 100 см3/мин, а время осаждения - 3 ч;

(5) подача метана при выполнении этапа (4) во вращающийся реактор для генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления метана, а также для распределения углеродной нанотрубки по поверхности оксида алюминия и металлическим частицам, при котором расход метана составил 100 н.см3/мин.

(6) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и

(7) трехкратное просеивание порошка на этапе (6) для получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок.

Вариант осуществления 4

Данный вариант осуществления предусматривает способ получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, включающий следующие этапы получения:

(1) сушка алюмооксидного порошка (средний диаметр пор составил 1 мкм, а чистота порошка - более 95%); трехкратное просеивание порошка через сито с ячейками размером 200 меш для разбивания твердого агломерата, образующегося в результате длительного хранения порошка; помещение 5 г подготовленного порошка в камеру для химического осаждения из паровой фазы; вакуумирование при 20 Па и подогрев до 700°С;

(2) Приведение в действие вращающегося реактора при скорости 60 об/мин;

(3) использование органометаллического прекурсора ацетата железа (Fе(СН3СОО)2) в качестве сырья и его нагрев в испарителе до 180°С;

(4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы, а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью получения металлических наночастиц на алюмооксидном порошке, причем расход газообразного аргона составил 100 н.см3/мин, а время осаждения -2 ч;

(5) подача метана при выполнении этапа (4) во вращающийся реактор для генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления метана, а также для распределения углеродной нанотрубки по поверхности оксида алюминия и металлическим частицам, при котором расход метана составил 100 н.см3/мин.

(6) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и

(7) трехкратное просеивание порошка на этапе (6) для получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок.

В соответствии с настоящим изобретением никель, железо, кобальт и другие металлические наночастицы (катализаторы) генерируются на поверхности керамического порошка из оксида алюминия посредством расщепления органометаллического прекурсора, таким образом расщепляя и катализируя углерод в органометаллический прекурсор и углеродосодержащие газы, например, метан для генерирования углеродной нанотрубки. Длина, диаметр и микроструктура углеродной нанотрубки контролируются посредством изменения нескольких факторов, включая объем подачи сырья, скорости вращения и температуры реакции, что сокращает период получения и снижает затраты, так как последующий этап получения углеродной нанотрубки опускается, а также улучшает однородность дисперсии и эффективность углеродной нанотрубки.

Предшествующее описание раскрытых вариантов осуществления позволяет специалистам использовать настоящее изобретение. Различные модификации настоящих вариантов осуществления будут очевидны для специалистов, а общие принципы, представленные в настоящем документе, могут быть воплощены в других вариантах осуществления изобретения без отступления от существа и объема настоящего изобретения. Следовательно, настоящее изобретение не будет ограничиваться вариантами осуществления, приведенными в настоящем документе, но будет максимально широко соответствовать принципам и элементам новизны, раскрытым в настоящем документе.

1. Способ получения композитного порошкообразного материала в виде алюмооксидных углеродных нанотрубок, включающий следующие этапы:

(1) предварительная подготовка алюмооксидного порошка путем сушки и просеивания с последующим помещением подготовленного порошка в камеру для химического осаждения из паровой фазы, вакуумированием при 5-20 Па, а также предварительным нагревом до температуры реакции;

(2) вращение камеры для химического осаждения из паровой фазы, отличающееся тем, что скорость вращения составляет от 15 до 60 об/мин;

(3) использование органометаллического прекурсора в качестве сырья и его нагрев в испарителе до 100-200°С для получения газовой смеси из сырья, причем массовое отношение органометаллического прекурсора к алюмооксидному порошку составляет от 1 до 3:5;

(4) открытие клапана испарителя, введение сырьевой газовой смеси в камеру для химического осаждения из паровой фазы, а также одновременное введение газообразного аргона для расщепления органометаллического прекурсора с целью осаждения металлических наночастиц на алюмооксидном порошке;

(5) подача углеродсодержащего газа при выполнении этапа (4) во вращающуюся камеру для химического осаждения из паровой фазы для обеспечения дополнительного источника углерода и генерирования углеродной нанотрубки посредством катализа металлических наночастиц и расщепления углеродсодержащего газа, при котором углеродная нанотрубка распределяется по поверхности оксида алюминия и металлическим частицам для получения плакированного порошка;

(6) остановка вращения камеры для химического осаждения из паровой фазы по завершении реакции, закрытие клапана испарителя, охлаждение до комнатной температуры и извлечение плакированного порошка; и

(7) просеивание порошка, полученного на этапе (6).

2. Способ по п. 1, отличающийся тем, что на этапе (1) температура предварительного нагрева составляет от 400 до 800°С.

3. Способ по п. 1, отличающийся тем, что на этапе (1) средний размер частиц алюмооксидного порошка составляет от 0,1 до 100 мкм, а чистота порошка составляет не менее 95%.

4. Способ по п. 1, отличающийся тем, что на этапе (3) в качестве органометаллического прекурсора используется любое из следующих веществ: изокаприлат никеля, никелоцен, ферроцен и ацетат железа.

5. Способ по п. 1, отличающийся тем, что на этапе (5) в качестве углеродсодержащего газа используется любое из следующих веществ: метан, ацетилен или их смесь.

6. Способ по п. 1, отличающийся тем, что на этапах (1) и (6) порошок просеивается 3-4 раза с помощью сита с размером ячеек 50-200 меш.

7. Способ по п. 1, отличающийся тем, что на этапе (4) расход газообразного аргона составляет 50-100 см/мин.

8. Способ по п. 1, отличающийся тем, что на этапе (5) расход углеродсодержащего газа составляет 10-100 см/мин.



 

Похожие патенты:

Изобретение относится к технологии химического нанесения покрытий путем разложения газообразных соединений, в частности к способам введения газов в реакционную камеру.

Изобретение относится к области нагревательных устройств и может быть использовано для регулирования температуры обработки полупроводниковой пластины в процессе выращивания полупроводникового слоя.

Группа изобретений относится к способам формирования монокристаллического режущего элемента для бурового долота с закрепленными резцами и к буровому долоту для бурения буровой скважины.

Изобретение относится к технологии получения монокристаллов диоксида гафния, которые могут быть использованы в качестве компонентов сцинтилляционных детекторов, лазеров, иммобилизаторов нуклеиновых кислот, биосенсоров, биодатчиков.

Изобретение относится к технологии получения вольфрама, легированного ниобием или танталом, и может быть использовано в электровакуумном приборостроении, электронике.

Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ получения массивов наноразмерных нитевидных кристаллов кремния включает подготовку ростовой кремниевой подложки путем нанесения на ее поверхность нанодисперсных частиц катализатора конденсацией микрокапель коллоидного раствора и помещением подготовленной пластины в ростовую печь с последующим выращиванием нитевидных нанокристаллов, при этом на коллоидный раствор воздействуют ультразвуком, причем мощность ультразвукового генератора задают в пределах от 30 до 55 Вт, а температуру раствора поддерживают в интервале от 273 K до 370 K.

Изобретение относится к технологии получения алмазов для ювелирных целей. Способ включает помещение подложки, имеющей алмазное зерно с предварительно заданным размером и предварительно заданной оптической ориентацией, в камеру для осуществления химического парофазного осаждения (CVD), подачу в камеру водорода, углеводородного газа, содержащего углерод, газа, содержащего азот, и газа, содержащего диборан, оба из которых приспособлены для ускорения скорости роста алмаза на подложке, приложение электрического поля для образования плазмы близ подложки, приводя тем самым к поэтапному росту алмаза на подложке, завершение процесса CVD в камере, огранку и удаление нежелательного углерода из выращенного алмаза, очистку и огранку алмаза, отжигаемого при предварительно заданной температуре в течение заданного периода времени, проведение окончательной огранки алмаза, полировки и придания цвета.

Изобретение относится к технологическим процессам получения легированных алмазов, которые могут быть использованы в электронике и приборостроении, а также в качестве ювелирного камня.

Изобретение относится к технологии получения монокристаллического алмазного материала для электроники и ювелирного производства. Способ включает выращивание монокристаллического алмазного материала методом химического осаждения из паровой или газовой фазы (CVD) на главной поверхности (001) алмазной подложки, которая ограничена по меньшей мере одним ребром <100>, длина упомянутого по меньшей мере одного ребра <100> превышает наиболее длинное измерение поверхности, которое является ортогональным упомянутому по меньшей мере одному ребру <100>, в соотношении по меньшей мере 1,3:1, при этом монокристаллический алмазный материал растет как по нормали к главной поверхности (001), так и вбок от нее, и во время процесса CVD значение α составляет от 1,4 до 2,6, где α=(√3×скорость роста в <001>) ÷ скорость роста в <111>.
Изобретение относится к составу шихты, предназначенной для получения пьезоэлектрических керамических материалов (ПЭКМ) различного назначения на основе ниобатов калия-натрия.

Изобретение относится к производству монолитных волоконно-матричных композиционных деталей и может быть использовано для получения термоизолирующих элементов, способных выдерживать высокие температуры и высокие внутренние и внешние давления.

Изобретение относится к получению изделий из пеноматериалов, способных к карбонизации. Способ включает операции приготовления связующего состава из фенолоформальдегидной смолы и растворителя дозированием вводимых компонентов до необходимой вязкости связующего состава, смешения полых стеклянных микросфер в объеме связующего состава с удалением паров растворителя, формирования заготовки изделия в матрице, соответствующей контуру изготавливаемого изделия, под давлением и при температуре термообработки с повторным удалением летучих элементов, проведения карбонизации полученной заготовки в электровакуумной печи и пироуплотнения в индукционной печи с вакуумным отсосом газовой фазы.

Изобретение относится к изготовлению керамического материала высокой плотности на основе гексагонального нитрида бора (ГНБ), который имеет большие перспективы применения в авиационно-космической промышленности.

Изобретение относится к изготовлению керамического материала высокой плотности на основе гексагонального нитрида бора (ГНБ), который имеет большие перспективы применения в авиационно-космической промышленности.

Изобретение относится к области углерод-углеродных композиционных материалов (УУКМ) и может быть использовано в ракетно-космической технике. Углерод-углеродный композиционный материал содержит каркас в виде иглопробивного материала из дискретных по длине углеродных волокон и пироуглеродную матрицу, имеющую изотропную структуру.

Изобретение относится к области углерод-углеродных композиционных материалов и изготовлению изделий из них и может быть использовано в ракетно-космической технике.

Изобретение относится к способу синтеза керамического материала на основе корунда, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной твердости.
Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др.

Изобретение относится к технологии получения окислительно-стойких ультравысокотемпературных керамических композиционных материалов состава MB2/SiC, где М=Zr и/или Hf с нанокристаллическим карбидом кремния, которые могут быть использованы в качестве окислительно-, химически- и эрозионно-стойких материалов в потоках воздуха при температурах выше 2000°С, для создания авиационной, космической и ракетной техники, отопительных систем, теплоэлектростанций, а также в технологиях атомной энергетики, в химической и нефтехимической промышленности.

Изобретение относится к керамической технологии и порошковой металлургии и предназначено для получения высокодисперсных гетерофазных порошковых композиций, которые могут быть использованы для производства керамических бронеэлементов, материалов, работающих в условиях абразивного износа, изделий, применяемых в машиностроении, в энергетических и химических технологиях, в аэрокосмической технике.
Наверх