Способ неразрушающего контроля объекта из магнитного материала

Изобретение относится к контрольно-измерительной технике, а именно к способам неразрушающего контроля магнитных материалов. Способ неразрушающего контроля объекта из магнитного материала заключается в том, что контролируемый объект помещают в постоянное магнитное поле и подвергают механическому воздействию, по значению отклика судят о механических свойствах объекта. Магнитное поле используют для намагничивания объекта в заданном продольном или поперечном направлении. В зависимости от направления намагничивания в качестве механического воздействия применяют соответственно продольное или поперечное воздействие, обеспечивающее возбуждение в контролируемом объекте собственных форм колебаний в звуковом диапазоне частот. Регистрируют частотный состав колебаний объекта по напряжению, наведенному в обмотке при указанном воздействии и по значениям частот максимумов судят о механических свойствах объекта. Намагничивание объекта и регистрацию частотного состава колебаний осуществляют посредством одной и той же обмотки, охватывающей контролируемый объект в продольном или поперечном направлении соответственно. Технический результат – повышение точности и производительности контроля механических свойств магнитных материалов. 1 з.п. ф-лы, 4 ил., 2 табл.

 

Изобретение относится к контрольно-измерительной технике, а именно к способам неразрушающего контроля магнитных материалов.

Известен способ электромагнитного контроля механических свойств изделий в процессе испытания [SU №370517, МПК G01N 27/86, опуб. 15.11.1973 г], заключающийся в том, что контролируемые магнитные материалы (исследуемый и эталонный образцы) помещают в заданное переменное магнитное поле и подвергают механическому воздействию, по значению отклика судят о механических свойствах материалов.

В данном способе используют переменное магнитное поле, посредством двух измерительных обмоток фиксируют параметры поля. Электродвижущую силу (ЭДС), зарегистрированную в измерительных обмотках, выпрямляют и измеряют дифференциальным методом, повторно производят измерение ЭДС, определяют разность ЭДС, измеренных до и после упругого статического механического воздействия (сжатие или растяжение), по величине которой судят о прочности и твердости изделия.

Однако в данном способе за счет влияния вихревых токов намагничивание происходит на небольшую глубину, что приводит к снижению точности контроля.

Также известен способ неразрушающего контроля магнитных материалов [SU №549732, МПК G01N 27/86, опуб. 05.03.1977 г], заключающийся в том, что контролируемые магнитные материалы помещают в постоянное магнитное поле и подвергают механическому воздействию, по значению отклика судят о механических свойствах материалов.

В отличии от предыдущего аналога, в известном способе используют постоянное магнитное поле, а в качестве механического воздействия создают механические напряжения с помощью ультразвуковых колебаний, а о механических свойствах материалов судят по величине переменной составляющей ЭДС в них. При контроле массивных магнитных материалов применяют локальный ввод мощных ульразвуковых колебаний.

Данный способ является наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению, однако, ему свойственен ряд недостатков:

- при реализации механического воздействия с помощью источника ультразвуковых колебаний возможно одновременное возбуждение продольных, поперечных или крутильных форм колебаний исследуемого образца. Их взаимодействие может привести к неоднозначным результатам за счет ориентации измерительных обмоток относительно объекта исследований, места и направления механических воздействий, что отрицательно скажется на точности контроля;

- при реализации способа необходимо одновременно обеспечивать постоянное подмагничивание исследуемого образца и проводить измерение индукции на эталонном и исследуемом образце, для чего используют несколько обмоток, что приводит к усложнению конструкции испытательной установки и снижает производительность контроля механических свойств магнитных материалов.

Техническим результатом, на достижение которого направлено предполагаемое изобретение, является повышение точности и производительности контроля механических свойств магнитных материалов.

Технический результат достигается тем, что способ неразрушающего контроля объекта из магнитного материала, заключающийся в том, что контролируемый объект помещают в постоянное магнитное поле, а затем подвергают механическому воздействию, по значению отклика судят о механических свойствах объекта, согласно изобретению магнитное поле используют для намагничивания объекта в заданном продольном или поперечном направлении, в зависимости от направления намагничивания, в качестве механического воздействия применяют соответственно продольное или поперечное воздействие, обеспечивающее возбуждение в контролируемом объекте собственных форм колебаний в звуковом диапазоне частот, регистрируют частотный состав колебаний объекта по напряжению, наведенному в обмотке при указанном воздействии и по значениям частот максимумов судят о механических свойствах объекта, причем намагничивание объекта и регистрацию частотного состава колебаний осуществляют посредством одной и той же обмотки, охватывающей контролируемый объект в продольном или поперечном направлении соответственно.

Использование магнитного поля для намагничивания объекта в заданном продольном или поперечном направлении, применение в зависимости от направления намагничивания в качестве механического воздействия, соответственно продольное или поперечное воздействие, обеспечивающее возбуждение в контролируемом объекте собственных форм колебаний в звуковом диапазоне частот, а также регистрация частотного состава колебаний объекта по напряжению, наведенному в обмотке при указанном воздействии, и суждение по значениям частот максимумов механических свойствах объекта, все это позволяет исключить влияние на регистрацию форм колебаний объекта, не совпадающих с заданным направлением намагничивания, и тем самым повысить точность контроля механических свойств объекта из магнитного материала.

А осуществление операций намагничивания и регистрации посредством одной и той же обмотки, которая охватывает контролируемый объект соответственно в продольном или поперечном направлении повышает производительность контроля за счет максимального упрощения процедуры.

В частном случае осуществления изобретения технический результат достигается за счет использования в качестве механического воздействия импульсного или случайного воздействия с формой спектра близкой к равномерному.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки, которые содержит отличительная часть формулы изобретения, не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Сущность предлагаемого изобретения поясняется чертежами:

на фиг. 1 представлено схематичное изображение образца с обмоткой, охватывающей образец в продольном направлении;

на фиг. 2 - схематичное изображение образца с обмоткой, охватывающей образец в поперечном направлении;

на фиг. 3 - график, демонстрирующий частотный состав колебаний объекта при механическом воздействии в продольном направлении (где G(f) - спектральная плотность мощности напряжения, наведенного в обмотке при механическом воздействии; a f- частота напряжения);

на фиг. 4 - график, демонстрирующий частотный состав колебаний объекта при механическом воздействии в поперечном направлении (где G(ƒ) - спектральная плотность мощности напряжения, наведенного в обмотке при механическом воздействии, f- частота напряжения).

Способ осуществляется следующим образом.

Контролируемый объект 1 из магнитного материала намагничивают путем кратковременного воздействия постоянного магнитного поля, создаваемого посредством внешней обмотки 2 при прохождении через нее постоянного тока. Для определения собственных частот продольных колебаний образец 1 из магнитного материала размещают внутри обмотки 2, выполненной из токопроводящего материала, которая охватывает образец в продольном направлении (фиг. 1).

А для намагничивания в поперечном направлении используют обмотку 2, которая охватывает объект 1 соответственно в поперечном направлении (фиг. 2). При этом на вводы 3, 4 обмотки 2 кратковременно подают постоянное напряжение (например, U=4,5B при I=9А). Для регистрации продольных колебаний (фиг. 3) используется обмотка, форма которой соответствует обмотке, охватывающей образец в продольном направлении. Для регистрации поперечных колебаний (фиг. 4) используется обмотка, форма которой соответствует обмотке, охватывающей образец в поперечном направлении. В случае продольного направления намагничивания - длина обмотки 2 сопоставима с продольными размерами объекта 1, а в случае поперечного направления намагничивания - размер обмотки 2 сопоставим с размерами объекта 1. Механическая связь в обоих случаях между обмоткой 2 и поверхностью объекта 1 отсутствует, при этом расстояние между поверхностью объекта 1 и обмоткой 2 минимально.

После намагничивания объекта 1:

- в случае продольного направления намагничивания к торцу образца 1 прикладывают импульсное или вибрационное воздействие со спектральным составом типа «белый шум» соответственно в продольном направлении. В результате указанного воздействия в объекте 1 происходит возбуждение собственных форм колебаний в звуковом диапазоне частот;

- а в случае поперечного направления намагничивания к образцу 1 прикладывают импульсное или вибрационное со спектральным составом типа «белый шум» соответственно в поперечном направлении.

Одновременно с механическим воздействием с вводов 3, 4 обмотки 2 регистрируют временные процессы напряжения, наведенные в обмотке 2 за счет локальных изменений напряженности остаточного магнитного поля, обусловленных возникновением собственных форм механических колебаний исследуемого образца 1, в процессе продольных или поперечных (изгибных) колебаний и определяют спектральный состав колебаний G(f). Катушка 2 обеспечивает регистрацию колебаний только в том направлении, в котором она намагнитила исследуемый образец 1. По значениям частот максимумов спектральных составляющих (фиг. 3, 4) судят о механических свойствах образца. Так, возможно определить модуль упругости материала контролируемого объекта или оценить качество изготовления объекта по результатам измерений значения частот собственных форм колебаний, сравнив их с собственными частотами эталонного образца или изделия.

Практическая возможность достижения требуемого технического результата при использовании изобретения подтверждена сравнением экспериментальных и расчетных данных, представленных в таблицах 1, 2 (в таблице 1 - в продольном направлении воздействия, в таблице 2 - в поперечном направлении воздействия).

Известно, что собственные формы колебаний любого образца из магнитного материала определяются его механическими свойствами и геометрической формой, при этом колебания происходят с вовлечением всего массива материала, что позволяет более точно оценить его механические характеристики, в частности модуль упругости Е.

Расчетные и экспериментальные данные были определены для балки постоянного сечения со свободными концами из магнитного материала (Сталь 30, длина 0,5 м; ширина 0,05 м; толщина 0,0077 м).

Расчет собственных частот ƒk балки со свободными концами, помещенной в обмотку, охватывающей балку в продольном направлении, были определены по формуле [В.Л. Бидерман. Теория механических колебаний. Высшая школа 1980 г., стр. 145-146].

, где

k - целое число;

Е - модуль упругости материала;

- плотность материала, где m - масса образца, V - объем образца;

- длина балки.

В случае продольных колебаний модуль упругости , где - длина балки, k - целое число, плотность материала , где m - масса образца, V - объем образца.

Расчет собственных частот ƒk балки со свободными концами, помещенной в обмотку, охватывающей балку в поперечном направлении, были определены по формуле [В.Л. Бидерман. Теория механических колебаний. Высшая школа 1980 г., стр. 151, 154].

где

k - целое число;

λ - собственные числа (для схемы стержня со свободными концами λ1=0,753; λ2=1.25;

Е - модуль упругости материала образца;

- момент инерции сечения балки, где b - толщина балки, h - ширина балки;

m0=ρ⋅S - масса единицы длины балки, где , где m - масса образца, V - объем образца; S - площадь сечения балки; - длина балки.

В случае поперечных (изгибных) колебаний , где - длина балки, k - целое число, λ - собственные числа, m0=ρ⋅S - масса единицы длины балки, где S - площадь сечения балки (, где m - масса образца, V - объем образца), - момент инерции сечения балки, где b - толщина балки, h - ширина балки.

Данные таблиц 1, 2 наглядно демонстрируют динамику повышения точности контроля механических свойств магнитных материалов, достигаемой при использовании предлагаемого способа. Сравнение расчетных и экспериментальных данных подтверждает работоспособность и достоверность заявляемого способа неразрушающего контроля объекта из магнитного материла. Расхождение значений частот максимумов соответствующих форм колебаний не превышает 7%.

Таким образом, представленные сведения свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявляемый способ при его осуществлении, относится к способам неразрушающего контроля магнитных материалов;

- обеспечение повышения точности и производительности контроля механических свойств объекта из магнитного материала;

- для заявляемого способа в том виде, в котором он охарактеризован в формуле изобретения, подтверждена возможность его осуществления с помощью описанных в заявке и известных до даты приоритета средств и методов.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».

1. Способ неразрушающего контроля объекта из магнитного материала, заключающийся в том, что контролируемый объект помещают в постоянное магнитное поле, а затем подвергают механическому воздействию, по значению отклика судят о механических свойствах объекта, отличающийся тем, что магнитное поле используют для намагничивания объекта в заданном продольном или поперечном направлении, в зависимости от направления намагничивания в качестве механического воздействия применяют соответственно продольное или поперечное воздействие, обеспечивающее возбуждение в контролируемом объекте собственных форм колебаний в звуковом диапазоне частот, регистрируют частотный состав колебаний объекта по напряжению, наведенному в обмотке при указанном воздействии, и по значениям частот максимумов судят о механических свойствах объекта, причем намагничивание объекта и регистрацию частотного состава колебаний осуществляют посредством одной и той же обмотки, охватывающей контролируемый объект в продольном или поперечном направлении соответственно.

2. Способ по п. 1, отличающийся тем, что в качестве механического воздействия используют импульсное или случайное воздействие с формой спектра, близкой к равномерному.



 

Похожие патенты:

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов.

Настоящее изобретение относится к способу измерения гемолиза или гематокрита в образце крови, включающему: a) измерение проводимости образца крови по меньшей мере на трех многочастотных входах переменного тока; b) вычисление значения иммиттанса за каждый из по меньшей мере трех многочастотных входов переменного тока; и c) подвергание каждого значения иммиттанса, вычисленного на этапе b), одной из (1) функции, которая отображает значения иммиттанса к уровням лизированной крови, и определение уровня лизированной крови в образце, или (2) функции, которая отображает значения иммиттанса к уровням гематокрита, и определение уровня гематокрита в образце, в то же время компенсируя уровень электролита образца.

Использование: для формирования электропроводящих структур на полимерной пленке. Сущность изобретения заключается в том, что способ изготовления тонкопленочного датчика влажности резистивного типа основан на создании электропроводящих структур на гибкой полимерной пленке, для чего, на поверхности полимерной подложки формируется пленка оксида графена путем нанесения водной суспензии оксида графена и последующей ее сушки, далее, на поверхности подготовленной полимерной подложки посредством полупроводникового лазера облучается электропроводящая дорожка электродов.

Изобретение относится к области биотехнологии. Предложен способ детекции полинуклеотида или полинуклеотидной последовательности в образце.

Изобретение относится к способу и системе регулирования мощности нагрева нагревателя кислородного датчика в целях снижения вероятности его деградации под действием воды.

Электрохимическая аналитическая тест-полоска для определения аналита (такого как глюкоза) в образце физиологической жидкости (например, в образце цельной крови) и/или параметра образца физиологической жидкости включает в себя камеру для ввода образца с отверстием для нанесения образца, расположенную на концевом крае электрохимической аналитической тест-полоски, а также первую и вторую камеры для определения образца, каждая из которых находится в непосредственном сообщении по текучей среде с камерой для ввода образца.

Изобретение относится к технической физике и предназначено для определения параметров физических свойств расплавов металлических сплавов, преимущественно сталей, при определении этих зависимостей у образцов сплавов бесконтактным методом, основанным на изучении крутильных колебаний цилиндрического тигля с образцом.

Изобретение относится к способам мониторинга состояния противофильтрационных элементов гидротехнических сооружений, например грунтовых плотин, с помощью электрометрии с использованием методов сопротивления.

Изобретение относится к аналитической химии и может быть использовано для контроля аутентичности и качества вареных колбасных изделий. Для этого проводят двумерный электрофорез в полиакриламидном геле исследуемого изделия и эталонного образца с последующим сравнением маркерных белков в полученных электрофореграммах, которые идентифицируют масс-спектрометрически после извлечения из полиакриламидного геля.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах, между анодом и катодом в которых при фиксированном расстоянии между ними подается напряжение.

Изобретение относится к области разработки газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления хеморезистора на основе наноструктур оксида цинка электрохимическим методом характеризуется тем, что в емкости, оборудованной электродом сравнения и вспомогательным электродом, заполненной электролитом, содержащим нитрат-анионы и катионы цинка, осаждают наноструктуры оксида цинка на диэлектрическую подложку, оборудованную полосковыми электродами, выполняющими роль рабочего электрода, путем приложения к рабочему электроду постоянного электрического потенциала от -0,5 В до -1,1 В относительно электрода сравнения в течение 100-200 секунд и при температуре электролита в диапазоне 60-80°С, после чего подложку с осажденным нанослоем оксида цинка промывают дистиллированной водой и высушивают при комнатной температуре. Изобретение обеспечивает возможность создания хеморезистора на основе наноструктур слоя оксида цинка электрохимическим методом с низкой себестоимостью в одноэтапном технологическом процессе непосредственно на измерительных электродах. 6 з.п. ф-лы, 7 ил., 1 пр.

Группа изобретений относится к области газового анализа, а именно к устройствам распознавания состава многокомпонентных газовых смесей и способам их изготовления. Мультиоксидный газоаналитический чип состоит из диэлектрической подложки, на фронтальную сторону которой нанесен набор компланарных полосковых электродов из благородного металла и тонкопленочных терморезисторов, а на обратную сторону - система тонкопленочных меандровых нагревателей, при этом в качестве газочувствительных материалов между полосковыми электродами используют наноструктуры оксидов цинка, марганца, кобальта и никеля, последовательно осажденные электрохимическим методом на различные полосковые электроды мультиэлектродного чипа, которые в совокупности формируют линейку хеморезистивных элементов, функционирующих в диапазоне температур от 200°С до 250°С, у которых изменяется сопротивление под воздействием примесей органических паров в окружающем воздухе. Процесс электрохимического синтеза оксидов цинка, марганца, кобальта и никеля проводят в емкости, заполненной водным электролитом и содержащей противоэлектрод и электрод сравнения. Технический результат заявляемой группы изобретений заключается в создании высокоселективного мультиоксидного газоаналитического чипа с низкой себестоимостью. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления газового сенсора хеморезистивного типа на основе вискеров сульфида титана заключается в том, что готовят смесь титановой фольги и порошка серы, в которой масса серы превышает массу титана в соотношении не менее 1:1,8 по массе, нагревают данную смесь в запаянной вакуумированной кварцевой ампуле и синтезируют вискеры TiS3, при этом вискеры отличаются большим аспектным отношением геометрических размеров, вискеры TiS3 наносят на диэлектрическую подложку, содержащую металлические электроды, которые имеют омический контакт с вискерами TiS3. Изобретение обеспечивает возможность создания газового сенсора, работающего при комнатной температуре. 2 н. и 7 з.п. ф-лы, 6 ил., 1 пр.
Наверх