Способ получения диэлектрического материала на основе силиката цинка



Владельцы патента RU 2683432:

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук (RU)

Изобретение относится к получению диэлектрических материалов на основе силиката цинка со структурой виллемита, которые могут быть использованы для изготовления керамики, применяемой в конденсаторах, входящих в электрические схемы с целью накопления электрического заряда, подавления пульсаций, изготовления колебательных контуров. Способ включает получение смеси оксидов цинка, меди и кремния при стехиометрическом соотношении ZnO:CuO:SiO2 = 1,95:0,05:1, которую подвергают высокотемпературному отжигу в две стадии. I стадию проводят при 900-910°С в течение 10-11 часов; II стадию – при 1010-1020°С в течение 40-42 часов с промежуточным измельчением через каждые 10 часов. Полученный материал обладает диэлектрической проницаемостью ε=8,5, и температурным коэффициентом диэлектрической проницаемости ТКЕ = -40 ррm/°С в широком интервале температур от +25°С до 500°С. При этом диэлектрический материал пригоден для работы на воздухе при нормальном атмосферном давлении и повышенной температуре. 1 ил., 2 пр.

 

Изобретение относится к получению диэлектрических материалов, которые могут быть использованы в качестве диэлектрических составов для изготовления установочной керамики, применяемой в конденсаторах, входящих в электрические схемы с целью накопления электрического заряда, подавления пульсаций, изготовления колебательных контуров.

Известен способ получения диэлектрического материала на основе силиката цинка со структурой виллемита Cu2+ : Zn2SiO4 (Babu B.Ch., Kumar K.N., Rudramadevia B.H., Buddhudu S. «Synthesis, Structural and Dielectric Properties of Co2+, Ni2+ and Cu2+ : Zn2SiO4 Nanoceramics by a Sol-gel Method" // Ferroelectrics Letters, Vol. 41, 2014 год, P. 28-43). Для получения известного материала исходные вещества (SiOC2H5)4 (источник SiO2) и Zn(NO3)2⋅6H2O в соотношении 2:1 отдельно растворяют в этаноле и перемешивают в течение 15 минут, CuCl2⋅6Н2О в количестве 0,05 мол. % растворяют в деионизированной воде и перемешивают в течение 10 минут, затем растворы, содержащие ионы цинка и меди смешивают и добавляют к раствору SiO2, полученному каталитическим гидролизом (SiOC2H5)4 после добавления к его раствору 0,2 мл HCl и перемешивания. Итоговый раствор упаривают при постоянном перемешивании в течение 12 часов при температурах 75-80°С, затем сушат 2-3 дня на воздухе и 12 часов при 120°С. Полученный ксерогель отжигают в течение 2 часов при 1000°С.

Недостатками известного способа являются большая величина температурного коэффициента диэлектрической проницаемости ТКЕ = -50 ppm / °С наряду с невысоким значением диэлектрической проницаемости ε, которая равна 5,1 при 25-300°С на частоте 103 Гц. Кроме того, использование в качестве одного из исходных реагентов хлорида меди CuCl2, приводит к выделению в процессе синтеза в газовую фазу соединений хлора, опасных в экологическом плане.

Таким образом, перед авторами стояла задача разработать экологически безопасный способ получения диэлектрического материала на основе силиката цинка, который бы обладал более низким температурным коэффициентом диэлектрической проницаемости наряду с повышенным значением диэлектрической проницаемости.

Поставленная задача решена в предлагаемом способе получения диэлектрического материала на основе силиката цинка, включающем высокотемпературный отжиг, в котором смесь соответствующих оксидов металлов при соотношении ZnO : CuO : SiO2 = 1,95:0,05:1 подвергают высокотемпературному отжигу в две стадии: I стадия - 900-910°С в течение 10-11 часов; II стадия - 1010-1020°С в течение 40-42 часов с промежуточным измельчением через каждые 10 часов.

В настоящее время не известен способ получения диэлектрического материала на основе допированного медью силиката цинка со структурой виллемита, включающий двухстадийный отжиг в определенных температурных и временных интервалах.

Экспериментальным путем установлено, что в интервале температур от +25°С до +500°С для полученного керамического материала диэлектрическая проницаемость ε=8,5 и практически постоянна во всем указанном интервале (см. фиг. 1). Температурный коэффициент диэлектрической проницаемости ТКЕ = -40 ppm / °С.

Исследования, проведенные авторами, позволили сделать вывод, что материал на основе допированного медью силиката цинка со структурой виллемита, обладающий повышенной диэлектрической проницаемостью наряду с низким температурным коэффициентом диэлектрической проницаемости может быть получен только при условии соблюдения параметров отжига. При понижении температуры обжига на первой стадии ниже 900°С, на второй стадии ниже 1000°С и при выходе за заявленные значения временного интервала получают конечный продукт с примесью непрореагировавшего оксида двухвалентной меди. При повышении температуры отжига на первой стадии выше 910°С, на второй стадии выше 1020°С в конечном продукте появляется примесная фаза оксида одновалентной меди, при этом наблюдается уменьшение диэлектрической проницаемости в интервале температур от +25°С до +500°С.

Диэлектрический керамический материал на основе допированного медью силиката цинка со структурой виллемита может быть получен следующим образом. Готовят смесь порошков оксидов CuO, ZnO и SiO2 при их соотношении, равном 0,05:1,95:1, соответственно, которую тщательно перетирают при добавлении 3-4 мл этилового спирта на 3-5 граммов смеси. Затем смесь помещают в платиновый тигель и обжигают в печи в атмосфере воздуха при температуре 900-910°С в течение 10-11 часов с последующим измельчением смеси, а затем при температуре 1000-1020°С в течение 40-42 часов с измельчением после каждых 10 часов обжига. Контроль фазового состава полученного продукта проводят методом рентгенофазового анализа (РФА). Получают материал состава Zn1.95Cu0.05SiO4. Измерения емкости полученного материала проводят с помощью цифрового моста SI-1260 на частоте 103 Гц в диапазоне температур 25-500°С. Нагревание ячейки с образцом в виде цилиндра высотой d и площадью основания S с платиновыми электродами осуществляют в печи в атмосфере воздуха с точностью ±1 градус. Значения диэлектрической проницаемости рассчитывают по формуле ε=C×d/S, где С электрическая емкость образца, d - высота, S - площадь основания. Расчет температурного коэффициента диэлектрической проницаемости проводят по формуле ТКЕ=1/ε×dε/dt, где dε/dt отношение изменения диэлектрической проницаемости к величине температурного интервала.

Способы получения нового диэлектрического материала иллюстрируются следующими примерами.

Пример 1. Берут 2,8497 г порошка ZnO, 0,0714 г порошка CuO и 1.0789 порошка SiO2 (соотношение равно 1,95:0,05:1), тщательно перетирают в агатовой ступке с добавлением 3 мл этилового спирта. Затем смесь помещают в платиновый тигель и обжигают в печи в атмосфере воздуха при температуре 900°С в течение 10 часов. Затем печь охлаждают произвольно до комнатной температуры, вынимают спеченный продукт, помещают в агатовую ступку и тщательно перетирают без добавления спирта. Полученный порошок снова помещают в тот же тигель и обжигают в печи при 1010°С в течение 40 часов с промежуточным измельчением через каждые 10 часов. При этом печь охлаждают до комнатной температуры, продукт помещают в агатовую ступку и тщательно перетирают без добавления спирта. По данным рентгенофазового анализа получают продукт состава Zn1.95Cu0.05SiO4. В области температур от +25°С до +500°С диэлектрическая проницаемость равна ε=8,5, температурный коэффициент диэлектрической проницаемости ТКЕ = -40 ppm / °С.

Пример 2. Берут 2,8497 г порошка ZnO, 0,0714 г порошка CuO и 1.0789 порошка SiO2 (соотношение равно 1,95:0,05:1), тщательно перетирают в агатовой ступке с добавлением 3 мл этилового спирта. Затем смесь помещают в платиновый тигель и обжигают в печи в атмосфере воздуха при температуре 910°С в течение 11 часов. Затем печь охлаждают произвольно до комнатной температуры, вынимают спеченный продукт, помещают в агатовую ступку и тщательно перетирают без добавления спирта. Полученный порошок снова помещают в тот же тигель и обжигают в печи при 1010°С в течение 42 часов с промежуточным измельчением через каждые 10 часов. При этом печь охлаждают до комнатной температуры, продукт помещают в агатовую ступку и тщательно перетирают без добавления спирта. По данным рентгенофазового анализа получают продукт, состоящий из Zn1.95Cu0.05SiO4. В области температур от +25°С до 500°С диэлектрическая проницаемость равна ε=8,5, температурный коэффициент диэлектрической проницаемости ТКЕ = -40 ppm / °С.

Таким образом, авторами предлагается экологически безопасный способ получения диэлектрического материала на основе силиката цинка со структурой виллемита с диэлектрическая проницаемость равна ε=8,5, и температурным коэффициентом диэлектрической проницаемости ТКЕ = -40 ppm / °С в широком интервале температур от +25°С до 500°С. При этом диэлектрический материал пригоден для работы на воздухе при нормальном атмосферном давлении и повышенной температуре.

Способ получения диэлектрического материала на основе силиката цинка со структурой виллемита, включающий высокотемпературный отжиг, отличающийся тем, что смесь оксидов соответствующих металлов при соотношении ZnO:CuO:SiO2 = 1,95:0,05:1 подвергают высокотемпературному отжигу в две стадии: I стадия – 900-910°С в течение 10-11 часов; II стадия – 1010-1020°С в течение 40-42 часов с промежуточным измельчением через каждые 10 часов.



 

Похожие патенты:
Изобретение относится к шихте из минеральных жаростойких материалов и может быть использовано для футеровки агрегатов для плавки цветных металлов. Заявленная шихта содержит более 90 вес.% смеси следующих компонентов (вес.%): 3-74 по меньшей мере одного крупнозернистого оливинового сырья с содержанием форстерита по меньшей мере 70 вес.%, зёрна которого имеют размер более 0,1 мм; 25-49 по меньшей мере одной магнезии в виде тонкого порошка, у которого зёрна имеют размер ≤1 мм; 0,9-14 карбида кремния (SiC) с размером зёрен ≤1 мм; 0,1-10 по меньшей мере одной тонкодисперсной порошкообразной кремниевой кислоты с размером частиц ≤500 мкм; 0-4 антиоксиданта для огнеупорных продуктов; 0-4 жаростойкой гранулированного сырья с размером частиц более 0,1 мм; 0-2 по меньшей мере одной известной присадки; 0-4 добавки жаростойких материалов; 0-10 по меньшей мере одного известного вяжущего для огнеупорных продуктов, в сухой форме или в отдельно упакованной жидкой форме.

Изобретение относится к области материалов для электронной техники, а именно к алюмооксидной керамике, используемой при изготовлении деталей СВЧ-приборов. Корундовую керамику получают из шихты, которая содержит электроплавленный корунд, оксид магния, оксисоль алюминия, легированную пентаоксидом ванадия при следующем соотношении компонентов, маc.%: оксид магния 0,08-0,30, оксисоль алюминия 1,5-3,0, пентаоксид ванадия 0,011-0,045, электроплавленный корунд – остальное.

Изобретение относится к способам иммобилизации радионуклидов в керамике и предназначено для прочной иммобилизации и длительной консервации радиоактивных отходов, в том числе отходов атомной энергетики, отработанных сорбентов, содержащих радионуклиды, а также может найти применение в радиохимической промышленности при изготовлении источников ионизирующего излучения для использования в гамма-дефектоскопии, измерительной технике, медицине, в том числе источников ионизирующего излучения со строго дозированной удельной активностью для применения в онкологии.

Изобретение относится к железным и железооксидным микроразмерным трубкам и способу их получения. Полученные микроразмерные трубки могут быть использованы как наполнители для полимерных и керамических матриц, микрореакторы, системы транспорта, электропроводящие и магнитные элементы, сорбенты токсичных ионов металлов, мембраны и фильтры.

Изобретение относится к высокотемпературным композитам, стойким к окислению и термическим ударам при контакте с расплавленным металлом, и может быть использовано при изготовлении сопел для распыления металлов и сплавов.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Технический результат изобретения - увеличение прочности материалов, спекающихся до плотного состояния при низкой температуре 1300-1350°С.

Группа изобретений относится к изготовлению спеченного режущего изделия. Спекают заготовку из металлокерамики или цементированного карбида, содержащую углерод и связующий металл.

Изобретение относится к сцинтилляционному составу на основе граната для применения при обнаружении ионизирующего излучения, который может быть использован для обнаружения гамма-квантов в ПЭТ-визуализации.
Изобретение относится к способу получения низкопористого материала на основе карбида бора с пористостью 1-2% при пониженной (ниже 1000°С) температуре спекания. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной твердости при высоких температурах.

Изобретение относится к замедлителю нейтронов, используемому для нейтронозахватной терапии. Замедлитель нейтронов получают путём наложения и соединения дискообразных деталей, спеченных из порошка фторида магния, которые не имеют трещин и сколов, а имеют высокую относительную плотность.

Изобретение относится к области химии и может быть использовано для катализаторов при получении необходимых в промышленности газов и для синтеза высокопрочной керамики.

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН).

Изобретение относится к сегнетоэлектрическим керамическим материалам на основе феррита висмута и может быть использовано при создании емкостных магнитоэлектрических элементов головок записи и считывания информации.

Изобретение относится к технологии производства сегнетоэлектрических керамических материалов на основе феррита висмута и может быть использовано для создания новых материалов, применяемых в устройствах записи, хранения и обработки информации.

Мишень для ионно-плазменного распыления выполнена на основе оксида металла и содержит углерод. Концентрация углерода в мишени выбрана из условия обеспечения при температуре распыления теплового эффекта от экзотермической реакции при окислении углерода кислородом оксида металла и свободным кислородом в зоне распыления, меньшего интегрального теплоотвода в упомянутой зоне, и составляет 0,1-20 ат.% .

Изобретение относится к получению оксидно-цинковой варисторной керамики и может быть использовано в электроэнергетике при изготовлении варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения.
Изобретение относится к способу получения варисторной керамики. Технический результат изобретения заключается в повышении напряжения пробоя и коэффициента нелинейности при использовании холодного прессования.

Изобретение относится к электронной технике, в частности к полупроводниковым керамическим материалам, и может быть использовано при производстве варисторов на основе оксида цинка.

Изобретение относится к сцинтилляционной технике, прежде всего к эффективным, быстродействующим сцинтилляционным детекторам. Описан способ получения прозрачной керамики, заключающийся в том, что предварительно в металлический порошкообразный цинк добавляют металлический порошкообразный магний, далее газофазным методом проводят синтез порошка для получения гранул в форме тетраподов и имеющих трехмерную наноструктуру, содержащую оксид магния в количестве 0,5-2,3 мас.%, затем полученную смесь подвергают горячему прессованию при температуре 1100-1200°C и давлении 100-200 МПа.

Изобретение относится к области производства керамических материалов и предназначено для использования при изготовлении мишеней на основе оксида цинка, являющихся источником материала для магнетронного, электронно-лучевого, ионно-лучевого и других методов нанесения пленок в микро-, опто-, наноэлектронике.

Изобретение относится к технологии получения сцинтилляционного кристаллического материала для детекторов излучения, используемых для приборов позитронно-эмиссионной томографии (ПЭТ), рентгеновской компьютерной томографии (КТ), различных радиметров в области физики высоких энергий, ресурсодобывающих приборов.
Наверх