Способ улучшения прочности расплава полипропилена

Изобретение относится к способу улучшения прочности расплава полипропилена с использованием пероксида. Способ улучшения прочности расплава полипропилена посредством термообработки упомянутого полипропилена при температуре от 150 до 300°C в присутствии 0,3-3 мас.%, из расчета на массу полипропилена, диалкилпероксидикарбоната, имеющего алкильные группы с 12-20 атомами углерода, где гидрофильный диоксид кремния с концентрацией силанольных групп по меньшей мере 1,0 ммоль Si-ОН-групп/г, как измерено титрованием LiAlH4, добавляют к упомянутому полипропилену до, во время или после упомянутой термообработки, в мольном соотношении Si-OH/диалкилпероксидикарбонат, равном от более 0,9 до 8, причем способ осуществляют в отсутствие воды и в отсутствие гидроксилэтилакрилата и гидроксиэтилметакрилата. Технический результат – получение полипропилена с высокой прочностью расплава и пониженной миграцией С1220 алифатического спирта. 9 з.п. ф-лы, 3 табл.

 

Изобретение относится к способу улучшения прочности расплава полипропилена с использованием пероксида.

В данной области техники известны способы улучшения прочности расплава полипропилена с использованием пероксида. Например, WO 99/027007 раскрывает способ, который предусматривает необходимость использования пероксидикарбоната. Некоторые пероксидикарбонаты раскрыты в данном документе, включая дицетилпероксидикарбонат и димиристилпероксидикарбонат.

Преимуществами этих конкретных длинноцепочечных диалкилпероксидикарбонатов, помимо их хорошей производительности в процессе, являются их аспекты сохранности и простота в обращении. Они оба находятся в твердой форме и в отличие от многих других пероксидикарбонатов могут благополучно храниться и транспортироваться при комнатной температуре. К тому же их можно благополучно использовать в процессе экструзии. Кроме того, их единственным летучим продуктом разложения является CO2.

Однако недостатком дицетил- и димиристилпероксидикарбонатов является то, что их продукт разложения - длинноцепочечные спирты: цетил- и миристиловый спирт - стремиться мигрировать к поверхности полученного модифицированного полипропилена. Это явление называют ʺмиграцией (помутнением)ʺ и приводит к образованию белых или сверкающих частиц на поверхности, приводящее к неравномерному внешнему виду поверхности полимера.

Миграцию часто наблюдают в неполярных полимерах, сшитых с ди(трет-бутилпероксиизопропил)бензолом. Примерами таких полимеров являются ЭПМ и ЭПДМ. Соединение, мигрирующее к поверхности сшитого полимера, является диизопропилбензолом, которое является продуктом разложения ди(трет-бутилпероксиизопропил)бензола.

В многочисленных публикациях предшествующего уровня техники рассматривали миграцию диизопропилбензола, и с этой целью были предложены многочисленные антимигрирующие добавки. Например, в US 4268637 используют фталевый ангидрид. Фталевый ангидрид, полагают, вступает в реакцию с диизопропилбензолом во время реакции сшивания, что приводит к образованию материала, который является некристаллическим и не мигрирует к поверхности сшитого полимера.

Однако в WO 01/18074 сообщили, что фталевый ангидрид, сам по себе, наблюдалось, вызывает миграцию, и вместо него предложили использовать сополимер с ангидридом и/или кислотными группами.

Многоатомные спирты и полиалкиленоксиды также были предложены в качестве антимигрирующих добавок для диизопропилбензола; см US 3317454, WO 2005/092966 и US 2007/0078208.

Миграция С1220 спиртов в полипропилене, однако, не была описана ранее. Очевидно, что решение этой проблемы также не было раскрыто.

Поэтому целью настоящего изобретения является предоставление способа, который приводит к полипропилену с высокой прочностью расплава и пониженной миграцией С1220 алифатического спирта. Более предпочтительно, миграция упомянутого спирта полностью отсутствует у полипропилена.

Этой цели достигают путем добавления к полипропилену гидрофильного диоксида кремния, т.е. диоксида кремния с относительно высокой концентрацией силанольных групп.

К тому же, это также приводит к снижению затуманивания при высоких температурах, затуманивание обычно вызвано испарением спирта из полипропилена.

Следовательно, изобретение относится к способу улучшения прочности расплава полипропилена посредством термообработки упомянутого полипропилена при температуре от 150°C до 300°C в присутствии 0,3-3 масс.%, из расчета на массу полипропилена, диалкилпероксидикарбоната, имеющего алкильные группы с 12-20 атомами углерода, где гидрофильный диоксид кремния с концентрацией силанольных групп по меньшей мере равной 1,0 ммоль Si-ОН-групп/г, как измерено титрованием LiAlH4, добавляют к упомянутому полипропилену до, во время или после упомянутой теромообработки в мольном соотношении Si-OH/диалкилпероксидикарбонат равном более 0,5.

Полипропилен, модифицированный способом по настоящему изобретению, может быть гомополимером пропилена или статистическим, чередующимся или блок-сополимером, или терполимером пропилена и других олефинов. Как правило, сополимер или терполимер пропилена будет содержать один или несколько других олефинов, таких как этилен, бутен, пентен, гексен, гептен или октен, но он может также содержать стирол или производные стирола. Содержание олефинов за исключением пропилена предпочтительно составляет не более 30 масс.% от всех мономеров.

Гомополимеры полипропилена и сополимеры пропилена и этилена являются наиболее предпочтительными. Также возможно использование смеси полипропилена и полиэтилена.

Как упоминалось выше, миграция длинноцепочечных спиртов является проблемой в неполярных полимерах. Эта миграция, т.е. миграция к поверхности, происходит из-за несовместимости между полярным спиртом и неполярным полимером.

Полипропилен, обработанный предпочтительно способом по настоящему изобретению, следовательно, не является полипропиленом, который был привит к содержащему полярную группу этиленненасыщенному мономеру, такому как гидроксиэтилакрилат или гидроксиэтилметакрилат.

Прививание такого мономера на полипропилен не является целью способа в соответствии с изобретением. Другими словами: способ в соответствии с изобретением предпочтительно осуществляют в отсутствие такого мономера.

Более того, способ в соответствии с изобретением предпочтительно осуществляют в отсутствие воды. Более предпочтительно, если его осуществляют в отсутствие полярных растворителей в целом (в том числе спиртов). Полярные растворители, такие как вода, будут либо мигрировать на поверхность полипропилена, либо будут связываться с диоксидом кремния, что будет препятствовать диоксиду кремния действовать в качестве антимигрирующей добавки для продуктов разложения С1220 спиртов.

Температура плавления коммерчески доступного гомополимера пропилена составляет около 160-170°C. Температура плавления сополимеров и терполимеров пропилена, как правило, ниже.

Молекулярная масса используемого полипропилена может быть выбрана из широкого диапазона. Показателем молекулярной массы является показатель текучести расплава (ПТР). Можно использовать полипропилен, имеющий ПТР от 0,1 до 1000 г/10 мин (230°C, 21,6 Н). Предпочтительно используют полипропилен, имеющий ПТР от 0,5 до 250 г/10 мин.

Пероксидикарбонат для использования в способе по настоящему изобретению имеет формулу

СН3-(СН2)x-O-C(=O)-O-O-С(=O)-O-(CH2)x-CH3, где x = 11-19.

Более предпочтительно, если пероксидикарбонат является дицетилпероксидикарбонатом (x = 15) или димиристилпероксидикарбонатом (x = 13). Наиболее предпочтительно, если пероксидикарбонат является дицетилпероксидикарбонатом.

Одним из продуктов разложения, который образуется и который остается в полипропилене, является С1220 спирт. Эти спирты имеют полярную головку и неполярный хвост и склонны мигрировать к поверхности неполярного полипропилена, что приводит к образованию белых или сверкающих частиц на поверхности полипропилена.

В способе по настоящему изобретению гидрофильный диоксид кремния действует как антимигрирующая добавка.

Диоксид кремния, используемый в способе по настоящему изобретению, является гидрофильным, что означает, что он содержит свободные гидроксильные (силанольные) группы на его поверхности и не был обработан гидрофобизирующей (понижающей гидрофильность) добавкой, такой как хлорсиланы (например, триалкилхлорсиланы, диалкилдихлорсиланы, алкилтрихлорсиланы), гексаметилдисилазан, триалкилсиланолы или другие гидрофобизирующие добавки, известные в данной области техники.

Гидрофильные диоксиды кремния включают в себя коллоидальный или пирогенетический диоксид кремния, осажденный диоксид кремния и силикагель. Осажденный диоксид кремния является наиболее предпочтительным.

Гидрофильный диоксид кремния обладает концентрацией силанольных групп по меньшей мере равной 1,0, предпочтительно по меньшей мере равной 1,25, более предпочтительно по меньшей мере равной 1,5 и наиболее предпочтительно по меньшей мере равной 1,6 ммоль Si-OH групп на грамм диоксида кремния.

Данную концентрацию силанольных групп можно определить титрованием LiAlH4, как описано в ЕР-А 0725037, страницы 8-9.

Диоксид кремния добавляют к полипропилену либо до, во время, либо после термообработки в присутствии пероксидикарбоната. Диоксид кремния добавляют к полипропилену в мольном соотношении Si-OH группы/пероксидикарбонат равном более 0,5, предпочтительно равном более 0,9 и наиболее предпочтительно равном более 1,0. Это соотношение предпочтительно составляет не более 8,0, более предпочтительно не более 6,0, еще более предпочтительно не более 4,0 и наиболее предпочтительно не более 3,5. Количество Si-OH групп можно определить титрованием LiAlH4, как упоминалось выше.

Способ в соответствии с настоящим изобретением обычно осуществляют в обычном оборудовании для смешивания расплава. Предпочтительно используют экструдер. Использование экструдера позволяет объединить модификацию полипропилена с гранулированием. Более предпочтительно используют двухшнековый экструдер.

Способ по настоящему изобретению может быть осуществлен в виде периодического процесса, непрерывного процесса или их комбинации. Непрерывный процесс предпочтителен.

Диалкилпероксидикарбонат и диоксид кремния можно смешать с полипропиленом перед термообработкой. В качестве альтернативы диалкилпероксидикарбонат можно добавить к полипропилену во время термообработки.

Диоксид кремния можно добавить путем смешивания его с ПП порошком до термообработки или путем раздельного введения, или боковой подачи в экструдер во время термообработки.

Предпочтительно добавлять диалкилпероксидикарбонат, диоксид кремния и полипропилен в экструдер в одно и то же время, например, с использованием устройств(а) для подачи.

В качестве альтернативы диоксид кремния можно добавить после термообработки с применением обычных способов смешения добавок в полимеры.

Скорость вращения шнека экструдера предпочтительно находится в диапазоне 25-500 оборотов в минуту. Температура экструдера должна быть выше температуры плавления полипропилена.

Способ по настоящему изобретению осуществляют при температуре в диапазоне 150-300°C, более предпочтительно 155-250°C и наиболее предпочтительно 160-225°C.

Диалкилпероксидикарбонаты, используемые в настоящем изобретении, являются твердыми при комнатной температуре и могут быть добавлены к полипропилену в виде композиции на водной основе (суспензии), в виде раствора, в виде дисперсии в инертном растворителе, таком как изододекан, в форме хлопьев, в виде порошка или в виде маточной смеси на инертном твердом носителе.

В предпочтительном варианте осуществления пероксидикарбонат и диоксид кремния смешивают перед добавлением к полипропилену. Преимуществом этого является то, что диоксид кремния может действовать в качестве добавки, предотвращающей слеживание для пероксидикарбоната, означающее, что диоксид кремния улучшает текучесть порошка пероксидикарбоната.

Следовательно настоящее изобретение также относится к твердой композиции, содержащей диалкилпероксидикарбонат и гидрофильный диоксид кремния; концентрация гидрофильного диоксида кремния составляет 0,1-50 масс.% из расчета на общую массу гидрофильного диоксида кремния и диалкилпероксидикарбоната (= масса гидрофильного диоксида кремния + масса диалкилпероксидикарбоната). Предпочтительно, концентрация гидрофильного диоксида кремния составляет 0,1-25 масс.% и наиболее предпочтительно 0,1-10 масс.% из расчета на общую массу гидрофильного диоксида кремния и диалкилпероксидикарбоната.

При желании, эта композиция содержит полимер, например полипропилен, предпочтительно в сочетании с антиоксидантами и/или улавливателями кислот (например, стеарат кальция). Такая полимер-содержащая композиция, может иметь форму порошкообразной смеси отдельных ингредиентов или маточной смеси пероксидикарбоната и диоксида кремния в полимерной матрице.

Если диалкилпероксидикарбонат и гидрофильный диоксид кремния добавляют к полипропилену, чтобы его модифицировать в виде твердой композиции, содержащей оба компонента, тем не менее, разрешено добавлять дополнительное количество диоксида кремния к упомянутому полипропилену, т.е. дополнительно к диоксиду кремния, уже присутствующему в упомянутой твердой композиции.

Количество используемого диалкилпероксидикарбоната будет зависеть от требуемой степени модификации и от типа используемого полипропилена. Предпочтительно, используют концентрации диалкилпероксидикарбоната в диапазоне от 0,3 до 3 г пероксида на 100 г полипропилена, более предпочтительно в диапазоне от 0,5 до 2 г на 100 г полипропилена.

Время пребывания в экструдере обычно составляет около 10 сек. до 5 мин.

Экструдированный полимер можно дополнительно обработать, как известно среднему специалисту в данной области техники. Например, используя подводный гранулятор. В качестве альтернативы экструдированный модифицированный полипропилен формируют непосредственно в желаемый конечный продукт или смешивают с другим полимером. Примерами таких других полимеров являются ЭПМ и ЭПДМ.

Предпочтительно осуществлять процесс по настоящему изобретению в атмосфере инертного газа, такого как азот, диоксид углерода или аргон. Предпочтительно используют азот.

Процесс по настоящему изобретению можно осуществить в присутствии соагента для влияния на показатель текучести расплава полипропилена и/или для улучшения степени модификации.

Под соагентом обычно понимают полифункциональную реакционноспособную добавку, такую как полиненасыщенное соединение, которое будет быстро реагировать с полимерными радикалами, будет преодолевать пространственные затруднения и сводить к минимуму нежелательные побочные реакции. Дополнительная информация о соагентах изложена в Rubber Chemistry and Technology, Vol. 61, pp. 238-254 и W. Hofmann, Progress in Rubber and Plastics Technology, Vol. 1, No. 2, March 1985, pp. 18-50. Термин ʺсоагентʺ имеет то же самое значение, как указано в этих публикациях.

Включение эффективного количества одного или нескольких из этих соагентов в полипропилен до или во время процесса по настоящему изобретению, склонно влиять на показатель текучести расплава и молекулярную массу модифицированного полипропилена.

Полипропилен, полученный по способу в соответствии с настоящим изобретением, можно переработать в конечный продукт без каких-либо дополнительных приспособлений, если это желательно. Полипропилен можно переработать в желаемый конечный продукт всеми способами, известными специалисту в данной области, причем условия обработки обычно зависят от требуемого применения.

При необходимости полипропилен, полученный способом по настоящему изобретению можно очистить, модифицировать, сформовать или смешать с другими (полимерными) материалами в одну или несколько стадий процесса до его окончательной обработки. Таким образом, можно сделать модификации с использованием другого полимера или мономера с целью улучшения совместимости конечного продукта с другими материалами.

В качестве альтернативы полученный полипропилен можно подвергнуть разложению для повышения его способности к переработке и/или применимости.

При желании к полипропилену можно добавить обычные вспомогательные вещества в количестве, известном специалисту в данной области техники, такие как антиоксиданты, УФ-стабилизаторы, смазки, противостарители, пенообразователи, зародышеобразователи (агенты образования центров кристаллизации), наполнители, пигменты, улавливатели кислот (например, стеарат кальция), и/или антистатики. Эти вспомогательные вещества можно добавлять к полипропилену до, а также во время или после процесса в соответствии с изобретением. Например, можно добавить химический пенообразователь (например, азодикарбонамид) или можно ввести в экструдер физический пенообразователь (например, газ, подобный азоту, диоксиду углерода, бутану или изобутану) для получения вспененного полипропилена. Химический пенообразователь предпочтительно добавляют до или после модификации; физический пенообразователь предпочтительно вводят после модификации. Предпочтительно стабилизатор, например один или несколько антиоксидантов, добавляют для дезактивирования любых свободных радикалов еще присутствующих в полученном полипропилене, а также любых радикалов, которые могут образоваться позже при последующей обработке в атмосфере воздуха/кислорода. В типичном эксперименте используют от 0,01 до 1,0 частей антиоксиданта на сто частей полипропилена.

Полипропилен, полученный способом в соответствии с настоящим изобретением, можно дополнительно обработать, например, вспениванием, формованием пенопластов, литьевым формованием, формованием с раздувом, нанесением покрытия методом экструзии, экструзией профилированных изделий, получением пленки экструзией с поливом, получением пленки экструзией с раздувом или горячим формованием.

Примеры.

Пример 1.

Экструзия.

500 г гомополимерного полипропиленового порошка (ПТР = около 7 г/10 мин), 10 г дицетилпероксидикарбоната (Perkadox® 24L; (2,0 м.ч.), 0,5 г Irganox® 1010 антиоксиданта (0,1 м.ч.) и соответствующие количества диоксида кремния в порошкообразной форме (смотри таблицу 1) смешивали в ведре с помощью шпателя и затем в барабанном смесителе в течение 10 мин. Соединения экструдировали в системе Haake PolyLab OS RheoDrive 7, оснащенной экструдером Haake Rheomex OS PTW16 (двухвинтовой, вращающийся в одном направлении L/D=40) от Thermo Scientific, используя следующие параметры:

Параметры профиля температуры: накопитель при 30°С, зона 1 при 160°С, зоны 2-4 при 190°С, зоны 5-6 при 200°С, зоны 7-10 при 210°С.

Скорость вращения шнека: 280 оборотов в минуту.

Пропускная способность: 1,4 кг/ч, дозированная гравиметрическим шнековым питателем типа Brabender DDW-MD2-DSR28-10.

Азот пропускали через накопитель (3,5 л/мин) и головку (9 л/мин).

Экструдированный материал пропускали через водяную баню для охлаждения и гранулировали с помощью автоматического гранулятора.

Полученные гранулы сушили всю ночь в циркуляционном сушильном шкафу при 60°С.

Приготовление листа.

Из высушенных гранул штамповали 1-мм листы (и 100 мкм пленки) между двумя ПЭТ пленками и двумя внешними металлическими пластинами, используя пресс Fontijne 200 кН при 190°С и пресс Fontijne 400 кН при температуре 30°C (чтобы снова охладить).

Практическими условиями были:

1-мм листы 100-мкм пленки

22 г гранулы 1,3 г гранулы

1-мм форма 17*8 см нет формы

Условия прессования (постепенно):

1 мин. при 190°С/<50кН 1 мин. при 190°С/<50кН

1 мин. при 190°С/50кН 1 мин. при 190°С/50кН

3 мин. при 190°С/150кН 1 мин. при 190°С/150кН

1 мин. при 30°С/150кН 1 мин. при 30°С/150кН

Оценка листа.

1-мм листы (и 100-мкм пленки) оценивали под микроскопом. Листы (и пленки) хранили в течение соответствующего времени между ПЭТ пленками при 23°С.

Используемым микроскопом для визуального сравнения был микроскоп Stemi 2000-C Digital от Carl Zeiss, оснащенный Axio Cam Icc 3 Camera. Применяли увеличение 32*.

В таблицах ниже ʺнетʺ означает, что миграцию не наблюдали; ʺдаʺ означает, что наблюдали миграцию (в виде сверкающих частиц).

Показатель текучести расплава.

Показатель текучести расплава (ПТР) измеряли с помощью Goettfert Melt Indexer MI-3 в соответствии с ISO 1133 (230°С/2,16 кг загрузки). ПТР выражают в г/10 мин.

Прочность расплава.

Прочность расплава (ПР) измеряли (в сН) с помощью Goettfert Rheograph 20 (капиллярный реометр) в сочетании с Goettfert Rheotens 71.97, в соответствии с инструкциями производителя, используя следующую конфигурацию и настройки:

Реограф:

Температура: 220°С

Время плавления: 10 минут

Головка: капилляр: длина 30 мм, диаметр 2мм

Большая ионизационная камера и поршень: диаметр 15 мм

Скорость поршня: 0,32 мм/с, что соответствует скорости сдвига 72 с-1

Скорость плавления нити (при запуске): 20 мм/с.

Rheotens:

Ускорение шестерни (пряди): 10 мм/с2

Расстояние от цилиндра до середины шестерни: 100 мм

Длина ленты: 70 мм

Результаты.

1-мм Листы, изготовленные из экструдированных и высушенных соединений из таблицы 1, оценивали на миграцию в течение 10 недель после приготовления листов.

Таблица 1: Соединения, композиция и результаты модифицированного ПП.

Пероксид
(м.ч.)
Тип диоксида кремния SiOH ммоль/г Диоксид кремния (м.ч.) Si-OH/
перокс. (моль/моль)
ПТР
(г/10мин)
Миграция после 10 недель
Нет Нет 0 7,3 Нет
2,0 (Комп.) Нет 0 2,7 Да
2,0 (Комп.) Коллоидальный
(Aerosil 200)
0,75 0,5 0,11 н.и. Да
2,0 (Комп.) 2,0 0,45 2,9 Да
2,0 (Комп.) Осажденный
(Sipernat 50S)
2,9 0,5 0,45 н.и. Да
2,0 2,0 1,8 2,5 Нет

н.и.=не измеряли

Пример 2

Повторяли пример 1 за исключением того, что использовали различные количества осажденного диоксида кремния. 1-мм Листы экструдированных и высушенных соединений из таблицы 2 оценивали через 2 недели после приготовления листов.

Таблица 2: Соединения, композиция и результаты модифицированного ПП.

дицетилпероксидикарбонат (м.ч.) Тип диоксида кремния Количество диоксида кремния
(м.ч.)
ПТР
(г/10мин)
Проч-ность расплава (сН) Миграция после 2 недель
Нет Нет 0 7,1 н.и. Нет
2,0 (Комп.) Нет 0 2,8 7-8 Да
2,0 Sipernat 50S 0,5 н.и. н.и. Да
2,0 1,0 н.и. н.и. Да
2,0 2,0 2,7 6,5-7,5 Нет
2,0 4,0 3,1 4-6 Нет
2,0 8,0 4,8 н.и. Нет

н.и.=не измеряли

Результаты по миграции из таблицы 2 для 1-мм листов подтверждали оцениванием 100-мкм пленок через две недели.

Пример 3.

Повторяли пример 1 за исключением того, что использовали другую марку гомополимерного полипропиленового порошка (ПТР = около 12 г/10 мин). 1-мм Листы экструдированных и высушенных соединений из таблицы 3 оценивали через 10 недель после приготовления листов.

Таблица 3: Соединения, композиция и результаты модифицированного ПП.

Пероксид
(м.ч.)
Тип диоксида кремния SiOH ммоль/г Диоксид кремния (м.ч.) Si-OH/
перокс. (моль/моль)
ПТР
(г/10мин)
Миграция после 10 недель
Нет Нет 0 12,1 Нет
2,0 Коллоидальный
(Aerosil 380)
1,5 2,0 0,93 5,9 Нет
2,0 Осажденный
(Sipernat 50S)
2,9 2,0 1,8 4,9 Нет

Из результатов в приведенных выше таблицах ясно, что миграцию можно подавить - при сохранении сниженного значения ПТР и повышенной прочности расплава - путем добавления правильного типа и количества гидрофильного диоксида кремния.

1. Способ улучшения прочности расплава полипропилена посредством термообработки упомянутого полипропилена при температуре от 150 до 300°C в присутствии 0,3-3 мас.%, из расчета на массу полипропилена, диалкилпероксидикарбоната, имеющего алкильные группы с 12-20 атомами углерода, где гидрофильный диоксид кремния с концентрацией силанольных групп по меньшей мере 1,0 ммоль Si-ОН-групп/г, как измерено титрованием LiAlH4, добавляют к упомянутому полипропилену до, во время или после упомянутой термообработки, в мольном соотношении Si-OH/диалкилпероксидикарбонат, равном от более 0,9 до 8, причем способ осуществляют в отсутствие воды и в отсутствие гидроксилэтилакрилата и гидроксиэтилметакрилата.

2. Способ по п.1, в котором мольное соотношение Si-OH/диалкилпероксидикарбонат составляет более 1,0.

3. Способ по любому из предшествующих пунктов, в котором диалкилпероксидикарбонатом является дицетилпероксидикарбонат или димиристилпероксидикарбонат.

4. Способ по п.3, в котором диалкилпероксидикарбонатом является дицетилпероксидикарбонат.

5. Способ по п.4, в котором мольное соотношение Si-OH/пероксидикарбонат находится в диапазоне 1,0-8,0.

6. Способ по п.5, в котором мольное соотношение Si-OH/пероксидикарбонат находится в диапазоне 1,0-3,5.

7. Способ по любому из предшествующих пунктов, в котором процесс осуществляют в отсутствие этиленненасыщенного мономера.

8. Способ по любому из предшествующих пунктов, в котором процесс осуществляют в экструдере.

9. Способ по любому из предшествующих пунктов, в котором температура составляет от 160 до 250°C.

10. Способ по любому из предшествующих пунктов, в котором гидрофильный диоксид кремния добавляют до или во время термообработки.



 

Похожие патенты:

Изобретение относится к способам получения полиолефинов и контролирования характеристик получаемых полиолефинов. Один или более конкретных вариантов реализации указанных способов в общем случае включают введение олефинового мономера, выбранного из С2-С3 олефинов, в первую реакционную зону в первых условиях полимеризации с получением первого полиолефина; удаление потока промежуточного продукта из указанной первой реакционной зоны, где указанный поток промежуточного продукта включает первый полиолефин и непрореагировавший олефиновый мономер; введение указанного потока промежуточного продукта, сомономера, выбранного из С4-С8 олефинов, и дополнительного олефинового мономера во вторую реакционную зону во вторых условиях полимеризации с получением продукта второго реактора; поддержание, по существу, постоянного отношения сомономер:олефиновый мономер во второй реакционной зоне; и удаление по меньшей мере части указанного продукта второго реактора, где указанный продукт второго реактора содержит бимодальный полиолефин.
Настоящее изобретение относится к способу повышения устойчивости к царапанию композиции, содержащей термопластичный органический полимер (P), включающий в себя на первом этапе (I) реакционное смешивание термопластичного органического полимера (A) и полиорганосилоксана (B) при температуре, при которой термопластичный органический полимер (A) и полиорганосилоксан (B) находятся в жидких фазах, с образованием маточного концентрата, причем полиорганосилоксан (B) содержит по меньшей мере одну функциональную группу, способную реагировать с термопластичным органическим полимером (A), так что при реакционном смешивании в маточном концентрате образуется сополимер (A) и (B), где полиорганосилоксан (B) имеет среднечисленную молекулярную массу Mn более 100 000 г/моль, и где термопластичный органический полимер (A) имеет индекс текучести расплава от 10 до 2000 г/10 минут, а на втором этапе (II) - смешивание маточного концентрата с композицией, содержащей термопластичный органический полимер (P), причем термопластичный органический полимер (P) выбран из группы, включающей гомополимер полипропилена, сополимер полипропилена, содержащий звенья этилена, гомополимер полиэтилена, сополимер полиэтилена, содержащий звенья пропилена, и их смеси, и где полиорганосилоксан (B) является единственным полиорганосилоксаном, добавляемым в процесс.

Изобретение относится к композиту, содержащему наполнитель на основе целлюлозы, и литым изделиям, полученными из указанного композита. Композит содержит гетерофазный сополимер пропилена (НЕСО), полиэтилен (РЕ) с плотностью в пределах от 935 до 970 кг/м3, наполнитель на основе целлюлозы (CF) и агент, улучшающий совместимость, где количество полиэтилена (РЕ) в композите составляет от 5 до 40 мас.% от общей массы композита, а количество наполнителя на основе целлюлозы (CF) в композите составляет в от 5 до 30 мас.
Изобретение относится к легким водостойким рулонным кровлям для защиты зданий или мостов, таким как рулонный кровельный материал. Кровля содержит упрочняющий материал, покрытый композицией покрытия, которая включает i) 40-90 мас.% смеси битума и пластификатора, ii) 5-50 мас.% нефтяного кокса (petcoke) и iii) 2-25 мас.% эластомерного блок-сополимера и/или пластомерного полимера.

Изобретение относится к термопластичным эластомерным пленкам с повышенной прочностью, имеющим улучшенные прочность на растяжение и свойства эластичности. Термопластичная эластомерная пленка содержит термопластичный эластомер на основе полиолефина, стирольный блок-сополимер и средство, повышающее прочность.

Изобретение относится к получению биоразлагаемых полимерных композиций, содержащих синтетические и природные полимеры, и может найти применение в производстве тары и упаковки, упаковочных и сельскохозяйственных пленок, других товаров потребительского назначения с коротким сроком использования, способных к биодеструкции под воздействием факторов окружающей среды.

Изобретение относится к полипропилену с широким распределением молекулярной массы и способу его получения. Полипропилен имеет скоростью течения расплава MFR2 (230°С) от 30 до 300 г/10 мин, соотношение комплексной вязкости eta*(0,05 рад/сек)/eta*(300 рад/сек) при 200°С от 20,0 до 60,0 и содержание 2,1 эритрорегиодефектов, равным или менее 0,4 мол.%.

Изобретение относится к гетерофазному сополимеру пропилена и этилена, к способу его получения, а также применению этого сополимера для изготовления изделий, например, таких как пленка.

Настоящее изобретение относится к огнезащитной полипропиленовой композиции, предназначенной для получения огнезащитного слоя электрического провода или кабеля. Огнезащитная композиция содержит базовую смолу, включающую в себя гетерофазный пропиленовый сополимер, который содержит полипропиленовую гомо- или сополимерную матрицу, и этилен-пропиленовый каучук, диспергированный в упомянутой матрице, а также гидроксид металла.

Изобретение относится к пригодным для нанесения печати смесям и пригодным для нанесения печати пленкам, в частности к многослойным упаковочным пленкам. Полимерная смесь для изготовления слоя пленки, пригодной для нанесения печати, содержит (i) гомополимер или сополимер на основе пропилена в количестве от 75 до 95 мас.% от общей массы смеси и (ii) олефиновый блок-сополимер в количестве от 5 до 25 мас.% от общей массы смеси, причем олефиновый блок-сополимер представляет собой сополимер этилена/С3-20 α-олефина с плотностью от 0,85 до 0,89 г/см3 и индексом расплава (190°С, 2,16 кг) от 0,5 г/10 мин до 10 г/10 мин.

Изобретение относится к эластомерной композиции на основе комбинации частично и полностью гидрированных бутадиен-нитрильных каучуков с максимальным содержанием акрилонитрила - 49-50% с различной степенью непредельности и может быть использовано в резиновой и резинотехнической промышленности, в частности, для изготовления многослойных резинокордных изделий, эксплуатируемых в условиях воздействия динамических нагружений, агрессивных сред при повышенных температурах в течение длительного времени.

Объектом изобретения является инициирующий состав, содержащий по меньшей мере два тримерных циклических пероксида кетона: тримерный циклический пероксид метилэтилкетона (3MEK-cp) формулы (I) и по меньшей мере один пероксид, удовлетворяющий формуле (II), в которой R1-R3представляют собой алкил, где указанные группы имеют от 2 до 5 атомов углерода, общее число атомов углерода R1+R2+R3 находится в диапазоне 7-15, и молярное соотношение 3MEK-cp и общего количества пероксидов, удовлетворяющих формуле (II), находится в диапазоне от 10:90 до 80:20.

Изобретение относится к области эластомерных композиций на основе бутадиен-нитрильных каучуков, которые можно использовать в резинотехнических изделиях, обладающих стойкостью к действию нефти и продуктов ее переработки, в отраслях промышленности, где необходима маслобензостойкость и озоностойкость.

Изобретение относится к содержащему нитрильные группы сополимерному каучуку, содержащему α,β-этиленненасыщенные мономерные звенья в количестве 10-60 вес.% и диеновые мономерные звенья и/или α-олефиновые мономерные звенья в количестве 40-90 вес.%.
Изобретение относится к получению каучуковой композиции, характеризующейся высокими прозрачностью, ударной вязкостью и теплостойкостью. Композиция содержит катализированный неодимом изопреновый каучуковый (IR) компонент в количестве от 5 до 95 массовых частей и каучуковый полимерный компонент (RB), выбранный из группы: бутадиеновый каучук (BR), 1,2-полибутадиенового каучука, стирол-бутадиеновый каучук (SBR), при условии, что совокупное количество полимеров IR и RB составляет 100 массовых частей.
Изобретение относится к способу ускорения отверждения радикально отверждаемых смол органическим пероксидом при помощи окислительно-восстановительной системы, а также к двухкомпонентной композиции для отверждения радикально отверждаемых смол.
Изобретение относится к водным композициям органического пероксида, применяемым для полимеризации или сополимеризации ненасыщенных мономеров этиленового ряда. Предложена композиция водной эмульсии органического пероксида, не содержащая защитный коллоидный агент, состоящая из (% масс.) одного или нескольких органических пероксидов (10-65), по меньшей мере одного агента против гелеобразования (2-25), эмульгатора (0,01-10), при необходимости по меньшей мере одной добавки, не являющейся частично гидролизованным поливинилацетатом (ПВА), воды, количество которой определяют так, чтобы составить остаток композиции (до 100), отличающаяся тем, что эмульгатор представляет собой неионогенное поверхностно-активное вещество, выбранное исключительно из трехблочного сополимера, в котором первый блок образован в основном этиленоксидом и в меньшей части пропиленоксидом, полимеризованными одновременно, или исключительно полимеризованным этиленоксидом, второй блок образован в основном пропиленоксидом и в меньшей части бутиленоксидом, полимеризованными одновременно, или исключительно полимеризованным пропиленоксидом и третий блок имеет такую же структуру, что и описанные выше первый или второй блок, но он ковалентно связан только с блоком иного состава; или алкоксилированного жирного спирта; или алкоксилированного растительного или животного масла (гидрогенизированного или негидрогенизированного); или смеси нескольких этих компонентов.
Изобретение относится к композициям водной эмульсии органического пероксида. Предложена композиция водной эмульсии органического пероксида для полимеризации или сополимеризации ненасыщенных мономеров этиленового ряда, содержащая (% масс.): один или несколько органических пероксидов (10-65); по меньшей мере один агент против гелеобразования (2-25); по меньшей мере один эмульгатор (0,01-10); при необходимости по меньшей мере одну добавку; воду, количество которой определяют так, чтобы составить остаток общей массы композиции (до 100); причем эмульгатор представляет собой коллоидный агент, представляющий собой поливинилацетат со степенью гидролиза, превышающей 80%, и вязкостью, определенной для водного раствора с концентрацией 4% масс.

Изобретение относится к способу функционализации основанного на этилене (со)полимера, включающему стадию контактирования основанного на этилене (со)полимера при температуре в диапазоне от 100 до 250°C с азидом формулы (I) (I),где Y представляет собой ,m равно 0 или 1, n равно 0 или 1, n+m равно 1 или 2, и X представляет собой функциональную группу линейного или разветвленного, алифатического или ароматического углеводорода с 1-12 атомами углерода, необязательно содержащего гетероатомы, функционализированным и модифицированным основанным на этилене (со)полимерам на основе этилена, получаемым указанным способом, а также к их использованию для производства силовых кабелей.

Изобретение относится к способу сшивания эластомерной композиции в присутствии атмосферного кислорода. Способ включает смешение эластомера, включающего этилен-пропиленовый терполимер, с неэластомерным сополимером, включающим два разных мономера в полимеризованной форме в массовом соотношении эластомера и неэластомерного сополимера от 50:50 до 75:25 и с составом органического пероксида.

Изобретение относится к тройным пропилен-этилен-диеновым сополимерам для композиций протектора шины. Композиция протектора шины содержит компоненты, мас.

Изобретение относится к способу улучшения прочности расплава полипропилена с использованием пероксида. Способ улучшения прочности расплава полипропилена посредством термообработки упомянутого полипропилена при температуре от 150 до 300°C в присутствии 0,3-3 мас., из расчета на массу полипропилена, диалкилпероксидикарбоната, имеющего алкильные группы с 12-20 атомами углерода, где гидрофильный диоксид кремния с концентрацией силанольных групп по меньшей мере 1,0 ммоль Si-ОН-группг, как измерено титрованием LiAlH4, добавляют к упомянутому полипропилену до, во время или после упомянутой термообработки, в мольном соотношении Si-OHдиалкилпероксидикарбонат, равном от более 0,9 до 8, причем способ осуществляют в отсутствие воды и в отсутствие гидроксилэтилакрилата и гидроксиэтилметакрилата. Технический результат – получение полипропилена с высокой прочностью расплава и пониженной миграцией С12-С20 алифатического спирта. 9 з.п. ф-лы, 3 табл.

Наверх