Способ количественного определения производных 5-нитроимидазола (группы нидазолов)

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств, и может быть использовано при количественном определении производных 5-нитроимидазола (группы нидазолов) в субстанциях. Способ количественного определения производных 5-нитроимидазола в субстанциях, заключающийся в растворении анализируемой пробы при комнатной температуре и перемешивании до полного растворения, обработке аликвотной части приготовленного раствора химическими реактивами с последующим фотоэлектроколориметрированием полученных окрашенных растворов, количественном определении целевого вещества по градуировочным графикам, отличается тем, что точные навески субстанций метронидазола, тинидазола, орнидазола, ниморазола или секнидазола растворяют в изопропиловом спирте, раствор обрабатывают цинковой пылью в кислой среде в присутствии хлорида аммония, подогревают на водяной бане в течение 3-5 мин, обрабатывают 0,5% спиртовым раствором анисового альдегида в кислой среде, выдерживают до появления устойчивого окрашивания, фотоэлектроколориметрирование проводят при длине волны 304 нм. 6 ил., 1 пр.

 

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств, и может быть использовано при количественном определении производных 5-нитроимидазола (группы нидазолов) в субстанциях.

Препараты группы 5-нитроимидазола (5-НИМЗ) - высокоактивные антимикробные препараты широкого спектра действия для системного лечения инфекций, вызванных облигатными анаэробными бактериями, и ряда инфекционных заболеваний, вызванных простейшими. С точки зрения химического строения 5-НИМЗ - это синтетические низкомолекулярные соединения, содержащие нитрогруппу (NO2) в положении 5-го имидазольного цикла. Наиболее широкое распространение и применение в медицинской практике получили метронидазол, тинидазол и орнидазол. Кроме того, в медицинской практике применяются препараты секнидазол, ниморазол, тернидазол, сатранидазол и некоторые другие.

Для количественного определения исследуемых препаратов используется метод неводного титрования - хлорная кислота в качестве титранта с кристаллическим фиолетовым в среде ледяной уксусной кислоты [Беликов, В.Г. Фармацевтическая химия: В 2 ч. 4.1: Общая фармацевтическая химия. 4.2: Специальная фармацевтическая химия: Учебник по фармацевт. химии для студ. фармацевт, вузов и фак. / В.Г. Беликов. - 3-е изд., перераб. и доп. - Пятигорск: Пятигорская гос. фармацевт, акад., 2003. - 713 с; Максютина, Н.П. Методы анализа лекарств / Н.П. Максютина и др. - К.: Здоровья. - 1984. - 224 с].

Однако данный метод количественного определения исследуемых препаратов являются малочувствительными и неспецифичными.

Из патент РФ 2589845 (МПК G01N 33/15, G01N 31/22, G01N 21/78, опубл. 20.05.2016) известен способ количественного определения метилкарбаматных производных бензимидазола (группа бендазола) в фармакопейных препаратах путем растворения анализируемой пробы в воде очищенной, выдерживания на нагретой водяной бане до полного растворения при перемешивании, охлаждения и обработки аликвотной части приготовленного раствора последовательно каплями 0,1 Н спиртового раствора КОН (выдерживают 5 мин) и 0,5%-ным раствором вератрового альдегида в серной кислоте (выдерживают еще 3 мин) и фотоэлектроколориметрирования окрашенного раствора при длине волны 364 нм.

Цель изобретения состояла в разработке чувствительной методики количественного определения группы нидазолов в субстанциях.

Технический результат заключается в количественном определении метронидазола, тинидазола, орнидазола, ниморазола и секнидазола в субстанции с относительной ошибкой не более ± 0,80%.

Технический результат достигается тем, что в способе количественного определения производных 5-нитроимидазола в субстанциях растворяют анализируемую пробу в изопропиловом спирте, выдерживают до полного растворения при перемешивании и комнатной температуре, обрабатывают аликвотную часть приготовленного раствора сначала восстановителем в кислой среде и в присутствии хлорида аммония, а затем спиртовым раствором анисового альдегида в кислой среде, затем полученные окрашенные растворы фотоэлектроколориметрируют при длине волны 304 нм. В качестве восстановителя используется цинковая пыль.

Предлагаемый способ количественного определения исследуемых препаратов основан на следующих принципах:

Первая стадия: Превращение нитрогруппы в аминогруппу под действием цинковой пыли в соляной кислоте в присутствии гидрохлорида амина.

Вторая стадия. Взаимодействие синтезированных производных 5-аминоимидазола и 5-аминопиррола со спиртовым раствором анисового альдегида в кислой среде, приводящее к образованию окрашенных продуктов.

Количественное определение исследуемых препаратов проводят методом наименьших квадратов после статистической обработки калибровочных графиков.

Для приготовления 0,5%-ного спиртового раствора анисового альдегида в коническую колбу емкостью 200 мл помещают 0,5 г (или 0,445 мл) анисового альдегида и растворяют в смеси 85 мл абс. спирта и 15 мл конц. соляной кислоты при комнатной температуре и перемешивании. Срок хранения в склянке из темного стекла в течение 2 суток.

Пример.

Для приготовления растворов исследуемых препаратов точные навески порошков метронидазола (около 0,25 г), тинидазола (около 0,50 г), орнидазола (около 0,20 г), ниморазола (около 0,50 г) и секнидазола (около 0,10 г) растворяют в 50 мл абс. спирта в мерных колбах емкостью 100 мл, выдерживают при перемешивании и комнатной температуре до полного растворения и доводят объемы колб до метки тем же спиртом.

В мерных колбах на 100 мл к 5-9 мл приготовленных растворов группы нидазолов прибавляют 2-4 мл конц. соляной кислоты и осторожно небольшими порциями 5 г цинковой пыли и 0,1 г хлорида аммония. Затем добавляют еще 2 мл конц. соляной кислоты и 5 мл спирта, обмывая стенки колб. Для окончательного растворения цинковой пыли следует слегка подогреть содержимое на водяной бане в течение 3-5 мин. После охлаждения прибавляют 4 мл 0,5%-ного спиртового раствора анисового альдегида. Выдергивают 3 мин при комнатной температуре и встряхивании. Появляется ярко-желтое окрашивание, устойчивое в течение 2 ч. Доводят объемы колб спиртом до метки и измеряют оптическую плотность поглощения окрашенных растворов при 304 нм в кювете с поглощающим слоем 10,0 мм. Раствор сравнения - спирт.

Количественное определение исследуемых производных 5-нитроимидазола в субстанциях проводят методом наименьших квадратов после статической отработки калибровочных графиков. Подчинения интенсивности окрашивания растворов закону Бугера - Лаберта - Бера находятся в пределах концентраций метранидазола от 0,125 мг до 0,225 мг в 5-9 мл раствора, для субстанции тинидазола от 0,250 мг до 0,450 мг в 5-9 мл раствора, для субстанции орнидазола от 0,120 мг до 0,160 мг в 6-8 мл раствор, для субстанции ниморазола от 0,250 мг до 0,450 мг в 5-9 мл раствора, для субстанции секнидазола от 0,060 мг до 0,080 мг в 6-8 мл раствора. Коэффициенты а и b исследуемых производных 5-нитроимидазола в субстанциях вычислены после статической обработки калибровочных графиков с использованием метода наименьших квадратов и представлены в фиг. 1-5.

Сравнительные данные, подтверждающие преимущества предлагаемого способа количественного определения лекарственных средств производных 5-нитроимидазола в субстанциях перед методом титрования приведены на фиг. 6.

Относительная ошибка количественного определения группы нидазолов не превышает не более ± 0,80%.

Способ количественного определения производных 5-нитроимидазола в субстанциях, заключающийся в растворении анализируемой пробы при комнатной температуре и перемешивании до полного растворения, обработке аликвотной части приготовленного раствора химическими реактивами с последующим фотоэлектроколориметрированием полученных окрашенных растворов, количественном определении целевого вещества по градуировочным графикам, отличающийся тем, что точные навески субстанций метронидазола, тинидазола, орнидазола, ниморазола или секнидазола растворяют в изопропиловом спирте, раствор обрабатывают цинковой пылью в кислой среде в присутствии хлорида аммония, подогревают на водяной бане в течение 3-5 мин, обрабатывают 0,5% спиртовым раствором анисового альдегида в кислой среде, выдерживают до появления устойчивого окрашивания, фотоэлектроколориметрирование проводят при длине волны 304 нм.



 

Похожие патенты:

Изобретение относится к биотехнологии и медицине. Раскрыт способ скрининга веществ, обладающих противовоспалительной активностью, включающий смешивание исследуемого вещества с фиксированным количеством человеческого ФНО-альфа и добавление этой смеси к культуре клеток хондрального ряда с последующим измерением экспрессии биологического маркера.

Изобретение относится к фармацевтическому анализу, а именно к анализу материалов с помощью оптических средств, и может быть использовано для количественного определения производных бензимидазола (группы празолов) в субстанциях.

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для оценки комплексообразующих свойств лекарственных веществ по отношению к соединениям магния в водных системах по коэффициенту комплексообразующей активности.
Изобретение относится к химико-фармацевтической промышленности, а именно к приготовлению гомеопатических препаратов на основе органических соединений путем многократного последовательного разведения и встряхивания на нейтральном растворителе исходного лекарственного вещества в одном стеклянном флаконе.
Изобретение относится к медицине, в частности к экспериментальной фармакологии, и может быть использовано для ингибирования нуклеарного фактора каппа В (NF-kB). Способ включает добавление бактериального липополисахарида в концентрации 1 мкг/мл к свежевыделенным по стандартной методике на градиенте плотности фиколла мононуклеарным клеткам крови крыс Wistar, затем добавление к данной смеси 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний) пропионата калия, растворенного в фосфатно-солевом буфере, в конечной концентрации 35 мкг/мл.

Изобретение относится к аналитической химии, а именно к количественному или тест-определению тетрациклина и доксициклина в молоке и молочных продуктах. Для тест-определения из образцов предварительно удаляют белок и молочный жир.

Изобретение относится к медицине и касается микрофлюидного устройства для исследования влияния химических веществ на клетки млекопитающих, представляющего собой чип с размещенной в нем микрофлюидной системой.

Изобретение относится к способам количественного определения полисорбата-80 в растворах терапевтических белков и к способам быстрой высокоэффективной жидкостной хроматографии.

Изобретение относится к медицине, в частности к экспериментальной фармакологии Предложен способ ингибирования нуклеарного фактора каппа В в культуре клеток, включающий добавление бактериального липополисахарида в концентрации 1 мкг/мл к свежевыделенным по стандартной методике на градиенте плотности фиколла мононуклеарным клеткам крови крыс Wistar, отличающийся тем, что к данной смеси затем добавляют 2-этил-6-метил-3-гидроксипиридиния L-2,6-диаминогексаноат в конечной концентрации 35 мкг/мл.

Группа изобретений относится к медицине, в частности к фармакологии, и может быть использована для идентификации и количественного определения основных компонентов в инъекционных лекарственных средствах методом спектрометрии комбинационного рассеяния света.

Изобретение относится к способу определения количества гликозилированного гемоглобина (HbA1c) в пробе, включающему гемолиз эритроцитов в пробе для высвобождения содержащегося в них HbA1c, приведение в контакт высвобожденного гемоглобина с протеолитическим агентом для получения гликозилированных продуктов разложения гемоглобина, определение количества HbA1c за счет количественного определения гликозилированных продуктов разложения гемоглобина.

Изобретение относится к области медицины, в частности к молекулярной биологии и онкологии. Предложена тест-система для прогнозирования развития метастазов у больных раком желудка на основании определения числа копий HV2 мтДНК, содержащая высокоспецифичные праймеры для генов HV2 и В2М с концентрацией 1,8 мкМ каждого в водном растворе.

Изобретение относится к средствам измерения и касается устройств погружных зондов для замера температуры и отбора проб металлургических расплавов, в частности жидкой стали и сталеплавильного шлака.

Изобретение относится к области медицины, а именно к инфекционным болезням, терапии, медицинской генетике, и может быть использовано для прогнозирования риска развития рожи.

Предложенная группа изобретений относится к области биомедицины, в частности молекулярной и клинической онкологии. Предложен способ диагностики светлоклеточного почечно-клеточного рака (скПКР), при котором у обследуемых лиц берут образцы ткани почки, производят выделение и очистку ДНК из взятых образцов и производят методом МС-ПЦР анализ метилирования фрагментов ДНК с применением праймеров.

Изобретение относится к области биохимии, в частности к моноклональному антителу, которое специфически связывает полипептид KIR3DL2, а также к фармацевтической композиции для лечения рака или воспалительного или аутоиммунного нарушения, его содержащей.

Изобретение относится к области медицины. Предложен способ диагностики нарушений обмена нуклеиновых кислот (НК) у критических больных.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для оценки эффективности нейроретинопротекции первичной открытоугольной глаукомы.

Изобретение относится к способам и методам петрофизических и геохимических исследований коллекции керна нетрадиционного резервуара юрской высокоуглеродистой формации (ЮВУФ) и может быть использовано при определении линейных ресурсов нефти и газа, технически извлекаемых из ЮВУФ, с учетом их различной степени связанности с матрицей породы и заполнения сообщающихся и/или не сообщающихся пор.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для оценки эффективности нейроретинопротекции первичной открытоугольной глаукомы.

Изобретение относится к области аналитической химии и может быть использовано для определения содержания галогенорганических соединений в волосах человека и касается экологического контроля загрязнения внутренней среды человека. Для этого проводят кратковременную промывку пробы волос деионизованной водой, свободной от определяемых анионов на уровне пределов детектирования, отделяют волосы от воды, сушат волосы, быстро вбрасывают определенную навеску волос в кварцевой лодочке в высокотемпературную зону реактора с температурой 900-1000°С, где происходит высокотемпературная окислительная конверсия в потоке кислорода высокой степени чистоты при такой скорости потока кислорода, при которой обеспечивается высокотемпературная конверсия галогенорганических соединений, присутствующих в волосах, до анионов F-, Cl-, Br-. Окислительная конверсия пробы волос проводится в условиях, исключающих сажеобразование и выброс части абсорбата из абсорбера. Продукты конверсии поглощают в абсорбере с деионизованной водой, свободной от определяемых анионов на уровне пределов детектирования, при этом объем кислорода, пропущенный через реактор и абсорбер такой, чтобы в холостом опыте уровень фона аналитов в абсорбате соответствовал уровню фона в деионизованной воде, заполняющей абсорбер до подачи кислорода в реактор. Затем абсорбат переводят в концентрирующую колонку, после чего анализируют методом ионной хроматографии в изократических условиях, которые обеспечивают полное отделение пика воды от пиков F- и Cl- и быстрое детектирование всех аналитов. Заявленное изобретение обеспечивает возможность быстрого и селективного определения суммарного содержания следовых количеств летучих, среднелетучих и нелетучих галогенсодержащих соединений в волосах человека. 1 з.п. ф-лы, 3 табл., 3 пр.
Наверх